首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhu W  Meng L  Jiang C  Hou W  Xu J  Wang B  Lu S 《Molecular biology reports》2012,39(4):3667-3673
Toll-like receptors (TLRs) have been found to contribute to the pathogenesis of rheumatoid arthritis (RA). The aim of this study is to investigate the regulation and potential role of TLR2 in spleen of pristane-induced arthritis (PIA) rat, which can be used to further understand the mechanisms of RA. Arthritis in DA rats was induced by pristane. TLR2 expression in spleen was detected by real-time quantitative PCR and western blotting, and TLR2 expression at both mRNA and protein levels was upregulated in PIA rats. Peptidoglycan (PGN) was systemically administrated to PIA rats, and arthritis severity was evaluated macroscopically and microscopically. Results showed that systemic administration of PGN to PIA rats obviously deteriorated arthritis severity. TLR2 expression on splenocytes and different types of immune cells was measured by flow cytometry. And it was found that TLR2 was mainly expressed on antigen-presenting cells (APCs) of spleen, and the proportion of TLR2+ dendritic cells and macrophages in spleen of PIA rats was increased remarkably. Thus, we conclude that the induction of TLR2+ APCs in spleen may participate in the maintenance of PIA.  相似文献   

2.
3.
A convenient microtiter-plate assay that uses immobilized antibody to capture specific antigens for presentation to T cells has been developed. Initial experiments used KLH as the antigen, immune antisera and draining lymph node cells from immunized NOD mice as the source of antibody and T cells, and spleen cells from naive NOD mice as the source of antigen-presenting cells (APCs). The resulting proliferation of the T cells was shown to be antibody- and antigen-specific, suggesting that the APCs had internalized and processed the captured antigen, presenting it to the T cells in the form of peptide/MHC complexes. The approach was also tested for an autoimmune disease as part of an effort to identify autoantigens responsible for the proliferation of T cells in the synovial fluid of rheumatoid arthritis patients. When immunoglobulin from autologous synovial fluid was captured on plates coated with anti-human immunoglobulin antibodies, the addition of HLA-DR4 peripheral blood mononuclear cells as APCs and synovial fluid-reactive HLA-DR4-restricted T-cell clones resulted in significant proliferation, indicating that the specific antigen in the crude synovial fluid was human immunoglobulin. This response was also shown to be antigen-specific and HLA-DR4-restricted. This assay format should permit the definition of autoantigens by capturing with antibodies to crude autoantigen extracts, followed by the addition of the appropriate APC and T-cell populations.  相似文献   

4.
B cells play an important role in rheumatoid arthritis, but whether they are required as autoantibody-producing cells as well as APCs has not been determined. We assessed B cell autoantibody and APC functions in a murine model of autoimmune arthritis, proteoglycan (PG)-induced arthritis, using both B cell-deficient mice and Ig-deficient mice (mIgM) mice that express an H chain transgene encoding for membrane-bound, but not secreted, IgM. The IgH transgene, when paired with endogenous lambda L chain, recognizes the hapten 4-hydroxy-3-nitro-phenyl acetyl and is expressed on 1-4% of B cells. B cell-deficient and mIgM mice do not develop arthritis after immunization with PG. In adoptive transfer of PG-induced arthritis into SCID mice, T cells from mIgM mice immunized with PG were unable to transfer disease even when B cells from PG-immunized wild-type mice were provided, suggesting that the T cells were not adequately primed and that Ag-specific B cells may be required. In fact, when PG was directly targeted to the B cell Ig receptor through a conjugate of 4-hydroxy-3-nitrophenyl acetyl-PG, T cells in mIgM mice were activated and competent to transfer arthritis. Such T cells caused mild arthritis in the absence of autoantibody, demonstrating a direct pathogenic role for T cells activated by Ag-specific B cells. Transfer of arthritic serum alone induced only mild and transient arthritis. However, both autoreactive T cells and autoantibody are required to cause severe arthritis, indicating that both B cell-mediated effector pathways contribute synergistically to autoimmune disease.  相似文献   

5.
6.
IntroductionAutoreactive T cells are a central element in many systemic autoimmune diseases. The generation of these pathogenic T cells is instructed by antigen-presenting cells (APCs). However, signaling pathways in APCs that drive autoimmune diseases, such as rheumatoid arthritis, are not understood.MethodsWe measured phenotypic maturation, cytokine production and induction of T cell proliferation of APCs derived from wt mice and mice with a myeloid-specific deletion of PTEN (myeloid PTEN-/-) in vitro and in vivo. We induced collagen-induced arthritis (CIA) and K/BxN serum transfer arthritis in wt and myeloid-specific PTEN-/- mice. We measured the cellular composition of lymph nodes by flow cytometry and cytokines in serum and after ex vivo stimulation of T cells.ResultsWe show that myeloid-specific PTEN-/- mice are almost protected from CIA. Myeloid-specific deletion of PTEN leads to a significant reduction of cytokine expression pivotal for the induction of systemic autoimmunity such as interleukin (IL)-23 and IL-6, leading to a significant reduction of a Th17 type of immune response characterized by reduced production of IL-17 and IL-22. In contrast, myeloid-specific PTEN deficiency did not affect K/BxN serum transfer arthritis, which is independent of the adaptive immune system and solely depends on innate effector functions.ConclusionsThese data demonstrate that the presence of PTEN in myeloid cells is required for the development of CIA. Deletion of PTEN in myeloid cells inhibits the development of autoimmune arthritis by preventing the generation of a pathogenic Th17 type of immune response.

Electronic supplementary material

The online version of this article (doi:10.1186/s13075-015-0742-y) contains supplementary material, which is available to authorized users.  相似文献   

7.
Rheumatoid arthritis (RA) is a chronic destructive autoimmune disease characterised by periods of flare and remission. Today’s treatment is based on continuous immunosuppression irrespective of the patient’s inflammatory status. When the disease is in remission the therapy is withdrawn but withdrawal attempts often results in inflammatory flares, and re-start of the therapy is commenced when the inflammation again is prominent which leads both to suffering and increased risk of tissue destruction. An attractive alternative treatment would provide a disease-regulated therapy that offers increased anti-inflammatory effect during flares and is inactive during periods of remission. To explore this concept we expressed the immunoregulatory cytokine interleukin (IL)-10 gene under the control of an inflammation dependent promoter in a mouse model of RA - collagen type II (CII) induced arthritis (CIA). Haematopoetic stem cells (HSCs) were transduced with lentiviral particles encoding the IL-10 gene (LNT-IL-10), or a green fluorescence protein (GFP) as control gene (LNT-GFP), driven by the inflammation-dependent IL-1/IL-6 promoter. Twelve weeks after transplantation of transduced HSCs into DBA/1 mice, CIA was induced. We found that LNT-IL-10 mice developed a reduced severity of arthritis compared to controls. The LNT-IL-10 mice exhibited both increased mRNA expression levels of IL-10 as well as increased amount of IL-10 produced by B cells and non-B APCs locally in the lymph nodes compared to controls. These findings were accompanied by increased mRNA expression of the IL-10 induced suppressor of cytokine signalling 1 (SOCS1) in lymph nodes and a decrease in the serum protein levels of IL-6. We also found a decrease in both frequency and number of B cells and serum levels of anti-CII antibodies. Thus, inflammation-dependent IL-10 therapy suppresses experimental autoimmune arthritis and is a promising candidate in the development of novel treatments for RA.  相似文献   

8.
Cutaneous antigen presenting cells (APCs) are critical for the induction and regulation of skin immune responses. The human skin contains phenotypically and functionally distinct APCs subsets that are present at two separated locations. While CD1ahigh LCs form a dense network in the epidermis, the CD14+ and CD1a+ APCs reside in the dermal compartment. A better understanding of the biology of human skin APC subsets is necessary for the improvement of vaccine strategies that use the skin as administration route. In particular, progress in the characterization of uptake and activatory receptors will certainly improve APC-targeting strategies in vaccination. Here we performed a detailed analysis of the expression and function of glycan-binding and pattern-recognition receptors in skin APC subsets. The results demonstrate that under steady state conditions human CD1a+ dermal dendritic cells (DCs) were phenotypically most mature as measured by the expression of CD83 and CD86, whereas the CD14+ cells showed a higher expression of the CLRs DC-SIGN, mannose receptor and DCIR and had potent antigen uptake capacity. Furthermore, steady state LCs showed superior antigen cross-presentation as compared to the dermal APC subsets. Our results also demonstrate that the TLR3 ligand polyribosinic-polyribocytidylic acid (pI:C) was the most potent stimulator of cytokine production by both LCs and dDCs. These studies warrant further exploration of human CD1a+ dDCs and LCs as target cells for cancer vaccination to induce anti-tumor immune responses.  相似文献   

9.
Leukotriene B4 acts through its receptors, BLT(1) and BLT(2), however, their expression in rheumatoid arthritis is unknown. In this experiment, BLT(1) and BLT(2) mRNA expressions in the synovium of rats with collagen-induced arthritis (CIA) at days 1, 3, 7 and 14 after CIA onset were analyzed by RT-PCR. The expression of two immunological and inflammatory factors, S100A8 and S100A9, in the synovium of the arthritic rats was also determined at the indicated time. At d14, the differential expressions of BLT(1) and BLT(2) in the synovium, spleen, peripheral blood mononuclear cells (PBMC) and thymus of CIA rats were analyzed. The results showed that, in the synovium of the arthritic rats, the BLT(1) mRNA expression increased after CIA onset, reached the highest value between d1 and d3, and declined afterwards while the BLT(2) expression increased with time and reached its peak at d14. Both S100A8 and S100A9 expression reached the peak levels between d1 and d3, and decreased to lower levels between d7 and d14. For the analyzed tissues from CIA rats at d14, BLT(1) mRNA was expressed in the thymus with the highest level, followed by the spleen, PBMC and synovium. BLT(2) mRNA was expressed in the thymus the highest as well, but followed by the synovium, spleen and PBMC. Since BLT(1) and BLT(2) play distinct roles during CIA, this study may provide basis for new therapies targeting BLT(1) and BLT(2), respectively, for the treatment of arthritic inflammation at different stages.  相似文献   

10.
To investigate the role of Roquin, a RING-type ubiquitin ligase family member, we used transgenic mice with enforced Roquin expression in T cells, with collagen-induced arthritis (CIA). Wild-type (WT) and Roquin transgenic (Tg) mice were immunized with bovine type II collagen (CII). Arthritis severity was evaluated by clinical score; histopathologic CIA severity; proinflammatory and anti-inflammatory cytokine levels; anti-CII antibody levels; and populations of Th1, Th2, germinal center B cells, and follicular helper T cells in CIA. T cell proliferation in vitro and cytokine levels were determined to assess the response to CII. Roquin Tg mice developed more severe CIA and joint destruction compared with WT mice. Production of TNF-α, IFN-γ, IL-6, and pathogenic anti-collagen CII-specific IgG and IgG2a antibodies was increased in Roquin Tg mice. In addition, in vitro T cell assays showed increased proliferation and proinflammatory cytokine production in response to CII as a result of enforced Roquin expression in T cells. Furthermore, the Th1/Th2 balance was altered by an increased Th1 and decreased Th2 population. These findings suggest that overexpression of Roquin exacerbates the development of CIA and that enforced expression of Roquin in T cells may promote autoimmune diseases such as CIA.  相似文献   

11.
Dendritic cells (DC) have the potential to control the outcome of autoimmunity by modulating the immune response. In this study, we tested the ability of Fasciola hepatica total extract (TE) to induce tolerogenic properties in CpG-ODN (CpG) maturated DC, to then evaluate the therapeutic potential of these cells to diminish the inflammatory response in collagen induced arthritis (CIA). DBA/1J mice were injected with TE plus CpG treated DC (T/C-DC) pulsed with bovine collagen II (CII) between two immunizations with CII and clinical scores CIA were determined. The levels of CII-specific IgG2 and IgG1 in sera, the histological analyses in the joints, the cytokine profile in the draining lymph node (DLN) cells and in the joints, and the number, and functionality of CD4+CD25+Foxp3+ T cells (Treg) were evaluated. Vaccination of mice with CII pulsed T/C-DC diminished the severity and incidence of CIA symptoms and the production of the inflammatory cytokine, while induced the production of anti-inflammatory cytokines. The therapeutic effect was mediated by Treg cells, since the adoptive transfer of CD4+CD25+ T cells, inhibited the inflammatory symptoms in CIA. The in vitro blockage of TGF-β in cultures of DLN cells plus CII pulsed T/C-DC inhibited the expansion of Treg cells. Vaccination with CII pulsed T/C-DC seems to be a very efficient approach to diminish exacerbated immune response in CIA, by inducing the development of Treg cells, and it is therefore an interesting candidate for a cell-based therapy for rheumatoid arthritis (RA).  相似文献   

12.
Antigen presenting cells (APCs) in skin can promote either antigen-specific effector functions or antigen tolerance, and thus determine clearance or persistence of cutaneous viral infections. Human papillomavirus (HPV) infections can persist in squamous epithelium in immunocompetent individuals, and some persisting HPV infections, particularly with HPV16, promote malignant epithelial transformation. Here, we investigate whether local expression of the HPV16 protein most associated with malignant transformation, HPV16-E7, affects the phenotype and function of APC subsets in the skin. We demonstrate an expanded population of Langerhans cells in HPV16-E7 transgenic skin with distinct cell surface markers which express immune-modulatory enzymes and cytokines not expressed by cells from non transgenic skin. Furthermore, HPV16-E7 transgene expression in keratinocytes attracts new APC subsets to the epidermis. In vivo migration and transport of antigen to the draining lymph node by these APCs is markedly enhanced in HPV16-E7 expressing skin, whereas antigen-processing, as measured by proteolytic cleavage of DQ-OVA and activation of T cells in vivo by APCs, is significantly impaired. These data suggest that local expression of HPV16-E7 in keratinocytes can contribute to persisting infection with this oncogenic virus, by altering the phenotype and function of local APCs.  相似文献   

13.
14.
IntroductionThe incidence and progression of many autoimmune diseases are sex-biased, which might be explained by the immunomodulating properties of endocrine hormones. Treatment with estradiol potently inhibits experimental autoimmune arthritis. Interleukin-17-producing T helper cells (Th17) are key players in several autoimmune diseases, particularly in rheumatoid arthritis. The aim of this study was to investigate the effects of estrogen on Th17 cells in experimental arthritis.MethodsOvariectomized DBA/1 mice treated with 17β-estradiol (E2) or placebo were subjected to collagen-induced arthritis (CIA), and arthritis development was assessed. Th17 cells in joints and lymph nodes were studied by flow cytometry. Lymph node Th17 cells were also examined in ovariectomized estrogen receptor α–knockout mice (ERα−/−) and wild-type littermates, treated with E2 or placebo and subjected to antigen-induced arthritis.ResultsE2-treated mice with established CIA showed reduced severity of arthritis and fewer Th17 cells in joints compared with controls. Interestingly, E2-treated mice displayed increased Th17 cells in lymph nodes during the early phase of the disease, dependent on ERα. E2 increased the expression of C-C chemokine receptor 6 (CCR6) on lymph node Th17 cells as well as the expression of the corresponding C-C chemokine ligand 20 (CCL20) within lymph nodes.ConclusionsThis is the first study in which the effects of E2 on Th17 cells have been characterized in experimental autoimmune arthritis. We report that E2 treatment results in an increase of Th17 cells in lymph nodes during the early phase of arthritis development, but leads to a decrease of Th17 in joints during established arthritis. Our data suggest that this may be caused by interference with the CCR6-CCL20 pathway, which is important for Th17 cell migration. This study contributes to the understanding of the role of estrogen in the development of autoimmune arthritis and opens up new fields for research concerning the sex bias in autoimmune disease.

Electronic supplementary material

The online version of this article (doi:10.1186/s13075-015-0548-y) contains supplementary material, which is available to authorized users.  相似文献   

15.
The therapeutic effect of myeloid-derived suppressor cells (MDSCs) in mice with collagen-induced arthritis (CIA) remains controversial. We analyzed the role of exosomes derived from granulocytic MDSCs (G-MDSCs) in CIA and explored the potential mechanism underlying the immunosuppressive effect. In CIA mice, G-MDSC-derived exosomes (G-exo) efficiently reduced the mean arthritis index, leukocyte infiltration and joint destruction. G-exo decreased the percentages of Th1 and Th17 cells both in vivo and in vitro. The miR-29a-3p and miR-93-5p contained in G-exo were verified to inhibit Th1 and Th17 cell differentiation by targeting T-bet and STAT3, respectively. Notably, the delivery of exogenous miR-29a-3p and miR-93-5p enhanced the ability of bone marrow-derived G-exo to attenuate arthritis progression in CIA mice. Exosomes derived from human MDSCs, which overexpressed miR-29a-3p and miR-93-5p, suppressed Th1 and Th17 cell differentiation in vitro. These data showed that G-exo alleviated CIA by suppressing Th1 and Th17 cell responses. Mechanistically, miR-29a-3p and miR-93-5p were verified to inhibit the differentiation of Th1 and Th17 cells, respectively. Our findings demonstrated the therapeutic potential of G-MDSC-derived exosomal miRNAs in autoimmune arthritis.  相似文献   

16.
Dendritic cells (DC) are APCs that are able to stimulate or inhibit immune responses, depending on levels of expression of MHC class I and II costimulatory molecules and cytokines. Our previous studies have suggested that the observed contralateral effect, where injection of a vector carrying certain immunomodulatory genes into one joint resulted in inhibition of arthritis in untreated joints, is mediated by in vivo modification of DC. Therefore, we have examined the ability of genetically modified DC to suppress established murine collagen-induced arthritis (CIA) after i.v. delivery. IL-4 has been shown to partially reduce the severity of CIA after repeated injection of recombinant protein or by injection of an adenoviral vector expressing IL-4. Here we demonstrate that i.v. injection of immature DC, infected with an adenoviral vector expressing IL-4, into mice with established CIA resulted in almost complete suppression of disease, with no recurrence for up to 4 wk posttreatment. Injection i.v. of fluorescently labeled DC demonstrated that the cells rapidly migrated to the liver and spleen after 6 h and to the lymph nodes by 24 h. In culture, spleen cells from DC/IL-4-treated mice produced less IFN-gamma after stimulation by collagen than did control groups. In addition, DC/IL-4 administration decreased the level of specific Abs against type II collagen, in particular the IgG2 Th1 isotype 14 days posttreatment. These results demonstrate the ability to treat effectively established murine arthritis by systemic administration of DC expressing IL-4.  相似文献   

17.
CD38, a type II transmembrane glycoprotein expressed in many cells of the immune system, is involved in cell signaling, migration and differentiation. Studies in CD38 deficient mice (CD38 KO mice) indicate that this molecule controls inflammatory immune responses, although its involvement in these responses depends on the disease model analyzed. Here, we explored the role of CD38 in the control of autoimmune responses using chicken collagen type II (col II) immunized C57BL/6-CD38 KO mice as a model of collagen-induced arthritis (CIA). We demonstrate that CD38 KO mice develop an attenuated CIA that is accompanied by a limited joint induction of IL-1β and IL-6 expression, by the lack of induction of IFNγ expression in the joints and by a reduction in the percentages of invariant NKT (iNKT) cells in the spleen. Immunized CD38 KO mice produce high levels of circulating IgG1 and low of IgG2a anti-col II antibodies in association with reduced percentages of Th1 cells in the draining lymph nodes. Altogether, our results show that CD38 participates in the pathogenesis of CIA controlling the number of iNKT cells and promoting Th1 inflammatory responses.  相似文献   

18.
The objective of these studies was to examine collagen-induced arthritis (CIA) in C57BL/6 mice transgenic for the rodent complement regulatory protein complement receptor 1-related gene/protein y (Crry) (Crry-Tg), a C3 convertase inhibitor. The scores for clinical disease activity and for histological damage in the joints were both significantly decreased in Crry-Tg mice in comparison to wild-type (WT) littermates. The production of both IgG1 and IgG2a anti-collagen Abs was reduced in the Crry-Tg mice, although spleen cell proliferation in response to collagen type II was not altered. The production of IFN-gamma, TNF-alpha, and IL-1beta by LPS-stimulated spleen cells was decreased, and IL-10 was increased, in cells from Crry-Tg mice in comparison to WT. The steady-state mRNA levels for IFN-gamma, TNF-alpha, and IL-1beta were all decreased in the joints of Crry-Tg mice in comparison to WT. The synovium from Crry-Tg mice without CIA contained the mRNA for the Crry transgene, by RT-PCR, and the synovium from transgenic mice with CIA exhibited little deposition of C3 protein by immunohistological analysis. These results suggest that suppression of CIA in Crry-Tg mice may be due to enhanced synthesis of Crry locally in the joint with decreased production of proinflammatory cytokines.  相似文献   

19.
Chronic immune activation despite long-term therapy poses an obstacle to immune recovery in HIV infection. The role of antigen presenting cells (APCs) in chronic immune activation during HIV infection remains to be fully determined. APCs, the frontline of immune defense against pathogens, are capable of distinguishing between pathogens and non-pathogenic, commensal bacteria. We hypothesized that HIV infection induces dysfunction in APC immune recognition and response to some commensal bacteria and that this may promote chronic immune activation. Therefore we examined APC inflammatory cytokine responses to commensal lactobacilli. We found that APCs from HIV-infected patients produced an enhanced inflammatory response to Lactobacillus plantarum WCFS1 as compared to APCs from healthy, HIV-negative controls. Increased APC expression of TLR2 and CD36, signaling through p38-MAPK, and decreased expression of MAP kinase phosphatase-1 (MKP-1) in HIV infection was associated with this heightened immune response. Our findings suggest that chronic HIV infection enhances the responsiveness of APCs to commensal lactobacilli, a mechanism that may partly contribute to chronic immune activation.  相似文献   

20.
Invariant natural killer T (iNKT) cells are involved in various autoimmune diseases. Although iNKT cells are arthritogenic, transforming growth factor beta (TGFβ)-treated tolerogenic peritoneal macrophages (Tol-pMφ) from wild-type (WT) mice are more tolerogenic than those from CD1d knock-out iNKT cell-deficient mice in a collagen-induced arthritis (CIA) model. The underlying mechanism by which pMφ can act as tolerogenic antigen presenting cells (APCs) is currently unclear. To determine cellular mechanisms underlying CD1d-dependent tolerogenicity of pMφ, in vitro and in vivo characteristics of pMφ were investigated. Unlike dendritic cells or splenic Mφ, pMφ from CD1d+/− mice showed lower expression levels of costimulatory molecule CD86 and produced lower amounts of inflammatory cytokines upon lipopolysaccharide (LPS) stimulation compared to pMφ from CD1d-deficient mice. In a CIA model of CD1d-deficient mice, adoptively transferred pMφ from WT mice reduced the severity of arthritis. However, pMφ from CD1d-deficient mice were unable to reduce the severity of arthritis. Hence, the tolerogenicity of pMφ is a cell-intrinsic property that is probably confer-red by iNKT cells during pMφ development rather than by interactions of pMφ with iNKT cells during antigen presentation to cognate T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号