首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Splicing factors SRp20 and 9G8 promote the nucleocytoplasmic export of mRNA   总被引:14,自引:0,他引:14  
Huang Y  Steitz JA 《Molecular cell》2001,7(4):899-905
We have uncovered a novel function for two members of the SR protein family in mRNA export. Using UV cross-linking, transient transfection, and Xenopus oocyte microinjection, we find that the nucleocytoplasmic shuttling proteins SRp20 and 9G8 interact specifically with a 22-nt RNA element from the histone H2a gene to promote the export of intronless RNAs in both mammalian cells and Xenopus oocytes. Antibodies to SRp20 or 9G8 eliminate RNA binding and significantly inhibit the export of RNAs carrying the element from oocyte nuclei. Our observation that SRp20 and 9G8 can be UV cross-linked to polyadenylated RNA in both the nucleus and cytoplasm of HeLa cells suggests a more general role for these SR proteins in mRNA export.  相似文献   

3.
Murine hepatitis virus (MHV) infections exhibit remarkable variability in cytopathology, ranging from acutely cytolytic to essentially asymptomatic levels. In this report, we assess the role of the MHV receptor (MHVR) in controlling this variable virus-induced cytopathology. We developed human (HeLa) cell lines in which the MHVR was produced in a regulated fashion by placing MHVR cDNA under the control of an inducible promoter. Depending on the extent of induction, MHVR levels ranged from less than ~1,500 molecules per cell (designated Rlo) to ~300,000 molecules per cell (designated Rhi). Throughout this range, the otherwise MHV-resistant HeLa cells were rendered susceptible to infection. However, infection in the Rlo cells occurred without any overt evidence of cytopathology, while the corresponding Rhi cells died within 14 h after infection. When the HeLa-MHVR cells were infected with vaccinia virus recombinants encoding MHV spike (S) proteins, the Rhi cells succumbed within 12 h postinfection; Rlo cells infected in parallel were intact, as judged by trypan blue exclusion. This acute cytopathology was not due solely to syncytium formation between the cells producing S and MHVR, because fusion-blocking antiviral antibodies did not prevent it. These findings raised the possibility of an intracellular interaction between S and MHVR in the acute cell death. Indeed, we identified intracellular complexes of S and MHVR via coimmunoprecipitation of endoglycosidase H-sensitive forms of the two proteins. We suggest that MHV infections can become acutely cytopathic once these intracellular complexes rise above a critical threshold level.  相似文献   

4.
5.
Highlights? Lung-produced type I interferons instruct bone marrow cells during respiratory virus infections ? IFN-exposed bone marrow leukocytes become resistant to virus infection ? Primed and protected bone marrow leukocytes migrate to the infected lung and contribute to virus clearance  相似文献   

6.
7.
RNA viruses exploit host cells by co-opting host factors and lipids and escaping host antiviral responses. Previous genome-wide screens with Tomato bushy stunt virus (TBSV) in the model host yeast have identified 18 cellular genes that are part of the actin network. In this paper, we show that the p33 viral replication factor interacts with the cellular cofilin (Cof1p), which is an actin depolymerization factor. Using temperature-sensitive (ts) Cof1p or actin (Act1p) mutants at a semi-permissive temperature, we find an increased level of TBSV RNA accumulation in yeast cells and elevated in vitro activity of the tombusvirus replicase. We show that the large p33 containing replication organelle-like structures are located in the close vicinity of actin patches in yeast cells or around actin cable hubs in infected plant cells. Therefore, the actin filaments could be involved in VRC assembly and the formation of large viral replication compartments containing many individual VRCs. Moreover, we show that the actin network affects the recruitment of viral and cellular components, including oxysterol binding proteins and VAP proteins to form membrane contact sites for efficient transfer of sterols to the sites of replication. Altogether, the emerging picture is that TBSV, via direct interaction between the p33 replication protein and Cof1p, controls cofilin activities to obstruct the dynamic actin network that leads to efficient subversion of cellular factors for pro-viral functions. In summary, the discovery that TBSV interacts with cellular cofilin and blocks the severing of existing filaments and the formation of new actin filaments in infected cells opens a new window to unravel the way by which viruses could subvert/co-opt cellular proteins and lipids. By regulating the functions of cofilin and the actin network, which are central nodes in cellular pathways, viruses could gain supremacy in subversion of cellular factors for pro-viral functions.  相似文献   

8.
9.
10.
11.
12.
We have evaluated the use of proteinase K (PK)-treated cells isolated from Helicobacter pylori as lipopolysaccharide (LPS) antigens in an immunoblot assay and an enzyme-linked immunosorbent assay (ELISA) for the serodiagnosis of H. pylori infection. The sera from patients with chronic gastritis, gastric ulcer, duodenal ulcer or gastric cancer, and from healthy adults with or without H. pylori infection were assayed with three commercial serodiagnostic kits (HM-CAP, Helico-G, and G.A.P. II) and novel methods relying on the use of PK-treated cells. The PK-treated cells used in these assays were selected on the basis of their possibility to possess a common epitope in the O-polysaccharides of H. pylori, which is known to be highly immunogenic in humans. Of the sera from these patients, 71-94% were positive with the commercial kits, 97% with immunoblot assay, and 90% with ELISA. On the other hand, of the healthy adults infected with H. pylori, 72-97% were positive with the commercial kits, 86% with immunoblot assay, and 72% with ELISA. PK-treated cells that did not contain the common epitope were unsuitable as an antigen for immunoblot assay or ELISA. Furthermore, the reactivity of these sera reacted specifically with H. pylori PK-treated cells but not with LPSs from other gram-negative bacteria, such as Campylobacter, Proteus, Bordetella, and Salmonella. These results demonstrate that the serological assays relying on the use of H. pylori PK-treated cells possessing a highly antigenic epitope are potentially useful as a serodiagnostic test for H. pylori infection.  相似文献   

13.
Cellular Sites for the Competence-provoking Factor of Streptococci   总被引:4,自引:1,他引:3       下载免费PDF全文
Immune globulins against competent cells of group H streptococci, strains Challis and Wicky, inhibited genetic transformation to streptomycin resistance when added to competent cultures. Antibodies against noncompetent cells did not inhibit transformation of competent cells. Strain Challis is spontaneously highly transformable. Strain Wicky is very poorly transformable but can be converted to high transformability with the exocellular competence-provoking factor (CPF) produced by strain Challis. Globulins against noncompetent cells of strain Challis and Wicky also inhibited transformation when added to noncompetent cultures prior to conversion to competence. Antibodies against cells of the related strain Blackburn, however, did not inhibit transformation under any circumstances. It is concluded that, although globulins prepared against competent cells block the deoxyribonucleic acid receptor sites present in these cells, the globulins prepared against noncompetent cells prevent conversion to competence by blocking the access of CPF to specific cellular sites for this factor. Strain Blackburn seems not to contain CPF-receptive sites and is, therefore, nontransformable.  相似文献   

14.
15.
16.
17.
18.
19.
Poliovirus IRES-mediated translation requires the functions of certain canonical as well as non-canonical factors for the recruitment of ribosomes to the viral RNA. The interaction of cellular proteins PCBP2 and SRp20 in extracts from poliovirus-infected cells has been previously described, and these two proteins were shown to function synergistically in viral translation. To further define the mechanism of ribosome recruitment for the initiation of poliovirus IRES-dependent translation, we focused on the role of the interaction between cellular proteins PCBP2 and SRp20. Work described here demonstrates that SRp20 dramatically re-localizes from the nucleus to the cytoplasm of poliovirus-infected neuroblastoma cells during the course of infection. Importantly, SRp20 partially co-localizes with PCBP2 in the cytoplasm of infected cells, corroborating our previous in vitro interaction data. In addition, the data presented implicate the presence of these two proteins in viral translation initiation complexes. We show that in extracts from poliovirus-infected cells, SRp20 is associated with PCBP2 bound to poliovirus RNA, indicating that this interaction occurs on the viral RNA. Finally, we generated a mutated version of SRp20 lacking the RNA recognition motif (SRp20ΔRRM) and found that this protein is localized similar to the full length SRp20, and also partially co-localizes with PCBP2 during poliovirus infection. Expression of this mutated version of SRp20 results in a ~100 fold decrease in virus yield for poliovirus when compared to expression of wild type SRp20, possibly via a dominant negative effect. Taken together, these results are consistent with a model in which SRp20 interacts with PCBP2 bound to the viral RNA, and this interaction functions to recruit ribosomes to the viral RNA in a direct or indirect manner, with the participation of additional protein-protein or protein-RNA interactions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号