首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
构建了人纤维结合素(FN)的三功能结构域重组多肽的两个表达质粒,分别编码两个重组多肽:CH62(FN的Pro1239~Ser1515经Met和Ala1690~Va12049相连)和CH63(从CH62中删除了Ile1850~Glu1978).CH62在大肠杆菌中的表达效率很低,而CH63的表达效率则很高,结果提示FN分子中的Asp1961~Glu1978序列是影响三结构域多肽在大肠杆菌中表达的关键结构.CH63经过溶解和复性后,可通过肝素-琼脂糖亲和层析得到纯品,所得纯品具有结合肝素和结合细胞的功能,且结合细胞的能力比双结构域FN多肽更强,表明两个结合细胞的功能结构域均有活性.CH63的制备为进一步研究具有更强的抑制肿瘤转移作用的基因工程制品奠定了基础.  相似文献   

2.
We have studied internal electron transfer during the reaction of Saccharomyces cerevisiae mitochondrial cytochrome c oxidase with dioxygen. Similar absorbance changes were observed with this yeast oxidase as with the previously studied Rhodobacter sphaeroides and bovine mitochondrial oxidases, which suggests that the reaction proceeds along the same trajectory. However, notable differences were observed in rates and electron-transfer equilibrium constants of specific reaction steps, for example the ferryl (F) to oxidized (O) reaction was faster with the yeast (0.4 ms) than with the bovine oxidase (~ 1 ms) and a larger fraction CuA was oxidized with the yeast than with the bovine oxidase in the peroxy (PR) to F reaction. Furthermore, upon replacement of Glu243, located at the end of the so-called D proton pathway, by Asp the PR → F and F → O reactions were slowed by factors of ~ 3 and ~ 10, respectively, and electron transfer from CuA to heme a during the PR → F reaction was not observed. These data indicate that during reduction of dioxygen protons are transferred through the D pathway, via Glu243, to the catalytic site in the yeast mitochondrial oxidase. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.  相似文献   

3.
4.
Seregina  T. A.  Lobanov  K. V.  Shakulov  R. S.  Mironov  A. S. 《Molecular Biology》2022,56(4):572-579
Molecular Biology - In cells of Escherichia coli, terminal oxidase bd-I encoded by the cydAB gene catalyzes the reduction of O2 to water using hydroquinone as an electron donor. In addition to the...  相似文献   

5.
Relaxation kinetics measurements on two types of ribosome preparations were parformed by the pressure-jump and temperature-Jump techniques, using light scattered at 90° as detector. For freshly prepared tibosomes isolated as 70S tight coupled from 26 000 RPM sucrose gradint sedimentation in 10 mM Mg2+, surprisingly large reaction amplitudes were found in 10 mM Mg2+ wilh both techniques, leading to an overall formation constant for 70S couples approximately three orders of magnitude smaller than that reported fot tight couples. For pelleted, two-tunes salt-washed ribosomes, amplitude titration versus Mg2+ in the pressure-jump apparatus showed an amplitude maximum near 10 mM Mg2+ with a relaxation time near 20 ms, and a second amplitude maximum near 2.5 mM Mg2+ with a relaxation time near 25 s. Both types of preparation on reanalysis on sucrose gradients at 5 mM Mg2+ showed approximately 15% of subunits, with a distinct zone in the 50S region. 70S light couples recovered from a sucrose density gradient separation at 5 mM Mg2+ on pelleted two-times salt-washed ribosomes behaved in the same way as the original sample in pressure-jump experiments at 10 mM Mg2+. These findings have been interpreted as follows (I) the processes observed at 10 mM Mg2+ are due entirety to the relatively small loose couple content of the samples, even in the case of material isolated as 70S tight couples, (2) the processes observed at 2.5 mM Mg2+ are due almost entirely to the preponderant tight couple population of the material, and (3) samples isolated as 70S tight couples from sucrose gradients at 5 mM Mg2+ spontaneously revert within hours into micro-heterogeneous material containing about 15% loose couples, for both types of ribosomes.  相似文献   

6.
A healthy endothelium plays a core role in cardiovascu-lar control [1]. In the endothelial cell, nitric oxide (NO) issynthesized by the endothelial nitric oxide synthase (eNOS)encoded by a 26-exon gene (NOS 3) located on chromo-some 7 [2]. Besides its regulatory functions on vasomotortone and blood flow, endothelial NO is known to inhibitthe platelet activation and modulate migration and growthof the vascular smooth muscle [3]. Indirect evidence sug-gests that alterations of the NO pathwa…  相似文献   

7.
Alanine racemase (Alr) is an important enzyme that catalyzes the interconversion of L-alanine and D-alanine, an essential building block in the peptidoglycan biosynthesis. For the small size of the Alr active site, its conserved substrate entryway has been proposed as a potential choice for drug design. In this work, we fully analyzed the crystal structures of the native, the D-cycloserine-bound, and four mutants (P219A, E221A, E221K, and E221P) of biosynthetic Alr from Escherichia coli (EcAlr) and studied the potential roles in substrate orientation for the key residues involved in the substrate entryway in conjunction with the enzymatic assays. Structurally, it was discovered that EcAlr is similar to the Pseudomonas aeruginosa catabolic Alr in both overall and active site geometries. Mutation of the conserved negatively charged residue aspartate 164 or glutamate 165 at the substrate entryway could obviously reduce the binding affinity of enzyme against the substrate and decrease the turnover numbers in both D- to L-Ala and L- to D-Ala directions, especially when mutated to lysine with the opposite charge. However, mutation of Pro219 or Glu221 had only negligible or a small influence on the enzymatic activity. Together with the enzymatic and structural investigation results, we thus proposed that the negatively charged residues Asp164 and Glu165 around the substrate entryway play an important role in substrate orientation with cooperation of the positively charged Arg280 and Arg300 on the opposite monomer. Our findings are expected to provide some useful structural information for inhibitor design targeting the substrate entryway of Alr.  相似文献   

8.
The kinetics of E. coli RNA polymerase.   总被引:3,自引:2,他引:1       下载免费PDF全文
Using an assay specific for chain elongation of E. coli RNA polymerase the kinetics of this propagation reaction have been studied. The kinetic behaviour is consistent woth the mathematical model formulated for this multisubstrate enzyme. The effect of increasing salt concentration on the kinetics of the reaction indicated that DNA unwinding is probably a necessary step in the propagation step, although this may not be the rate limiting step under all conditions.  相似文献   

9.
The roles of Asp(75), Asp(78), and Glu(83) of the (75)DPSDVARVE(83) element of Mycobacterium smegmatis GTP-dependent phosphoenolpyruvate (PEP) carboxykinase (GTP-PEPCK) were investigated. Asp(78) and Glu(83) are fully conserved in GTP-PEP-CKs. The human PEPCK crystal structure suggests that Asp(78) influences Tyr(220); Tyr(220) helps to position bound PEP, and Glu(83) interacts with Arg(81). Experimental data on other PEPCKs indicate that Arg(81) binds PEP, and the phosphate of PEP interacts with Mn(2+) of metal site 1 for catalysis. We found that D78A and E83A replacements severely reduced activity. E83A substitution raised the apparent K(m) value for Mn(2+) 170-fold. In contrast, Asp(75) is highly but not fully conserved; natural substitutions are Ala, Asn, Gln, or Ser. Such substitutions, when engineered, in M. smegmatis enzyme caused the following. 1) For oxaloacetate synthesis, V(max) decreased 1.4-4-fold. K(m) values for PEP and Mn(2+) increased 3-9- and 1.2-10-fold, respectively. K(m) values for GDP and bicarbonate changed little. 2) For PEP formation, V(max) increased 1.5-2.7-fold. K(m) values for oxaloacetate increased 2-2.8-fold. The substitutions did not change the secondary structure of protein significantly. The kinetic effects are rationalized as follows. In E83A the loss of Glu(83)-Arg(81) interaction affected Arg(81)-PEP association. D78A change altered the Tyr(220)-PEP interaction. These events perturbed PEP-Mn(2+) interaction and consequently affected catalysis severely. In contrast, substitutions at Asp(75), a site far from bound PEP, brought subtle effects, lowering oxaloacetate formation rate but enhancing PEP formation rate. It is likely that Asp(75) substitutions affected PEP-Mn(2+) interaction by changing the positions of Asp(78), Arg(81), and Glu(83), which translated to differential effects on two directions.  相似文献   

10.
11.
甾短杆菌胆固醇氧化酶基因在大肠杆菌中的表达   总被引:1,自引:0,他引:1  
为了实现胆固醇氧化酶在大肠杆菌中的表达,将甾短杆菌Brevibacterium sp.DGCDC-82胆固醇氧化酶基因用PCR的方法去掉信号肽序列,连接到质粒pTrc99a,遗过筛选得到了表达胆固醇氧化酶的重组菌JMl09/pTrc99a—COD。经IPTG诱导后表达出相对分子质量约为5.5×10^4的蛋白质。分别考察了诱导温度、时间、IPTG浓度等因素对重组菌表达的胆固醇氧化酶的影响。在优化条件下,该胆固醇氧化酶的酶活可以达到700U/L。酶学特性分析表明其反应的最适pH为7.5,最适温度为40℃。  相似文献   

12.
13.
14.
Glu 58 is one of the amino acids which participates in its catalytic action of ribonuclease T1. We mutated this residue to Gln 58 or Asp 58 by genetic engineering using chemically synthesized genes. The mutant enzymes were expressed in E. coli as fused proteins and purified to homogeniety on SDS-PAGE after cleavage with cyanogen bromide. Their activities in hydrolyzing pGpC were reduced to 10% in the Asp 58 mutant and about 1% in the Gln 58 mutant compared to that of the wild-type enzyme. These results suggest that Glu 58 is important but not essential for catalysis of ribonuclease T1.  相似文献   

15.
Chen YC  Wu CY  Lim C 《Proteins》2007,67(3):671-680
Binding of polyanionic DNA depends on the cluster of electropositive atoms in the binding site of a DNA-binding protein. Such a cluster of electropositive protein atoms would be electrostatically unfavorable without stabilizing interactions from the respective electronegative DNA atoms and would likely be evolutionary conserved due to its critical biological role. Consequently, our strategy for predicting DNA-binding residues is based on detecting a cluster of evolutionary conserved surface residues that are electrostatically stabilized upon mutation to negatively charged Asp/Glu residues. The method requires as input the protein structure and sufficient sequence homologs to define each residue's relative conservation, and it yields as output experimentally testable residues that are predicted to bind DNA. By incorporating characteristic DNA-binding site features (i.e., electrostatic strain and amino acid conservation), the new method yields a prediction accuracy of 83%, which is much higher than methods based on only electrostatic strain (57%) or conservation alone (50%). It is also less sensitive to protein conformational changes upon DNA binding than methods that mainly depend on the 3D protein structure.  相似文献   

16.
Escherichia coli RNase HI has two Mn(2+)-binding sites. Site 1 is formed by Asp10, Glu48, and Asp70, and site 2 is formed by Asp10 and Asp134. Site 1 and site 2 have been proposed to be an activation site and an attenuation site, respectively. However, Glu48 and Asp134 are dispensable for Mn(2+)-dependent activity. In order to identify the Mn(2+)-binding sites of the mutant proteins at Glu48 and/or Asp134, the crystal structures of the mutant proteins E48A-RNase HI*, D134A-RNase HI*, and E48A/D134N-RNase HI* in complex with Mn(2+) were determined. In E48A-RNase HI*, Glu48 and Lys87 are replaced by Ala. In D134A-RNase HI*, Asp134 and Lys87 are replaced by Ala. In E48A/D134N-RNase HI*, Glu48 and Lys87 are replaced by Ala and Asp134 is replaced by Asn. All crystals had two or four protein molecules per asymmetric unit and at least two of which had detectable manganese ions. These structures indicated that only one manganese ion binds to the various positions around the center of the active-site pocket. These positions are different from one another, but none of them is similar to site 1. The temperature factors of these manganese ions were considerably larger than those of the surrounding residues. These results suggest that the first manganese ion required for activation of the wild-type protein fluctuates among various positions around the center of the active-site pockets. We propose that this fluctuation is responsible for efficient hydrolysis of the substrates by the protein (metal fluctuation model). The binding position of the first manganese ion is probably forced to shift to site 1 or site 2 upon binding of the second manganese ion.  相似文献   

17.
Protein phosphorylation on serine, threonine, and tyrosine (Ser/Thr/Tyr) is generally considered the major regulatory posttranslational modification in eukaryotic cells. Increasing evidence at the genome and proteome level shows that this modification is also present and functional in prokaryotes. We have recently reported the first in-depth phosphorylation site-resolved dataset from the model Gram-positive bacterium, Bacillus subtilis, showing that Ser/Thr/Tyr phosphorylation is also present on many essential bacterial proteins. To test whether this modification is common in Eubacteria, here we use a recently developed proteomics approach based on phosphopeptide enrichment and high accuracy MS to analyze the phosphoproteome of the model Gram-negative bacterium Escherichia coli. We report 81 phosphorylation sites on 79 E. coli proteins, with distribution of Ser/Thr/Tyr phosphorylation sites 68%/23%/9%. Despite their phylogenetic distance, phosphoproteomes of E. coli and B. subtilis show striking similarity in size, classes of phosphorylated proteins, and distribution of Ser/Thr/Tyr phosphorylation sites. By combining the two datasets, we created the largest phosphorylation site-resolved database of bacterial phosphoproteins to date (available at www.phosida.com) and used it to study evolutionary conservation of bacterial phosphoproteins and phosphorylation sites across the phylogenetic tree. We demonstrate that bacterial phosphoproteins and phosphorylated residues are significantly more conserved than their nonphosphorylated counterparts, with a number of potential phosphorylation sites conserved from Archaea to humans. Our results establish Ser/Thr/Tyr phosphorylation as a common posttranslational modification in Eubacteria, present since the onset of cellular life.  相似文献   

18.
D Ewing 《Radiation research》1983,96(2):275-283
E. coli B/r have been used to study radiation sensitization by nitrous oxide (N2O). Cells suspended in S?rensen's phosphate buffer show a large amount of sensitization by N2O (relative to the response in 100% N2). Cells in McIlvaine's phosphate-citric acid buffer, however, show no sensitization by N2O. Sensitization in S?rensen's buffer can be prevented by hydroxyl radical (.OH) removal or by catalase. Chemical assays for the amounts of H2O2 formed under various conditions provide the basis for the conclusion that the high concentration of the citrate ion in McIlvaine's buffer does not allow the build-up of H2O2. Sensitization by N2O requires that both H2O2 and OH radicals be present.  相似文献   

19.
20.
Two enzymatically active forms of lysyl-tRNA synthetase from E. coli B   总被引:2,自引:0,他引:2  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号