首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interferon alpha (IFNα) is used for the treatment of hepatitis B virus infection, and whilst efficacious, it is associated with multiple adverse events caused by systemic exposure to interferon. We therefore hypothesise that targeting IFN directly to the intended site of action in the liver would reduce exposure in blood and peripheral tissue and hence improve the safety and tolerability of IFNα therapy. Furthermore we investigated whether directing IFN to the reservoir of infection in the liver may improve antiviral efficacy by increasing local concentration in target organs and tissues. Our previous results show that the mIFNα2 fused to an ASGPR specific liver targeting antibody, DOM26h-196-61, results in a fusion protein which retains the activity of both fusion partners when measured in vitro. In vivo targeting of the liver by mIFNα2-DOM26h-196-61, hereafter referred to as targeted mIFNα2, was observed in microSPECT imaging studies in mice. In this study we show by pharmacokinetic analysis that antibody mediated liver-targeting results in increased uptake and exposure of targeted mIFNα2 in target tissues, and correspondingly reduced uptake and exposure in systemic circulation, clearance organs and non-target tissues. We also show that cytokine activity and antiviral activity of liver-targeted IFN is observed in vivo, but that, contrary to expectations, liver-targeting of mIFNα2 using ASGPR specific dAbs actually leads to a reduced pharmacodynamic effect in target organs and lower antiviral activity in vivo when compared to non-targeted mIFNα2-dAb fusions.  相似文献   

2.
Type I interferons (IFN) including IFNα and IFNβ are critical for the cellular defense against viruses. Here we report that increased levels of IFNβ were found in testes from mice deficient in MOV10L1, a germ cell-specific RNA helicase that plays a key role in limiting the propagation of retrotransposons including Long Interspersed Element-1 (LINE-1). Additional experiments revealed that activation of LINE-1 retrotransposons increases the expression of IFNβ and of IFN-stimulated genes. Conversely, pretreatment of cells with IFN suppressed the replication of LINE-1. Furthermore, the efficacy of LINE-1 replication was increased in isogenic cell lines harboring inactivating mutations in diverse elements of the IFN signaling pathway. Knockdown of the IFN receptor chain IFNAR1 also stimulated LINE-1 propagation in vitro. Finally, a greater accumulation of LINE-1 was found in mice that lack IFNAR1 compared with wild type mice. We propose that LINE-1-induced IFN plays an important role in restricting LINE-1 propagation and discuss the putative role of IFN in preserving the genome stability.  相似文献   

3.
4.
Mitogen-activated protein kinase (MAP) cascades are important in antiviral immunity through their regulation of interferon (IFN) production as well as virus replication. Although the serine-threonine MAP kinase tumor progression locus 2 (Tpl2/MAP3K8) has been implicated as a key regulator of Type I (IFNα/β) and Type II (IFNγ) IFNs, remarkably little is known about how Tpl2 might contribute to host defense against viruses. Herein, we investigated the role of Tpl2 in antiviral immune responses against influenza virus. We demonstrate that Tpl2 is an integral component of multiple virus sensing pathways, differentially regulating the induction of IFNα/β and IFNλ in a cell-type specific manner. Although Tpl2 is important in the regulation of both IFNα/β and IFNλ, only IFNλ required Tpl2 for its induction during influenza virus infection both in vitro and in vivo. Further studies revealed an unanticipated function for Tpl2 in transducing Type I IFN signals and promoting expression of interferon-stimulated genes (ISGs). Importantly, Tpl2 signaling in nonhematopoietic cells is necessary to limit early virus replication. In addition to early innate alterations, impaired expansion of virus-specific CD8+ T cells accompanied delayed viral clearance in Tpl2-/- mice at late time points. Consistent with its critical role in facilitating both innate and adaptive antiviral responses, Tpl2 is required for restricting morbidity and mortality associated with influenza virus infection. Collectively, these findings establish an essential role for Tpl2 in antiviral host defense mechanisms.  相似文献   

5.
Previous studies have demonstrated that Marburg viruses (MARV) and Ebola viruses (EBOV) inhibit interferon (IFN)-α/β signaling but utilize different mechanisms. EBOV inhibits IFN signaling via its VP24 protein which blocks the nuclear accumulation of tyrosine phosphorylated STAT1. In contrast, MARV infection inhibits IFNα/β induced tyrosine phosphorylation of STAT1 and STAT2. MARV infection is now demonstrated to inhibit not only IFNα/β but also IFNγ-induced STAT phosphorylation and to inhibit the IFNα/β and IFNγ-induced tyrosine phosphorylation of upstream Janus (Jak) family kinases. Surprisingly, the MARV matrix protein VP40, not the MARV VP24 protein, has been identified to antagonize Jak and STAT tyrosine phosphorylation, to inhibit IFNα/β or IFNγ-induced gene expression and to inhibit the induction of an antiviral state by IFNα/β. Global loss of STAT and Jak tyrosine phosphorylation in response to both IFNα/β and IFNγ is reminiscent of the phenotype seen in Jak1-null cells. Consistent with this model, MARV infection and MARV VP40 expression also inhibit the Jak1-dependent, IL-6-induced tyrosine phosphorylation of STAT1 and STAT3. Finally, expression of MARV VP40 is able to prevent the tyrosine phosphorylation of Jak1, STAT1, STAT2 or STAT3 which occurs following over-expression of the Jak1 kinase. In contrast, MARV VP40 does not detectably inhibit the tyrosine phosphorylation of STAT2 or Tyk2 when Tyk2 is over-expressed. Mutation of the VP40 late domain, essential for efficient VP40 budding, has no detectable impact on inhibition of IFN signaling. This study shows that MARV inhibits IFN signaling by a mechanism different from that employed by the related EBOV. It identifies a novel function for the MARV VP40 protein and suggests that MARV may globally inhibit Jak1-dependent cytokine signaling.  相似文献   

6.
CpG-ODNs activate dendritic cells (DCs) to produce interferon alpha (IFNα) and beta (IFNβ). Previous studies demonstrated that Toll-like receptor 9 (TLR9) deficient DCs exhibited a residual IFNα response to CpG-A, indicating that yet-unidentified molecules are also involved in induction of IFNα by CpG-A. Here, we report that the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) but not Ku70 deficient BMDCs showed defective IFNα and IFNβ responses to CpG-A or CpG-B. Loss of both DNA-PKcs and TLR9 further reduced the IFNα response to CpG-A. These DNA-PKcs and TLR9 effects were mediated by their downstream Akt/mTORC1 pathway and downstream events IRAK1 and IKKα. Loss of DNA-PKcs, TLR9, MyD88 or IRAK4 impaired phosphorylation of Akt(S473), S6K, S6, IRAK1, or IKKα in BMDCs in response to CpG-ODNs. The residual IFNα and IFNβ in DNA-PKcs-deficient BMDCs were partially responsible for the induction of IL-6 and IL-12 by CpG-ODNs and their stimulatory effect was blocked by IFNAR1 neutralizing antibodies. Further analysis indicated that CpG-ODN associated with DNA-PKcs and Ku70, and induced DNA-PKcs’s interaction with TRAF3. Intriguingly, DNA-PKcs but not Ku70 expression level was reduced in TLR9-deficient BMDCs. Taken together, our data suggest that DNA-PKcs is an important mediator in the type I IFN response to CpG-ODNs in TLR9-dependent or -independent fashions.  相似文献   

7.
The type I interferon (IFN‐I, IFN‐α/β)‐mediated immune response is the first line of host defense against invading viruses. IFN‐α/β binds to IFN‐α/β receptors (IFNARs) and triggers the expression of IFN‐stimulated genes (ISGs). Thus, stabilization of IFNARs is important for prolonging antiviral activity. Here, we report the induction of an RNA‐binding motif‐containing protein, RBM47, upon viral infection or interferon stimulation. Using multiple virus infection models, we demonstrate that RBM47 has broad‐spectrum antiviral activity in vitro and in vivo. RBM47 has no noticeable impact on IFN production, but significantly activates the IFN‐stimulated response element (ISRE) and enhances the expression of interferon‐stimulated genes (ISGs). Mechanistically, RBM47 binds to the 3''UTR of IFNAR1 mRNA, increases mRNA stability, and retards the degradation of IFNAR1. In summary, this study suggests that RBM47 is an interferon‐inducible RNA‐binding protein that plays an essential role in enhancing host IFN downstream signaling.  相似文献   

8.
Virus infection, such as hepatitis B virus (HBV), occasionally causes endoplasmic reticulum (ER) stress. The unfolded protein response (UPR) is counteractive machinery to ER stress, and the failure of UPR to cope with ER stress results in cell death. Mechanisms that regulate the balance between ER stress and UPR are poorly understood. Type 1 and type 2 interferons have been implicated in hepatic flares during chronic HBV infection. Here, we examined the interplay between ER stress, UPR, and IFNs using transgenic mice that express hepatitis B surface antigen (HBsAg) (HBs-Tg mice) and humanized-liver chimeric mice infected with HBV. IFNα causes severe and moderate liver injury in HBs-Tg mice and HBV infected chimeric mice, respectively. The degree of liver injury is directly correlated with HBsAg levels in the liver, and reduction of HBsAg in the transgenic mice alleviates IFNα mediated liver injury. Analyses of total gene expression and UPR biomarkers’ protein expression in the liver revealed that UPR is induced in HBs-Tg mice and HBV infected chimeric mice, indicating that HBsAg accumulation causes ER stress. Notably, IFNα administration transiently suppressed UPR biomarkers before liver injury without affecting intrahepatic HBsAg levels. Furthermore, UPR upregulation by glucose-regulated protein 78 (GRP78) suppression or low dose tunicamycin alleviated IFNα mediated liver injury. These results suggest that IFNα induces ER stress-associated cell death by reducing UPR. IFNγ uses the same mechanism to exert cytotoxicity to HBsAg accumulating hepatocytes. Collectively, our data reveal a previously unknown mechanism of IFN-mediated cell death. This study also identifies UPR as a potential target for regulating ER stress-associated cell death.  相似文献   

9.

Background

Alfa-interferons (IFNα2a, IFNα2b, 40KDa-PEGIFNα2a and 12KDa-PEGIFNα2b) are effective treatments for chronic hepatitis C infection. However, their usage has been associated with a variety of adverse events, including interstitial pneumonitis and pulmonary arterial hypertension. Although rare, these adverse events can be severe and potentially life-threatening, emphasizing the need for simple biomarkers of IFN-induced lung toxicity.

Methods

Human lung microvascular endothelial cells (HLMVEC), human pulmonary artery smooth muscle (HPASM) cells and A549 cells were grown under standard conditions and plated into 96- or 6-well plates. Cells were stimulated with various concentrations of different IFNs in hydrocortisone-free medium. After 24 and 48 hours, IP10 and ET-1 were measured by ELISA in conditioned medium. In a second set of experiments, cells were pre-treated with tumour necrosis factor-α (TNF-α) (10 ng/mL).

Results

IFNα2a, IFNα2b, 40KDa-PEGIFNα2a and 12KDa-PEGIFNα2b, but not IFNλ, induced IP10 (CXCL10) release and increased IP10 gene induction in HLMVEC. In addition, all four IFNα preparations induced IP10 release from HPASM cells and A549 cells pre-treated with TNFα. In each of these cell types, 40KDa-PEGIFNα2a was significantly less active than the native forms of IFNα2a, IFNα2b or 12KDa-PEGIFNα2b. Similarly, IFNα2a, IFNα2b and 12KDa-PEGIFNα2b, but not 40KDa-PEGIFNα2a, induced endothelin (ET)-1 release from HPASM cells.

Conclusions

Consistent with other interstitial pulmonary diseases, both IP10 and ET1 may serve as markers to monitor IFN-induced lung toxicity in patients. In addition, both markers may also serve to help characterize the risk associated with IFNα preparations to induce lung toxicity.  相似文献   

10.
Production of type I interferons, consisting mainly of multiple IFNα subtypes and IFNβ, represents an essential part of the innate immune defense against invading pathogens. While in most situations, namely viral infections, this class of cytokines is indispensable for host survival they mediate a detrimental effect during infection with L. monocytogenes by rendering macrophages insensitive towards IFNγ signalling which leads to a lethal bacterial pathology in mice. Due to a lack of suitable analytic tools the precise identity of the cell population responsible for type I IFN production remains ill-defined and so far these cells have been described to be macrophages. As in general IFNβ is the first type I interferon to be produced, we took advantage of an IFNβ fluorescence reporter-knockin mouse model in which YFP is expressed from a bicistronic mRNA linked by an IRES to the endogenous ifnb mRNA to assess the IFNβ production on a single cell level in situ. Our results showed highest frequencies and absolute numbers of IFNβ+ cells in the spleen 24 h after infection with L. monocytogenes where they were located predominately in the white pulp within the foci of infection. Detailed FACS surface marker analyses, intracellular cytokine stainings and T cell proliferation assays revealed that the IFNβ+ cells were a phenotypically and functionally further specialized subpopulation of TNF and iNOS producing DCs (Tip-DCs) which are known to be essential for the early containment of L. monocytogenes infection. We proved that the IFNβ+ cells exhibited the hallmark characteristics of Tip-DCs as they produced iNOS and TNF and possessed T cell priming abilities. These results point to a yet unappreciated ambiguous role for a multi-effector, IFNβ producing subpopulation of Tip-DCs in controlling the balance between containment of L. monocytogenes infection and effects detrimental to the host driven by IFNβ.  相似文献   

11.
To better understand how β-cells respond to proinflammatory cytokines we mapped the locations of histone 3 lysine 4 monomethylation (H3K4me1), a post-translational histone modification enriched at active and poised cis-regulatory regions, in IFNγ, Il-1β, and TNFα treated pancreatic islets. We identified 96,721 putative cis-regulatory loci, of which 3,590 were generated de novo, 3,204 had increased H3K4me1, and 5,354 had decreased H3K4me1 in IFNγ, Il-1β, and TNFα exposed islets. Roughly 10% of the de novo and increased regions were enriched for the repressive histone modification histone 3 lysine 27 trimethylation (H3K27me3) in untreated cells, and these were frequently associated with chemokine genes. We show that IFNγ, Il-1β, and TNFα exposure overcomes this repression and induces chemokine gene activation in as little as three hours, and that this expression persists for days in absence of continued IFNγ, Il-1β, and TNFα exposure. We implicate trithorax group (TrxG) complexes as likely players in the conversion of these repressed loci to an active state. To block the activity of these complexes, we suppressed Wdr5, a core component of the TrxG complexes, and used the H3K27me3 demethylase inhibitor GSK-J4. We show that GSK-J4 is particularly effective in blunting IFNγ, Il-1β, and TNFα-induced chemokine gene expression in β-cells; however, it induced significant islet-cell apoptosis and β-cell dysfunction. Wdr5 suppression also reduced IFNγ, Il-1β, and TNFα induced chemokine gene expression in β-cells without affecting islet-cell survival or β-cell function after 48hrs, but did begin to increase islet-cell apoptosis and β-cell dysfunction after four days of treatment. Taken together these data suggest that the TrxG complex is potentially a viable target for preventing cytokine induced chemokine gene expression in β-cells.  相似文献   

12.
Infection with the hepatitis C virus (HCV) is a major cause of chronic liver diseases and hepatocellular carcinoma worldwide, and thus represents a significant public health problem. The type I interferon (IFN), IFNα, has been successful in treating HCV-infected patients, but current IFN-based treatment regimens for HCV have suboptimal efficacy, and relatively little is known about why IFN therapy eliminates the virus in some patients but not in others. Therefore, it is critical to understand the basic mechanisms that underlie the therapeutic resistance to IFN action in HCV-infected individuals, and there is an urgent need to identify those patients most likely to respond to IFN therapy for HCV. To characterize the response of HCV-infected patients to treatment with IFNα, the expression of an IFN-response gene signature comprised of IFN-stimulated genes and genes that play an important role in the innate immune response was examined in liver biopsies from HCV-infected patients enrolled in a clinical trial. In the present study we found that the expression of a subset of IFN-response genes was dysregulated in liver biopsy samples from nonresponsive hepatitis C patients as compared with virologic responders. Based on these findings, a statistical model was developed to help predict the response of patients to IFN therapy, and compared to results obtained to the IL28 mutation model, which is highly predictive of the response to IFN-based therapy in HCV-infected patients. We found that a model incorporating gene expression data can improve predictions of IFN responsiveness compared to IL28 mutation status alone.  相似文献   

13.
14.
Tumour Necrosis Factor-α (TNF-α) inhibition has been transformational in the treatment of patients with inflammatory disease, e.g. rheumatoid arthritis. Intriguingly, TNF-α signals through two receptors, TNFR1 and TNFR2, which have been associated with detrimental inflammatory and beneficial immune-regulatory processes, respectively. To investigate if selective TNFR1 inhibition might provide benefits over pan TNF-α inhibition, tools to investigate the potential impact of pharmacological intervention are needed. Receptor-deficient mice have been very insightful, but are not reversible and could distort receptor cross-talk, while inhibitory anti-TNFR1 monoclonal antibodies have a propensity to induce receptor agonism. Therefore, we set out to characterise a monovalent anti-TNFR1 domain antibody (dAb) formatted for in vivo use. The mouse TNFR1 antagonist (DMS5540) is a genetic fusion product of an anti-TNFR1 dAb with an albumin-binding dAb (AlbudAb). It bound mouse TNFR1, but not human TNFR1, and was an antagonist of TNF-α-mediated cytotoxicity in a L929 cell assay. Surprisingly, the dAb did not compete with TNF-α for TNFR1-binding. This was supported by additional data showing the anti-TNFR1 epitope mapped to a single residue in the first domain of TNFR1. Pharmacokinetic studies of DMS5540 in mice over three doses (0.1, 1.0 and 10 mg/kg) confirmed extended in vivo half-life, mediated by the AlbudAb, and demonstrated non-linear clearance of DMS5540. Target engagement was further confirmed by dose-dependent increases in total soluble TNFR1 levels. Functional in vivo activity was demonstrated in a mouse challenge study, where DMS5540 provided dose-dependent inhibition of serum IL-6 increases in response to bolus mouse TNF-α injections. Hence, DMS5540 is a potent mouse TNFR1 antagonist with in vivo pharmacokinetic and pharmacodynamic properties compatible with use in pre-clinical disease models and could provide a useful tool to dissect the individual contributions of TNFR1 and TNFR2 in homeostasis and disease.  相似文献   

15.
16.
IFNγ induces cell death in epithelial cells, but the mediator for this death pathway has not been identified. In this study, we find that expression of Bik/Blk/Nbk is increased in human airway epithelial cells (AECs [HAECs]) in response to IFNγ. Expression of Bik but not mutant BikL61G induces and loss of Bik suppresses IFNγ-induced cell death in HAECs. IFNγ treatment and Bik expression increase cathepsin B and D messenger RNA levels and reduce levels of phospho–extracellular regulated kinase 1/2 (ERK1/2) in the nuclei of bik+/+ compared with bik−/− murine AECs. Bik but not BikL61G interacts with and suppresses nuclear translocation of phospho-ERK1/2, and suppression of ERK1/2 activation inhibits IFNγ- and Bik-induced cell death. Furthermore, after prolonged exposure to allergen, hyperplastic epithelial cells persist longer, and nuclear phospho-ERK is more prevalent in airways of IFNγ−/− or bik−/− compared with wild-type mice. These results demonstrate that IFNγ requires Bik to suppress nuclear localization of phospho-ERK1/2 to channel cell death in AECs.  相似文献   

17.
Increased interferon (IFN)-β signaling in patients with insufficient coronary collateralization and an inhibitory effect of IFNβ on collateral artery growth in mice have been reported. The mechanisms of IFNβ-induced inhibition of arteriogenesis are unknown. In stimulated monocytes from patients with chronic total coronary artery occlusion and decreased arteriogenic response, whole genome expression analysis showed increased expression of IFNβ-regulated genes. Immunohistochemically, the IFNβ receptor was localized in the vascular media of murine collateral arteries. Treatment of vascular smooth muscle cells (VSMC) with IFNβ resulted in an attenuated proliferation, cell-cycle arrest, and increased expression of cyclin-dependent kinase inhibitor-1A (p21). The growth inhibitory effect of IFNβ was attenuated by inhibition of p21 by RNA interference. IFNβ-treated THP1 monocytes showed enhanced apoptosis. Subsequently, we tested if collateral artery growth can be stimulated by inhibition of IFNβ-signaling. RNA interference of the IFNβ receptor-1 (IFNAR1) increased VSMC proliferation, cell cycle progression, and reduced p21 gene expression. IFNβ signaling and FAS and TRAIL expression were attenuated in monocytes from IFNAR1−/− mice, indicating reduced monocyte apoptosis. Hindlimb perfusion restoration 1 week after femoral artery ligation was improved in IFNAR1−/− mice compared with wild-type mice as assessed by infusion of fluorescent microspheres. These results demonstrate that IFNβ inhibits collateral artery growth and VSMC proliferation through p21-dependent cell cycle arrest and induction of monocyte apoptosis. Inhibition of IFNβ stimulates VSMC proliferation and collateral artery growth.  相似文献   

18.
The PD-L1 overexpression is an important event of immune escape and metastasis in triple-negative breast cancer (TNBC), but the molecular mechanism remains to be determined. Interferon gamma (IFNγ) represents a major driving force behind PD-L1 expression in tumor microenvironment, and histone deacetylase 2 (HDAC2) is required for IFN signaling. Here, we investigated the regulation of HDAC2 on the IFNγ-induced PD-L1 expression in TNBC cells. We found the HDAC2 and PD-L1 expression in TNBC was significantly higher than that in non-TNBC, and HDAC2 was positively correlated with PD-L1 expression. HDAC2 promoted PD-L1 induction by upregulating the phosphorylation of JAK1, JAK2, and STAT1, as well as the translocation of STAT1 to the nucleus and the recruitment of STAT1 to the PD-L1 promoter. Meanwhile, HDAC2 was recruited to the PD-L1 promoter by STAT1, and HDAC2 knockout compromised IFNγ-induced upregulation of H3K27, H3K9 acetylation, and the BRD4 recruitment in PD-L1 promoter. In addition, significant inhibition of proliferation, colony formation, migration, and cell cycle of TNBC cells were observed following knockout of HDAC2 in vitro. Furthermore, HDAC2 knockout reduced IFNγ-induced PD-L1 expression, lymphocyte infiltration, and retarded tumor growth and metastasis in the breast cancer mouse models. This study may provide evidence that HDAC2 promotes IFNγ-induced PD-L1 expression, suggesting a way for enhanced antitumor immunity when targeting the HDAC2 in TNBC.Subject terms: Breast cancer, Immune evasion  相似文献   

19.
Type I Interferons (IFN-Is) are a family of cytokines which play a major role in inhibiting viral infection. Resultantly, many viruses have evolved mechanisms in which to evade the IFN-I response. Here we tested the impact of expression of 27 different SARS-CoV-2 genes in relation to their effect on IFN production and activity using three independent experimental methods. We identified six gene products; NSP6, ORF6, ORF7b, NSP1, NSP5 and NSP15, which strongly (>10-fold) blocked MAVS-induced (but not TRIF-induced) IFNβ production. Expression of the first three of these SARS-CoV-2 genes specifically blocked MAVS-induced IFNβ-promoter activity, whereas all six genes induced a collapse in IFNβ mRNA levels, corresponding with suppressed IFNβ protein secretion. Five of these six genes furthermore suppressed MAVS-induced activation of IFNλs, however with no effect on IFNα or IFNγ production. In sharp contrast, SARS-CoV-2 infected cells remained extremely sensitive to anti-viral activity exerted by added IFN-Is. None of the SARS-CoV-2 genes were able to block IFN-I signaling, as demonstrated by robust activation of Interferon Stimulated Genes (ISGs) by added interferon. This, despite the reduced levels of STAT1 and phospho-STAT1, was likely caused by broad translation inhibition mediated by NSP1. Finally, we found that a truncated ORF7b variant that has arisen from a mutant SARS-CoV-2 strain harboring a 382-nucleotide deletion associating with mild disease (Δ382 strain identified in Singapore & Taiwan in 2020) lost its ability to suppress type I and type III IFN production. In summary, our findings support a multi-gene process in which SARS-CoV-2 blocks IFN-production, with ORF7b as a major player, presumably facilitating evasion of host detection during early infection. However, SARS-CoV-2 fails to suppress IFN-I signaling thus providing an opportunity to exploit IFN-Is as potential therapeutic antiviral drugs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号