首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development of tools for genetic manipulation of Clostridium ljungdahlii has increased its attractiveness as a chassis for autotrophic production of organic commodities and biofuels from syngas and microbial electrosynthesis and established it as a model organism for the study of the basic physiology of acetogenesis. In an attempt to expand the genetic toolbox for C. ljungdahlii, the possibility of adapting a lactose-inducible system for gene expression, previously reported for Clostridium perfringens, was investigated. The plasmid pAH2, originally developed for C. perfringens with a gusA reporter gene, functioned as an effective lactose-inducible system in C. ljungdahlii. Lactose induction of C. ljungdahlii containing pB1, in which the gene for the aldehyde/alcohol dehydrogenase AdhE1 was downstream of the lactose-inducible promoter, increased expression of adhE1 30-fold over the wild-type level, increasing ethanol production 1.5-fold, with a corresponding decrease in acetate production. Lactose-inducible expression of adhE1 in a strain in which adhE1 and the adhE1 homolog adhE2 had been deleted from the chromosome restored ethanol production to levels comparable to those in the wild-type strain. Inducing expression of adhE2 similarly failed to restore ethanol production, suggesting that adhE1 is the homolog responsible for ethanol production. Lactose-inducible expression of the four heterologous genes necessary to convert acetyl coenzyme A (acetyl-CoA) to acetone diverted ca. 60% of carbon flow to acetone production during growth on fructose, and 25% of carbon flow went to acetone when carbon monoxide was the electron donor. These studies demonstrate that the lactose-inducible system described here will be useful for redirecting carbon and electron flow for the biosynthesis of products more valuable than acetate. Furthermore, this tool should aid in optimizing microbial electrosynthesis and for basic studies on the physiology of acetogenesis.  相似文献   

2.
Clostridium ljungdahlii is a representative autotrophic gas-fermenting acetogen capable of converting CO2 and CO into biomass and multiple metabolites. The carbon fixation and conversion based on C. ljungdahlii have great potential for the sustainable production of bulk biochemicals and biofuels using industrial syngas and waste gases. With substantial recent advances in genetic manipulation tools, it has become possible to study and improve the metabolic capability of C. ljungdahlii in gas fermentation. The product scope of C. ljungdahlii has been expanded through the introduction of heterologous production pathways followed by the modification of native metabolic networks. In addition, progress has been made in understanding the physiological and metabolic mechanisms of this anaerobe, contributing to strain designs for expected phenotypes. In this review, we highlight the latest research progresses regarding C. ljungdahlii and discuss the next steps to comprehensively understand and engineer this bacterium for an improved bacterial gas bioconversion platform.  相似文献   

3.
4.
Single inorganic carbon source was used for production of chemicals and fuels via fermentation processes. Clostridium ljungdahlii, a strictly anaerobic autotrophic bacterium, was grown on synthesis gas to produce acetate and ethanol from gaseous substrates. C. ljungdahlii was grown on a various concentrations of carbon monoxide with synthesis gas total pressures of 0.8–1.8 atm with an interval of 0.2 atm. The cell and product yields were 0.015 g cell/g CO and 0.41 g acetate/g CO, respectively. Formation of acetate was steady and the production trend was about the same for all of the gases initial pressure and at constant cell density. The ethanol concentration was enhanced by the initial presence of hydrogen and carbon dioxide in the liquid phase. There was no substrate inhibition while C. ljungdahlii was grown in the batch fermentation, even at high system pressure of 1.6 and 1.8 atm. A desired product molar ratio of ethanol:acetate (5:1) was achieved with total gas pressure of 1.6 and 1.8 atm.  相似文献   

5.
6.
Synthesis gas fermentation is one of the most promising routes to convert synthesis gas (syngas; mainly comprised of H2 and CO) to renewable liquid fuels and chemicals by specialized bacteria. The most commonly studied syngas fermenting bacterium is Clostridium ljungdahlii, which produces acetate and ethanol as its primary metabolic byproducts. Engineering of C. ljungdahlii metabolism to overproduce ethanol, enhance the synthesize of the native byproducts lactate and 2,3-butanediol, and introduce the synthesis of non-native products such as butanol and butyrate has substantial commercial value. We performed in silico metabolic engineering studies using a genome-scale reconstruction of C. ljungdahlii metabolism and the OptKnock computational framework to identify gene knockouts that were predicted to enhance the synthesis of these native products and non-native products, introduced through insertion of the necessary heterologous pathways. The OptKnock derived strategies were often difficult to assess because increase product synthesis was invariably accompanied by decreased growth. Therefore, the OptKnock strategies were further evaluated using a spatiotemporal metabolic model of a syngas bubble column reactor, a popular technology for large-scale gas fermentation. Unlike flux balance analysis, the bubble column model accounted for the complex tradeoffs between increased product synthesis and reduced growth rates of engineered mutants within the spatially varying column environment. The two-stage methodology for deriving and evaluating metabolic engineering strategies was shown to yield new C. ljungdahlii gene targets that offer the potential for increased product synthesis under realistic syngas fermentation conditions.  相似文献   

7.
Conversion of synthesis gas (CO and H2) to ethanol can be an alternative, promising technology to produce biofuels from renewable biomass. To distinguish microbial utilization of carbon source between fructose and synthesis gas CO and to evaluate biological production of ethanol from CO, we adopted the 13C-enrichment of the CO substrate and hypothesized that the residual increase in δ13C of the cell biomass would reflect the increased contribution of 13C-enriched CO. Addition of synthesis gas to live culture medium for ethanol fermentation by Clostridum ljungdahlii increased the microbial growth and ethanol production. Despite the high 13C-enrichment in CO (99 atom % 13C), however, microbial δ13C increased relatively small compared to the microbial growth. The uptake efficiency of CO estimated using the isotope mass balance equation was also very low: 0.0014 % for the low CO and 0.0016 % for the high CO treatment. Furthermore, the fast production of ethanol in the early stage indicated that the presence of sugar in fermentation medium would limit the utilization of CO as a carbon source by C. ljungdahlii.  相似文献   

8.
3-Hydroxypropionate (3-HP) is a versatile compound for chemical synthesis and a potential building block for biodegradable polymers. Cupriavidus necator H16, a facultative chemolithoautotroph, is an attractive production chassis and has been extensively studied as a model organism for biopolymer production. Here, we engineered C. necator H16 for 3-HP biosynthesis from its central metabolism. Wild type C. necator H16 can use 3-HP as a carbon source, a highly undesirable trait for a 3-HP production chassis. However, deletion of its three (methyl-)malonate semialdehyde dehydrogenases (mmsA1, mmsA2 and mmsA3) resulted in a strain that cannot grow on 3-HP as the sole carbon source, and this strain was selected as our production host. A stepwise approach was used to construct pathways for 3-HP production via β-alanine. Two additional gene deletion targets were identified during the pathway construction process. Deletion of the 3-hydroxypropionate dehydrogenase, encoded by hpdH, prevented the re-consumption of the 3-HP produced by our engineered strains, while deletion of gdhA1, annotated as a glutamate dehydrogenase, prevented the utilization of aspartate as a carbon source, one of the key pathway intermediates. The final strain carrying these deletions was able to produce up to 8 mM 3-HP heterotrophically. Furthermore, an engineered strain was able to produce 0.5 mM 3-HP under autotrophic conditions, using CO2 as sole carbon source. These results form the basis for establishing C. necator H16 as an efficient platform for the production of 3-HP and 3-HP-containing polymers.  相似文献   

9.
The production of the chemical solvents acetone and butanol by the bacterium Clostridium acetobutylicum was one of the first large-scale industrial processes to be developed, and in the first part of the last century ranked second in importance only to ethanol production. After a steep decline in its industrial use, there has been a recent resurgence of interest in the acetone–butanol–ethanol (ABE) fermentation process, with a particular emphasis on butanol production. In order to generate strains suitable for efficient use on an industrial scale, metabolic engineering is required to alter the AB ratio in favour of butanol, and eradicate the production of unwanted products of fermentation. Using ClosTron technology, a large-scale targeted mutagenesis in C. acetobutylicum ATCC 824 was carried out, generating a set of 10 mutants, defective in alcohol/aldehyde dehydrogenases 1 and 2 (adhE1, adhE2), butanol dehydrogenases A and B (bdhA, bdhB), phosphotransbutyrylase (ptb), acetate kinase (ack), acetoacetate decarboxylase (adc), CoA transferase (ctfA/ctfB), and a previously uncharacterised putative alcohol dehydrogenase (CAP0059). However, inactivation of the main hydrogenase (hydA) and thiolase (thl) could not be achieved. Constructing such a series of mutants is paramount for the acquisition of information on the mechanism of solvent production in this organism, and the subsequent development of industrial solvent producing strains. Unexpectedly, bdhA and bdhB mutants did not affect solvent production, whereas inactivation of the previously uncharacterised gene CAP0059 resulted in increased acetone, butanol, and ethanol formation. Other mutants showed predicted phenotypes, including a lack of acetone formation (adc, ctfA, and ctfB mutants), an inability to take up acids (ctfA and ctfB mutants), and a much reduced acetate formation (ack mutant). The adhE1 mutant in particular produced very little solvents, demonstrating that this gene was indeed the main contributor to ethanol and butanol formation under the standard batch culture conditions employed in this study. All phenotypic changes observed could be reversed by genetic complementation, with exception of those seen for the ptb mutant. This mutant produced around 100 mM ethanol, no acetone and very little (7 mM) butanol. The genome of the ptb mutant was therefore re-sequenced, together with its parent strain (ATCC 824 wild type), and shown to possess a frameshift mutation in the thl gene, which perfectly explained the observed phenotype. This finding reinforces the need for mutant complementation and Southern Blot analysis (to confirm single ClosTron insertions), which should be obligatory in all further ClosTron applications.  相似文献   

10.
Accumulation of xylitol in xylose fermentation with engineered Saccharomyces cerevisiae presents a major problem that hampers economically feasible production of biofuels from cellulosic plant biomass. In particular, substantial production of xylitol due to unbalanced redox cofactor usage by xylose reductase (XR) and xylitol dehydrogenase (XDH) leads to low yields of ethanol. While previous research focused on manipulating intracellular enzymatic reactions to improve xylose metabolism, this study demonstrated a new strategy to reduce xylitol formation and increase carbon flux toward target products by controlling the process of xylitol secretion. Using xylitol-producing S. cerevisiae strains expressing XR only, we determined the role of aquaglyceroporin Fps1p in xylitol export by characterizing extracellular and intracellular xylitol. In addition, when FPS1 was deleted in a poorly xylose-fermenting strain with unbalanced XR and XDH activities, the xylitol yield was decreased by 71% and the ethanol yield was substantially increased by nearly four times. Experiments with our optimized xylose-fermenting strain also showed that FPS1 deletion reduced xylitol production by 21% to 30% and increased ethanol yields by 3% to 10% under various fermentation conditions. Deletion of FPS1 decreased the xylose consumption rate under anaerobic conditions, but the effect was not significant in fermentation at high cell density. Deletion of FPS1 resulted in higher intracellular xylitol concentrations but did not significantly change the intracellular NAD+/NADH ratio in xylose-fermenting strains. The results demonstrate that Fps1p is involved in xylitol export in S. cerevisiae and present a new gene deletion target, FPS1, and a mechanism different from those previously reported to engineer yeast for improved xylose fermentation.  相似文献   

11.
Clostridium thermocellum ferments cellulose, is a promising candidate for ethanol production from cellulosic biomass, and has been the focus of studies aimed at improving ethanol yield. Thermoanaerobacterium saccharolyticum ferments hemicellulose, but not cellulose, and has been engineered to produce ethanol at high yield and titer. Recent research has led to the identification of four genes in T. saccharolyticum involved in ethanol production: adhE, nfnA, nfnB and adhA. We introduced these genes into C. thermocellum and observed significant improvements to ethanol yield, titer, and productivity. The four genes alone, however, were insufficient to achieve in C. thermocellum the ethanol yields and titers observed in engineered T. saccharolyticum strains, even when combined with gene deletions targeting hydrogen production. This suggests that other parts of T. saccharolyticum metabolism may also be necessary to reproduce the high ethanol yield and titer phenotype in C. thermocellum.  相似文献   

12.
Effects of initial medium pH and gas flow rate on Clostridium ljungdahlii and Clostridium autoethanogenum in liquid batch, continuous gas fermentations were investigated. Synthesis gas components were supplied at varying flow rates (5, 7.5 and 10 mL/min) for C. ljungdahlii (pH 6.8 and 5.5) and C. autoethanogenum (pH 6.0). Growth on synthesis gas was slower than growth on sugars. For C. ljungdahlii, higher cell densities were achieved at pH 6.8 (579 mg/L) compared to pH 5.5 (378 mg/L). The ethanol concentration at pH 6.8 was also 110% greater than that at pH 5.5. The interaction of flow rate and pH was statistically significant with the greatest acetate production in the 10 mL/min, pH 6.8 treatment. The ethanol to acetate ratios were smaller at lower pH levels and higher flow rates. In C. autoethanogenum fermentations, higher flow rates resulted in greater end product formation with no significant effect on product ratios.  相似文献   

13.
We characterized the effect of deletion of the Trichoderma reesei (Hypocrea jecorina) ace1 gene encoding the novel cellulase regulator ACEI that was isolated based on its ability to bind to and activate in vivo in Saccharomyces cerevisiae the promoter of the main cellulase gene, cbh1. Deletion of ace1 resulted in an increase in the expression of all the main cellulase genes and two xylanase genes in sophorose- and cellulose-induced cultures, indicating that ACEI acts as a repressor of cellulase and xylanase expression. Growth of the strain with a deletion of the ace1 gene on different carbon sources was analyzed. On cellulose-based medium, on which cellulases are needed for growth, the Δace1 strain grew better than the host strain due to the increased cellulase production. On culture media containing sorbitol as the sole carbon source, the growth of the strain with a deletion of the ace1 gene was severely impaired, suggesting that ACEI regulates expression of other genes in addition to cellulase and xylanase genes. A strain with a deletion of the ace1 gene and with a deletion of the ace2 gene coding for the cellulase and xylanase activator ACEII expressed cellulases and xylanases similar to the Δace1 strain, indicating that yet another activator regulating cellulase and xylanase promoters was present.  相似文献   

14.
Fusobacterium nucleatum is an important oral anaerobic pathogen involved in periodontal and systemic infections. Studies of the molecular mechanisms involved in fusobacterial virulence and adhesion have been limited by lack of systems for efficient genetic manipulation. Plasmids were isolated from eight strains of F. nucleatum. The smallest plasmid, pKH9 (4,975 bp), was characterized and used to create new vectors for fusobacterial genetic manipulation. DNA sequence analysis of pKH9 revealed an open reading frame (ORF) encoding a putative autonomous rolling circle replication protein (Rep), an ORF predicted to encode a protein homologous to members of the FtsK/SpoIIIE cell division-DNA segregation protein family, and an operon encoding a putative toxin-antitoxin plasmid addiction system (txf-axf). Deletion analysis localized the pKH9 replication region in a 0.96-kbp fragment. The pKH9 rep gene is not present in this fragment, suggesting that pKH9 can replicate in fusobacteria independently of the Rep protein. A pKH9-based, compact Escherichia coli-F. nucleatum shuttle plasmid was constructed and found to be compatible with a previously described pFN1-based fusobacterial shuttle plasmid. Deletion of the pKH9 putative addiction system (txf-axf) reduced plasmid stability in fusobacteria, indicating its addiction properties and suggesting it to be the first plasmid addiction system described for fusobacteria. pKH9, its genetic elements, and its shuttle plasmid derivatives can serve as useful tools for investigating fusobacterial properties important in biofilm ecology and pathogenesis.  相似文献   

15.
In this work, Escherichia coli MG1655 was engineered to produce ethanol and evolved in a laboratory process to obtain an acetate tolerant strain called MS04 (E. coli MG1655: ΔpflB, ΔadhE, ΔfrdA, ΔxylFGH, ΔldhA, PpflB::pdc Zm -adhB Zm , evolved). The growth and ethanol production kinetics of strain MS04 were determined in mineral medium, mainly under non-aerated conditions, supplemented with glucose in the presence of different concentrations of sodium acetate at pH?7.0 and at different values of acid pH and a constant concentration of sodium acetate (2?g/l). Results revealed an increase in the specific growth rate, cell mass formation, and ethanol volumetric productivity at moderate concentrations of sodium acetate (2–10?g/l), in addition to a high tolerance to acetate because it was able to grow and produce a high yield of ethanol in the presence of up to 40?g/l of sodium acetate. Genomic analysis of the ΔpflB evolved strain identified that a chromosomal deletion of 27.3?kb generates the improved growth and acetate tolerance in MG1655 ΔpflB derivative strains. This deletion comprises genes related to the respiration of nitrate, repair of alkylated DNA and synthesis of the ompC gene coding for porin C, cytochromes C, thiamine, and colonic acid. Strain MS04 is advantageous for the production of ethanol from hemicellulosic hydrolysates that contain acetate.  相似文献   

16.
The hyperthermophilic archaeon, Pyrococcus furiosus, grows optimally near 100 °C by fermenting sugars to acetate, carbon dioxide and molecular hydrogen as the major end products. The organism has recently been exploited to produce biofuels using a temperature-dependent metabolic switch using genes from microorganisms that grow near 70 °C. However, little is known about its metabolism at the lower temperatures. We show here that P. furiosus produces acetoin (3-hydroxybutanone) as a major product at temperatures below 80 °C. A novel type of acetolactate synthase (ALS), which is involved in branched-chain amino acid biosynthesis, is responsible and deletion of the als gene abolishes acetoin production. Accordingly, deletion of als in a strain of P. furiosus containing a novel pathway for ethanol production significantly improved the yield of ethanol. These results also demonstrate that P. furiosus is a potential platform for the biological production of acetoin at temperatures in the 70–80 °C range.  相似文献   

17.
To improve butanol selectivity, Clostridium acetobutylicum M5(pIMP1E1AB) was constructed by adhE1-ctfAB complementation of C. acetobutylicum M5, a derivative strain of C. acetobutylicum ATCC 824, which does not produce solvents due to the lack of megaplasmid pSOL1. The gene products of adhE1-ctfAB catalyze the formation of acetoacetate and ethanol/butanol with acid re-assimilation in solventogenesis. Effects of the adhE1-ctfAB complementation of M5 were studied by batch fermentations under various pH and glucose concentrations, and by flux balance analysis using a genome-scale metabolic model for this organism. The metabolically engineered M5(pIMP1E1AB) strain was able to produce 154 mM butanol with 9.9 mM acetone at pH 5.5, resulting in a butanol selectivity (a molar ratio of butanol to total solvents) of 0.84, which is much higher than that (0.57 at pH 5.0 or 0.61 at pH 5.5) of the wild-type strain ATCC 824. Unlike for C. acetobutylicum ATCC 824, a higher level of acetate accumulation was observed during fermentation of the M5 strain complemented with adhE1 and/or ctfAB. A plausible reason for this phenomenon is that the cellular metabolism was shifted towards acetate production to compensate reduced ATP production during the largely growth-associated butanol formation by the M5(pIMP1E1AB) strain.  相似文献   

18.
In order to rationally manipulate the cellular metabolism of Escherichia coli for D: -lactate production, single-gene and multiple-gene deletions with mutations in acetate kinase (ackA), phosphotransacetylase (pta), phosphoenolpyruvate synthase (pps), pyruvate formate lyase (pflB), FAD-binding D-lactate dehydrogenase (dld), pyruvate oxidase (poxB), alcohol dehydrogenase (adhE), and fumarate reductase (frdA) were tested for their effects in two-phase fermentations (aerobic growth and oxygen-limited production). Lactate yield and productivity could be improved by single-gene deletions of ackA, pta, pflB, dld, poxB, and frdA in the wild type E. coli strain but were unfavorably affected by deletions of pps and adhE. However, fermentation experiments with multiple-gene mutant strains showed that deletion of pps in addition to ackA-pta deletions had no effect on lactate production, whereas the additional deletion of adhE in E. coli B0013-050 (ackA-pta pps pflB dld poxB) increased lactate yield. Deletion of all eight genes in E. coli B0013 to produce B0013-070 (ackA-pta pps pflB dld poxB adhE frdA) increased lactate yield and productivity by twofold and reduced yields of acetate, succinate, formate, and ethanol by 95, 89, 100, and 93%, respectively. When tested in a bioreactor, E. coli B0013-070 produced 125 g/l D-lactate with an increased oxygen-limited lactate productivity of 0.61 g/g h (2.1-fold greater than E. coli B0013). These kinetic properties of D-lactate production are among the highest reported and the results have revealed which genetic manipulations improved D-lactate production by E. coli.  相似文献   

19.
To identify genome-wide targets for gene manipulation for increasing l-lactate production in recombinant Saccharomyces cerevisiae strains, we transformed all available single-gene deletion strains of S. cerevisiae with a plasmid carrying the human l-lactate dehydrogenase gene, and examined l-lactate production in the obtained transformants. The thresholds of increased or decreased l-lactate production were determined based on l-lactate production by the standard strain in repetitive experiments. l-lactate production data for 4802 deletion strains were obtained, and deletion strains with increased or decreased l-lactate production were identified. Functional category analysis of genes whose deletion increased l-lactate production revealed that ribosome biogenesis-related genes were overrepresented. Most deletion strains for genes related to ribosome biogenesis exhibited increased l-lactate production in 200-ml batch cultures. We deleted the genes related to ribosome biogenesis in a recombinant strain of S. cerevisiae with a genetic background different from that of the above deletion strains, and examined the effect of target gene deletion on l-lactate production. We observed that deletion of genes related to ribosome biogenesis leads to increased l-lactate production by recombinant S. cerevisiae strains, and the single-gene deletion strain collection could be utilized in identifying target genes for improving l-lactate production in S. cerevisiae recombinant strains.  相似文献   

20.
Cyanobacteria have potential to produce drop-in bio-fuels such as ethanol via photoautotrophic metabolism. Although model cyanobacterial strains have been engineered to produce such products, systematic metabolic engineering studies to identify optimal strains for the same have not been performed. In this work, we identify optimal ethanol producing mutants corresponding to appropriate gene deletions that result in a suitable redirection in the carbon flux. In particular, we systematically simulate exhaustive single and double gene deletions considering a genome scale metabolic model of a mutant strain of the unicellular cyanobacterium Synechocystis species strain PCC 6803. Various optimization based metabolic modeling techniques, such as flux balance analysis (FBA), method of minimization of metabolic adjustment (MOMA) and regulatory on/off minimization (ROOM) were used for this analysis. For single gene deletion MOMA simulations, the Pareto front with biomass and ethanol fluxes as the two objectives to be maximized was obtained and analyzed. Points on the Pareto front represent maximal utilization of resources constrained by substrate uptake thereby representing an optimal trade-off between the two fluxes. Pareto analysis was also performed for double gene deletion MOMA and single and double gene deletion ROOM simulations. Based on these analyses, two mutants, with combined gene deletions in ethanol and purine metabolism pathways, were identified as promising candidates for ethanol production. The relevant genes were adk, pta and ackA. An ethanol productivity of approximately 0.15 mmol/(gDW h) was predicted for these mutants which appears to be reasonable based on experimentally reported values in literature for other strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号