首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Estrogens exert a variety of effects in both reproductive and non-reproductive tissues. With the discovery of ERα splice variants, prior assumptions concerning tissue-specific estrogen signaling need to be re-evaluated. Accordingly, we sought to determine the expression of the classical estrogen receptors and ERα splice variants across reproductive and non-reproductive tissues of male and female mice. Western blotting revealed that the full-length ERα66 was mainly present in female reproductive tissues but was also found in non-reproductive tissues at lower levels. ERα46 was most highly expressed in the heart of both sexes. ERα36 was highly expressed in the kidneys and liver of female mice but not in the kidneys of males. ERβ was most abundant in non-reproductive tissues and in the ovaries. Because the kidney has been reported to be the most estrogenic non-reproductive organ, we sought to elucidate ER renal expression and localization. Immunofluorescence studies revealed ERα66 in the vasculature and the glomerulus. It was also found in the brush border of the proximal tubule and in the cortical collecting duct of female mice. ERα36 was evident in mesangial cells and tubular epithelial cells of both sexes, as well as podocytes of females but not males. ERβ was found primarily in the podocytes in female mice but was also present in the mesangial cells in both sexes. Within the renal cortex, ERα46 and ERα36 were mainly located in the membrane fraction although they were also present in the cytosolic fraction. Given the variability of expression patterns demonstrated herein, identification of the specific estrogen receptors expressed in a tissue is necessary for interpreting estrogenic effects. As this study revealed expression of the ERα splice variants at multiple sites within the kidney, further studies are warranted in order to elucidate the contribution of these receptors to renal estrogen responsiveness.  相似文献   

2.
3.
The function of pancreatic β-cells is the synthesis and release of insulin, the main hormone involved in blood glucose homeostasis. Estrogen receptors, ERα and ERβ, are important molecules involved in glucose metabolism, yet their role in pancreatic β-cell physiology is still greatly unknown. In this report we show that both ERα and ERβ are present in pancreatic β-cells. Long term exposure to physiological concentrations of 17β-estradiol (E2) increased β-cell insulin content, insulin gene expression and insulin release, yet pancreatic β-cell mass was unaltered. The up-regulation of pancreatic β-cell insulin content was imitated by environmentally relevant doses of the widespread endocrine disruptor Bisphenol-A (BPA). The use of ERα and ERβ agonists as well as ERαKO and ERβKO mice suggests that the estrogen receptor involved is ERα. The up-regulation of pancreatic insulin content by ERα activation involves ERK1/2. These data may be important to explain the actions of E2 and environmental estrogens in endocrine pancreatic function and blood glucose homeostasis.  相似文献   

4.

Background

Recent understanding that insulin resistance is an inflammatory condition necessitates searching for genes that regulate inflammation in insulin sensitive tissues. 12/15-lipoxygenase (12/15LO) regulates the expression of proinflammatory cytokines and chemokines and is implicated in the early development of diet-induced atherosclerosis. Thus, we tested the hypothesis that 12/15LO is involved in the onset of high fat diet (HFD)-induced insulin resistance.

Methodology/Principal Findings

Cells over-expressing 12/15LO secreted two potent chemokines, MCP-1 and osteopontin, implicated in the development of insulin resistance. We assessed adipose tissue inflammation and whole body insulin resistance in wild type (WT) and 12/15LO knockout (KO) mice after 2–4 weeks on HFD. In adipose tissue from WT mice, HFD resulted in recruitment of CD11b+, F4/80+ macrophages and elevated protein levels of the inflammatory markers IL-1β, IL-6, IL-10, IL-12, IFNγ, Cxcl1 and TNFα. Remarkably, adipose tissue from HFD-fed 12/15LO KO mice was not infiltrated by macrophages and did not display any increase in the inflammatory markers compared to adipose tissue from normal chow-fed mice. WT mice developed severe whole body (hepatic and skeletal muscle) insulin resistance after HFD, as measured by hyperinsulinemic euglycemic clamp. In contrast, 12/15LO KO mice exhibited no HFD-induced change in insulin-stimulated glucose disposal rate or hepatic glucose output during clamp studies. Insulin-stimulated Akt phosphorylation in muscle tissue from HFD-fed mice was significantly greater in 12/15LO KO mice than in WT mice.

Conclusions

These results demonstrate that 12/15LO mediates early stages of adipose tissue inflammation and whole body insulin resistance induced by high fat feeding.  相似文献   

5.
The development and progression of cardiac hypertrophy often leads to heart failure and death, and important modulators of hypertrophy include the histone deacetylase proteins (HDACs). Estrogen inhibits cardiac hypertrophy and progression in animal models and humans. We therefore investigated the influence of 17-β-estradiol on the production, localization, and functions of prohypertrophic (class I) and antihypertrophic (class II) HDACs in cultured neonatal rat cardiomyocytes. 17-β-Estradiol or estrogen receptor β agonists dipropylnitrile and β-LGND2 comparably suppressed angiotensin II–induced HDAC2 (class I) production, HDAC-activating phosphorylation, and the resulting prohypertrophic mRNA expression. In contrast, estrogenic compounds derepressed the opposite effects of angiotensin II on the same parameters for HDAC4 and 5 (class II), resulting in retention of these deacetylases in the nucleus to inhibit hypertrophic gene expression. Key aspects were confirmed in vivo from the hearts of wild-type but not estrogen receptor β (ERβ) gene–deleted mice administered angiotensin II and estrogenic compounds. Our results identify a novel dual regulation of cardiomyocyte HDACs, shown here for the antihypertrophic sex steroid acting at ERβ. This mechanism potentially supports using ERβ agonists as HDAC modulators to treat cardiac disease.  相似文献   

6.

Background

A greater reduction in cardiovascular risk and vascular protection associated with diet rich in polyphenols are generally accepted; however, the molecular targets for polyphenols effects remain unknown. Meanwhile evidences in the literature have enlightened, not only structural similarities between estrogens and polyphenols known as phytoestrogens, but also in their vascular effects. We hypothesized that alpha isoform of estrogen receptor (ERα) could be involved in the transduction of the vascular benefits of polyphenols.

Methodology/Principal Findings

Here, we used ERα deficient mice to show that endothelium-dependent vasorelaxation induced either by red wine polyphenol extract, Provinols™, or delphinidin, an anthocyanin that possesses similar pharmacological profile, is mediated by ERα. Indeed, Provinols™, delphinidin and ERα agonists, 17-beta-estradiol and PPT, are able to induce endothelial vasodilatation in aorta from ERα Wild-Type but not from Knock-Out mice, by activation of nitric oxide (NO) pathway in endothelial cells. Besides, silencing the effects of ERα completely prevented the effects of Provinols™ and delphinidin to activate NO pathway (Src, ERK 1/2, eNOS, caveolin-1) leading to NO production. Furthermore, direct interaction between delphinidin and ERα activator site is demonstrated using both binding assay and docking. Most interestingly, the ability of short term oral administration of Provinols™ to decrease response to serotonin and to enhance sensitivity of the endothelium-dependent relaxation to acetylcholine, associated with concomitant increased NO production and decreased superoxide anions, was completely blunted in ERα deficient mice.

Conclusions/Significance

This study provides evidence that red wine polyphenols, especially delphinidin, exert their endothelial benefits via ERα activation. It is a major breakthrough bringing new insights of the potential therapeutic of polyphenols against cardiovascular pathologies.  相似文献   

7.
8.
9.
The etiology of ovarian epithelial cancer is poorly understood, mainly due to the lack of an appropriate experimental model for studying the onset and progression of this disease. We have created a mutant mouse model in which aberrant estrogen receptor alpha (ERα) signaling in the hypothalamic-pituitary-ovarian axis leads to ovarian epithelial tumorigenesis. In these mice, termed ERαd/d, the ERα gene was conditionally deleted in the anterior pituitary, but remained intact in the hypothalamus and the ovary. The loss of negative-feedback regulation by estrogen (E) at the level of the pituitary led to increased production of luteinizing hormone (LH) by this tissue. Hyperstimulation of the ovarian cells by LH resulted in elevated steroidogenesis, producing high circulating levels of steroid hormones, including E. The ERαd/d mice exhibited formation of palpable ovarian epithelial tumors starting at 5 months of age with 100% penetrance. By 15 months of age, 80% of ERαd/d mice die. Besides proliferating epithelial cells, these tumors also contained an expanded population of luteinized stromal cells, which acquire the ability to express P450 aromatase and synthesize E locally. In response to the elevated levels of E, the ERα signaling was accentuated in the ovarian epithelial cells of ERαd/d mice, triggering increased ERα-dependent gene expression, abnormal cell proliferation, and tumorigenesis. Consistent with these findings, treatment of ERαd/d mice with letrozole, an aromatase inhibitor, markedly reduced circulating E and ovarian tumor volume. We have, therefore, developed a unique animal model, which serves as a useful tool for exploring the involvement of E-dependent signaling pathways in ovarian epithelial tumorigenesis.  相似文献   

10.
Consumers of fruits and vegetables are frequently exposed to small amounts of hormonally active pesticides, some of them sharing a common mode of action such as the activation of the human estrogen receptor α (hERα) or β (hERβ). Therefore, it is of particular importance to evaluate risks emanating from chemical mixtures, in which the individual pesticides are present at human-relevant concentrations, below their corresponding maximum residue levels. Binary and ternary iso-effective mixtures of estrogenic pesticides at effect concentrations eliciting a 1 or 10% effect in the presence or absence of 17β-estradiol were tested experimentally at the hERα in the yeast-based estrogen screen (YES) assay as well as in the human U2-OS cell-based ERα chemical-activated luciferase gene expression (ERα CALUX) assay and at the hERβ in the ERβ CALUX assay. The outcome was then compared to predictions calculated by means of concentration addition. In most cases, additive effects were observed with the tested combinations in all three test systems, an observation that supports the need to expand the risk assessment of pesticides and consider cumulative risk assessment. An additional testing of mixture effects at the hERβ showed that most test substances being active at the hERα could also elicit additive effects at the hERβ, but the hERβ was less sensitive. In conclusion, effects of the same ligands at the hERα and the hERβ could influence the estrogenic outcome under physiological conditions.  相似文献   

11.
Estrogen has various regulatory functions in the growth, development, and differentiation of the female urogenital system. This study investigated the roles of ERβ in stress urinary incontinence (SUI). Wild-type (ERβ+/+) and knockout (ERβ−/−) female mice were generated (aged 6–8 weeks, n = 6) and urethral function and protein expression were measured. Leak point pressures (LPP) and maximum urethral closure pressure (MUCP) were assessed in mice under urethane anesthesia. After the measurements, the urethras were removed for proteomic analysis using label-free quantitative proteomics by nano-liquid chromatography–mass spectrometry (LC-MS/MS) analysis. The interaction between these proteins was further analysed using MetaCore. Lastly, Western blot was used to confirm the candidate proteins. Compared with the ERβ+/+ group, the LPP and MUCP values of the ERβ−/− group were significantly decreased. Additionally, we identified 85 differentially expressed proteins in the urethra of ERβ−/− female mice; 57 proteins were up-regulated and 28 were down-regulated. The majority of the ERβ knockout-modified proteins were involved in cell-matrix adhesion, metabolism, immune response, signal transduction, nuclear receptor translational regelation, and muscle contraction and development. Western blot confirmed the up-regulation of myosin and collagen in urethra. By contrast, elastin was down-regulated in the ERβ−/− mice. This study is the first study to estimate protein expression changes in urethras from ERβ−/− female mice. These changes could be related to the molecular mechanism of ERβ in SUI.  相似文献   

12.
Postmenopausal osteoporosis is characterized by declining estrogen levels, and estrogen replacement therapy has been proven beneficial for preventing bone loss in affected women. While the physiological functions of estrogen in bone, primarily the inhibition of bone resorption, have been studied extensively, the effects of pharmacological estrogen administration are still poorly characterized. Since elevated levels of follicle-stimulating hormone (FSH) have been suggested to be involved in postmenopausal bone loss, we investigated whether the skeletal response to pharmacological estrogen administration is mediated in a FSH-dependent manner. Therefore, we treated wildtype and FSHβ-deficicent (Fshb−/−) mice with estrogen for 4 weeks and subsequently analyzed their skeletal phenotype. Here we observed that estrogen treatment resulted in a significant increase of trabecular and cortical bone mass in both, wildtype and Fshb−/− mice. Unexpectedly, this FSH-independent pharmacological effect of estrogen was not caused by influencing bone resorption, but primarily by increasing bone formation. To understand the cellular and molecular nature of this osteo-anabolic effect we next administered estrogen to mouse models carrying cell specific mutant alleles of the estrogen receptor alpha (ERα). Here we found that the response to pharmacological estrogen administration was not affected by ERα inactivation in osteoclasts, while it was blunted in mice lacking the ERα in osteoblasts or in mice carrying a mutant ERα incapable of DNA binding. Taken together, our findings reveal a previously unknown osteo-anabolic effect of pharmacological estrogen administration, which is independent of FSH and requires DNA-binding of ERα in osteoblasts.  相似文献   

13.
AMP-activated protein kinase (AMPK) β subunits (β1 and β2) provide scaffolds for binding α and γ subunits and contain a carbohydrate-binding module important for regulating enzyme activity. We generated C57Bl/6 mice with germline deletion of AMPK β2 (β2 KO) and examined AMPK expression and activity, exercise capacity, metabolic control during muscle contractions, aminoimidazole carboxamide ribonucleotide (AICAR) sensitivity, and susceptibility to obesity-induced insulin resistance. We find that β2 KO mice are viable and breed normally. β2 KO mice had a reduction in skeletal muscle AMPK α1 and α2 expression despite up-regulation of the β1 isoform. Heart AMPK α2 expression was also reduced but this did not affect resting AMPK α1 or α2 activities. AMPK α1 and α2 activities were not changed in liver, fat, or hypothalamus. AICAR-stimulated glucose uptake but not fatty acid oxidation was impaired in β2 KO mice. During treadmill running β2 KO mice had reduced maximal and endurance exercise capacity, which was associated with lower muscle and heart AMPK activity and reduced levels of muscle and liver glycogen. Reductions in exercise capacity of β2 KO mice were not due to lower muscle mitochondrial content or defects in contraction-stimulated glucose uptake or fatty acid oxidation. When challenged with a high-fat diet β2 KO mice gained more weight and were more susceptible to the development of hyperinsulinemia and glucose intolerance. In summary these data show that deletion of AMPK β2 reduces AMPK activity in skeletal muscle resulting in impaired exercise capacity and the worsening of diet-induced obesity and glucose intolerance.  相似文献   

14.
Deng W  Wang X  Xiao J  Chen K  Zhou H  Shen D  Li H  Tang Q 《PloS one》2012,7(1):e30256

Background

The effect of regulator of G protein signaling 5 (RGS5) on cardiac hypertrophy, atherosclerosis and angiogenesis has been well demonstrated, but the role in the development of obesity and insulin resistance remains completely unknown. We determined the effect of RGS5 deficiency on obesity, hepatic steatosis, inflammation and insulin resistance in mice fed either a normal-chow diet (NC) or a high-fat diet (HF).

Methodology/Principal Findings

Male, 8-week-old RGS5 knockout (KO) and littermate control mice were fed an NC or an HF for 24 weeks and were phenotyped accordingly. RGS5 KO mice exhibited increased obesity, fat mass and ectopic lipid deposition in the liver compared with littermate control mice, regardless of diet. When fed an HF, RGS5 KO mice had a markedly exacerbated metabolic dysfunction and inflammatory state in the blood serum. Meanwhile, macrophage recruitment and inflammation were increased and these increases were associated with the significant activation of JNK, IκBα and NF-κBp65 in the adipose tissue, liver and skeletal muscle of RGS5 KO mice fed an HF relative to control mice. These exacerbated metabolic dysfunction and inflammation are accompanied with decreased systemic insulin sensitivity in the adipose tissue, liver and skeletal muscle of RGS5 KO mice, reflected by weakened Akt/GSK3β phosphorylation.

Conclusions/Significance

Our data suggest that loss of RGS5 exacerbates HF-induced obesity, hepatic steatosis, inflammation and insulin resistance.  相似文献   

15.

Introduction

Estrogen (E2) delays onset and decreases severity of experimental arthritis. The aim of this study was to investigate the importance of total estrogen receptor alpha (ERα) expression and cartilage-specific ERα expression in genetically modified mice for the ameliorating effect of estrogen treatment in experimental arthritis.

Methods

Mice with total (total ERα-/-) or cartilage-specific (Col2α1-ERα-/-) inactivation of ERα and wild-type (WT) littermates were ovariectomized, treated with E2 or placebo, and induced with antigen-induced arthritis (AIA). At termination, knees were collected for histology, synovial and splenic cells were investigated by using flow cytometry, and splenic cells were subjected to a T-cell proliferation assay.

Results

E2 decreased synovitis and joint destruction in WT mice. Amelioration of arthritis was associated with decreased frequencies of inflammatory cells in synovial tissue and decreased splenic T-cell proliferation. E2 did not affect synovitis or joint destruction in total ERα-/- mice. In Col2α1-ERα-/- mice, E2 protected against joint destruction to a similar extent as in WT mice. In contrast, E2 did not significantly ameliorate synovitis in Col2α1-ERα-/- mice.

Conclusions

Treatment with E2 ameliorates both synovitis and joint destruction in ovariectomized mice with AIA via ERα. This decreased severity in arthritis is associated with decreased synovial inflammatory cell frequencies and reduced splenic T-cell proliferation. ERα expression in cartilage is not required for estrogenic amelioration of joint destruction. However, our data indicate that ERα expression in cartilage is involved in estrogenic effects on synovitis, suggesting different mechanisms for the amelioration of joint destruction and synovitis by E2.  相似文献   

16.
In this study we describe the reproductive phenotypes of a novel mouse model in which Cre-mediated deletion of ERα is regulated by the aP2 (fatty acid binding protein 4) promoter. ERα-floxed mice were crossed with transgenic mice expressing Cre-recombinase under the control of the aP2 promoter to generate aP2-Cre/ERαflox/flox mice. As expected, ERα mRNA levels were reduced in adipose tissue, but in addition we also detected an 80% reduction of ERα levels in the hypothalamus of aP2-Cre/ERαflox/flox mice. Phenotypic analysis revealed that aP2-Cre/ERαflox/flox female mice were infertile. In line with this, aP2-Cre/ERαflox/flox female mice did not cycle and presented 3.8-fold elevated estrogen levels. That elevated estrogen levels were associated with increased estrogen signaling was evidenced by increased mRNA levels of the estrogen-regulated genes lactoferrin and aquaporin 5 in the uterus. Furthermore, aP2-Cre/ERαflox/flox female mice showed an accumulation of intra-uterine fluid, hydrometra, without overt indications for causative anatomical anomalies. However, the vagina and cervix displayed advanced keratosis with abnormal quantities of accumulating squamous epithelial cells suggesting functional obstruction by keratin plugs. Importantly, treatment of aP2-Cre/ERαflox/flox mice with the aromatase inhibitor Letrozole caused regression of the hydrometra phenotype linking increased estrogen levels to the observed phenotype. We propose that in aP2-Cre/ERαflox/flox mice, increased serum estrogen levels cause over-stimulation in the uterus and genital tracts resulting in hydrometra and vaginal obstruction.  相似文献   

17.
An increase in the expression of estrogen receptors (ER) and the expanded population of ER-positive cells are two common phenotypes of breast cancer. Detection of the aberrantly expressed ERα in breast cancer is carried out using ERα-antibodies and radiolabelled ligands to make decisions about cancer treatment and targeted therapy. Capitalizing on the beneficial advantages of aptamer over the conventional antibody or radiolabelled ligand, we have identified a DNA aptamer that selectively binds and facilitates the detection of ERα in human breast cancer tissue sections. The aptamer is identified using the high throughput sequencing assisted SELEX screening. Biophysical characterization confirms the binding and formation of a thermodynamically stable complex between the identified DNA aptamer (ERaptD4) and ERα (Ka = 1.55±0.298×108 M-1; ΔH = 4.32×104±801.1 cal/mol; ΔS = -108 cal/mol/deg). Interestingly, the specificity measurements suggest that the ERaptD4 internalizes into ERα-positive breast cancer cells in a target-selective manner and localizes specifically in the nuclear region. To harness these characteristics of ERaptD4 for detection of ERα expression in breast cancer samples, we performed the aptamer-assisted histochemical analysis of ERα in tissue samples from breast cancer patients. The results were validated by performing the immunohistochemistry on same samples with an ERα-antibody. We found that the two methods agree strongly in assay output (kappa value = 0.930, p-value <0.05 for strong ERα positive and the ERα negative samples; kappa value = 0.823, p-value <0.05 for the weak/moderate ER+ve samples, n = 20). Further, the aptamer stain the ERα-positive cells in breast tissues without cross-reacting to ERα-deficient fibroblasts, adipocytes, or the inflammatory cells. Our results demonstrate a significant consistency in the aptamer-assisted detection of ERα in strong ERα positive, moderate ERα positive and ERα negative breast cancer tissues. We anticipate that the ERaptD4 aptamer targeting ERα may potentially be used for an efficient grading of ERα expression in cancer tissues.  相似文献   

18.
19.
20.
Sex steroid action is critical to form sexually dimorphic nuclei, although it is not fully understood. We previously reported that masculinization of the principal nucleus of the bed nucleus of the stria terminalis (BNSTp), which is larger and has more neurons in males than in females, involves aromatized testosterone that acts via estrogen receptor-α (ERα), but not estrogen receptor-β (ERβ). Here, we examined sex steroid action on the formation of the anteroventral periventricular nucleus (AVPV) that is larger and has more neurons in females. Morphometrical analysis of transgenic mice lacking aromatase, ERα, or ERβ genes revealed that the volume and neuron number of the male AVPV were significantly increased by deletion of aromatase and ERα genes, but not the ERβ gene. We further examined the AVPV and BNSTp of androgen receptor knockout (ARKO) mice. The volume and neuron number of the male BNSTp were smaller in ARKO mice than those in wild-type mice, while no significant effect of ARKO was found on the AVPV and female BNSTp. We also examined aromatase, ERα, and AR mRNA levels in the AVPV and BNSTp of wild-type and ARKO mice on embryonic day (ED) 18 and postnatal day (PD) 4. AR mRNA in the BNSTp and AVPV of wild-type mice was not expressed on ED18 and emerged on PD4. In the AVPV, the aromatase mRNA level was higher on ED18, although the ERα mRNA level was higher on PD4 without any effect of AR gene deletion. Aromatase and ERα mRNA levels in the male BNSTp were significantly increased on PD4 by AR gene deletion. These results suggest that estradiol signaling via ERα during the perinatal period and testosterone signaling via AR during the postnatal period are required for masculinization of the BNSTp, whereas the former is sufficient to defeminize the AVPV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号