首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Epidemiologic studies have shown that diabetes mellitus is associated positively with increased risk of pancreatic ductal adenocarcinoma (PDAC), and recent meta-analysis studies showed that metformin, reduces the risk of pancreatic cancer (PC). We tested the effects of metformin on pancreatic intraepithelial neoplasia (PanIN) and their progression to PDAC in p48Cre/+.LSL-KrasG12D/+ transgenic mice. Mice fed control diet showed 80% and 62% incidence of PDAC in males and females, respectively. Male mice showed 20% and 26%, and female mice showed 7% and 0% PDAC incidence with 1000- and 2000-ppm metformin treatments, respectively. Both doses of metformin decreased pancreatic tumor weights by 34% to 49% (P < 0.03–0.001). The drug treatment caused suppression of PanIN 3 (carcinoma in situ) lesions by 28% to 39% (P < .002) and significant inhibition of carcinoma spread in the pancreas. The pancreatic tissue and/or serum of mice fed metformin showed a significant inhibition of mammalian target of rapamycin (mTOR), extracellular signal-regulated kinases (ERK), phosphorylated extracellular signal-regulated kinases (pErk), and insulin-like growth factor 1 (IGF-1) with an increase in phosphorylated 5′ adenosine monophosphate kinase (pAMPK), tuberous sclerosis complex 1 (TSC1, TSC2), C-protein and an autophagy related protein 2 (ATG2). The cancer stem cell (CSC) markers were significantly decreased (P < 0.04–0.0002) in the pancreatic tissue. These results suggest that biologic effects of metformin are mediated through decreased CSC markers cluster of differentiation 44 (CD44 and CD133), aldehyde dehydrogenase isoform 1 (ALDH1), and epithelial cell adhesion molecule (EPCAM) and modulation of the mTOR signaling pathway. Our preclinical data indicate that metformin has significant potential for use in clinical trials for PC chemoprevention.  相似文献   

2.
Natural products represent a rich reservoir of potential small chemical molecules exhibiting anti-proliferative and chemopreventive properties. Here, we show that treatment of pancreatic ductal adenocarcinoma (PDAC) cells (PANC-1, MiaPaCa-2) with the isoquinoline alkaloid berberine (0.3–6 µM) inhibited DNA synthesis and proliferation of these cells and delay the progression of their cell cycle in G1. Berberine treatment also reduced (by 70%) the growth of MiaPaCa-2 cell growth when implanted into the flanks of nu/nu mice. Mechanistic studies revealed that berberine decreased mitochondrial membrane potential and intracellular ATP levels and induced potent AMPK activation, as shown by phosphorylation of AMPK α subunit at Thr-172 and acetyl-CoA carboxylase (ACC) at Ser79. Furthermore, berberine dose-dependently inhibited mTORC1 (phosphorylation of S6K at Thr389 and S6 at Ser240/244) and ERK activation in PDAC cells stimulated by insulin and neurotensin or fetal bovine serum. Knockdown of α1 and α2 catalytic subunit expression of AMPK reversed the inhibitory effect produced by treatment with low concentrations of berberine on mTORC1, ERK and DNA synthesis in PDAC cells. However, at higher concentrations, berberine inhibited mitogenic signaling (mTORC1 and ERK) and DNA synthesis through an AMPK-independent mechanism. Similar results were obtained with metformin used at doses that induced either modest or pronounced reductions in intracellular ATP levels, which were virtually identical to the decreases in ATP levels obtained in response to berberine. We propose that berberine and metformin inhibit mitogenic signaling in PDAC cells through dose-dependent AMPK-dependent and independent pathways.  相似文献   

3.
目的:研究雷帕霉素对人胰腺癌细胞SW1990的mTOR信号通路的影响。方法:采用免疫细胞化学证实mTOR信号通路的存在,通过CCK-8法研究雷帕霉素对胰腺癌细胞增殖的影响,通过Western blot和real time PCR分别从蛋白水平和基因水平研究雷帕霉素对mTOR及其下游分子的表达。结果:免疫细胞化学结果显示p-mTOR、p-p70S6K、p-4E-BP1在细胞质中均呈阳性;CCK-8法显示雷帕霉素能明显抑制细胞增殖(P<0.05);Western blot结果显示随着雷帕霉素浓度的增加,p-mTOR、p-p70S6K表达明显减少,而p-4E-BP1蛋白表达明显增加(P<0.05);Real-time PCR结果显示随雷帕霉素浓度的增加,CyclinD1、VEGF、c-myc基因表达明显减少(P<0.05)。结论:人胰腺癌细胞系SW1990中存在mTOR信号通路并处于激活状态;雷帕霉素抑制胰腺癌细胞增殖与雷帕霉素抑制mTOR信号通路活化有关。  相似文献   

4.
The mechanism of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) resistance in cancer cells is not fully understood. Here, we show that the Akt survival pathway plays an important role in TRAIL resistance in human cancer cells. Specifically, we found that TRAIL treatment activates the Akt survival pathway and that inhibition of this pathway by the PI3K inhibitor LY294002 or knockdown of Akt sensitizes resistant cancer cells to TRAIL. Since Akt is negatively regulated by the tumor suppressor PTEN, we examined the TRAIL sensitivity in PTEN knockdown mouse prostate epithelial cells and found that PTEN−/− cells are more resistant than PTEN+/+ cells while the sensitivity of PTEN+/− cells fell in between. Further, we showed that overexpression of a mutant PTEN confers TRAIL resistance in PTEN+/+ cells, supporting a role of PTEN in TRAIL sensitivity. In TRAIL resistant breast T47D cells, overexpression of the mutant PTEN further increased their resistance to TRAIL. Taken together, our data indicate that inactivation of functional PTEN and the consequent activation of the Akt pathway prevents TRAIL-induced apoptosis, leading to TRAIL resistance. Therefore, our results suggest that TRAIL resistance can be overcome by targeting PTEN or the Akt survival pathway in cancer cells.  相似文献   

5.
Several reports suggest that ELF-EMF exposures interact with biological processes including promotion of cell proliferation. However, the molecular mechanisms by which ELF-EMF controls cell growth are not completely understood. The present study aimed to investigate the effect of ELF-EMF on keratinocytes proliferation and molecular mechanisms involved. Effect of ELF-EMF (50 Hz, 1 mT) on HaCaT cell cycle and cells growth and viability was monitored by FACS analysis and BrdU assay. Gene expression profile by microarray and qRT-PCR validation was performed in HaCaT cells exposed or not to ELF-EMF. mTOR, Akt and MAPKs expressions were evaluated by Western blot analysis. In HaCaT cells, short ELF-EMF exposure modulates distinct patterns of gene expression involved in cell proliferation and in the cell cycle. mTOR activation resulted the main molecular target of ELF-EMF on HaCaT cells. Our data showed the increase of the canonical pathway of mTOR regulation (PI3K/Akt) and activation of ERK signaling pathways. Our results indicate that ELF-EMF selectively modulated the expression of multiple genes related to pivotal biological processes and functions that play a key role in physio-pathological mechanisms such as wound healing.  相似文献   

6.
Protein Tyrosine Kinase 6 (PTK6) is a non-receptor type tyrosine kinase that may be involved in some cancers. However, the biological role and expression status of PTK6 in pancreatic cancer is unknown. Therefore in this study, we evaluated the functional role of PTK6 on pancreatic cancer invasion. Five pancreatic cancer cell lines expressed PTK6 at varying levels. PTK6 expression was also observed in human pancreatic adenocarcinomas. PTK6 suppression by siRNA significantly reduced both cellular migration and invasion (0.59/0.49 fold for BxPC3, 0.61/0.62 for Panc1, 0.42/0.39 for MIAPaCa2, respectively, p<0.05 for each). In contrast, forced overexpression of PTK6 by transfection of a PTK6 expression vector in Panc1 and MIAPaCa2 cells increased cellular migration and invasion (1.57/1.67 fold for Panc1, 1.44/1.57 for MIAPaCa2, respectively, p<0.05). Silencing PTK6 reduced ERK1/2 activation, but not AKT or STAT3 activation, while PTK6 overexpression increased ERK1/2 activation. U0126, a specific inhibitor of ERK1/2, completely abolished the effect of PTK6 overexpression on cellular migration and invasion. These results suggest that PTK6 regulates cellular migration and invasion in pancreatic cancer via ERK signaling. PTK6 may be a novel therapeutic target for pancreatic cancer.  相似文献   

7.
8.
Cerebral ischemia increases neural progenitor cell proliferation and neurogenesis. However, the precise molecular mechanism is poorly understood. The present study was undertaken to determine roles of extracellular signal-regulated kinase (ERK) and phosphoinositide 3-kinase (PI3K)/Akt and their signaling pathways in neural progenitor cells exposed to hypoxia/reoxygenation (H/R), an in vitro model of ischemia/reperfusion. Neural progenitor cells were isolated from postnatal mouse brain. ERK and Akt were transiently activated during the early phase of reoxygenation following 4-h of hypoxia. The ERK activation was inhibited by U0126, a specific inhibitor of MEK, but not by LY294002, a specific inhibitor of PI3K, whereas the Akt activation was blocked by LY294002, but not by U0126. Reoxygenation following 4-h hypoxia stimulated cell proliferation, which was dependent on ERK and Akt activation. Inhibitors of growth factor receptor (AG1478) and Src (PP2) and the antioxidant N-acetylcysteine did not affect activation of ERK and Akt, while the Ras and Raf inhibitors inhibited activation of ERK, but not Akt. PKC inhibitors inhibited both ERK and Akt activation. Taken together, these results suggest that H/R induces activation of MEK/ERK and PI3K/Akt survival signaling pathways through a PKC-dependent mechanism. These pathways may be responsible for the repair process during ischemia/reperfusion.  相似文献   

9.
Inhibitors of the mammalian target of rapamycin (mTORi) have clinical activity; however, the benefits of mTOR inhibition by rapamycin and rapamycin-derivatives (rapalogs) may be limited by a feedback mechanism that results in AKT activation. Increased AKT activity resulting from mTOR inhibition can be a result of increased signaling via the mTOR complex, TORC2. Previously, we published that arsenic trioxide (ATO) inhibits AKT activity and in some cases, decreases AKT protein expression. Therefore, we propose that combining ATO and rapamycin may circumvent the AKT feedback loop and increase the anti-tumor effects. Using a panel of breast cancer cell lines, we find that ATO, at clinically-achievable doses, can enhance the inhibitory activity of the mTORi temsirolimus. In all cell lines, temsirolimus treatment resulted in AKT activation, which was decreased by concomitant ATO treatment only in those cell lines where ATO enhanced growth inhibition. Treatment with rapalog also results in activated ERK signaling, which is decreased with ATO co-treatment in all cell lines tested. We next tested the toxicity and efficacy of rapamycin plus ATO combination therapy in a MDA-MB-468 breast cancer xenograft model. The drug combination was well-tolerated, and rapamycin did not increase ATO-induced liver enzyme levels. In addition, combination of these drugs was significantly more effective at inhibiting tumor growth compared to individual drug treatments, which corresponded with diminished phospho-Akt and phospho-ERK levels when compared with rapamycin-treated tumors. Therefore, we propose that combining ATO and mTORi may overcome the feedback loop by decreasing activation of the MAPK and AKT signaling pathways.  相似文献   

10.
Breast cancer (BC) is the most commonly diagnosed cancer in women. The PI3K/AKT/mTOR pathway is among the most frequently dysregulated pathways in patients with BC. The activation of this pathway is associated with increased cell growth and clinical outcome, and its overexpression is associated with a poor prognosis. It has been proposed that it may be of importance as a potential therapeutic target in the treatment of BC. The aim of current review is to provide an overview of the potential utility of PI3K/Akt/mTOR inhibitors in patients with BC, with particular emphasis on recent preclinical and clinical studies. J. Cell. Biochem. 119: 213–222, 2018. © 2017 Wiley Periodicals, Inc.  相似文献   

11.
该文探讨了乳腺癌细胞中表皮生长因子(EGF)介导的MEK非依赖性ERK激活通路。Western blot检测EGF刺激下,siRNA抑制MEK1/2后的T47D细胞的p-ERK水平,以验证T47D细胞中存在EGF介导的MEK非依赖性ERK激活的通路。接着使用可能参与MEK非依赖性ERK激活的激酶的小分子抑制剂抑制相关激酶(AC、PKC、Src、PI3K、PDK1和Akt)活性后,检测T47D细胞EGF介导ERK的磷酸化水平。siRNA抑制MEK1/2表达后,T47D细胞在EGF刺激后的仍保留部分p-ERK,即在T47D细胞中,存在EGF介导的MEK非依赖性的ERK磷酸化通路。小分子抑制剂抑制AC、PKC、Src对MEK非依赖性ERK激活途径影响不大。而使用小分子抑制剂抑制PI3K、PDK1和Akt后,ERK的磷酸化水平显著降低,提示PI3K/Akt通路下游的激酶参与T47D中EGF介导的MEK非依赖性ERK激活途径。siRNA干扰PI3K/Akt通路下游PBK/TOPK后并使用U0126抑制MEK功能后,几乎检测不到p-ERK,提示PBK/TOPK参与T47D细胞中EGF介导的MEK非依赖性ERK激活途径。乳腺癌抗雌激素药物耐药株T47D细胞存在EGF介导的MEK非依赖性ERK激活途径,且该途径受PI3K/Akt下游的PBK/TOPK调控。  相似文献   

12.
Pancreatic cancer is a deadly disease, and therefore effective treatment and/or prevention strategies are urgently needed. The objectives of this study were to examine the molecular mechanisms by which embelin inhibited human pancreatic cancer cell growth in vitro, and xenografts in Balb C nude mice, and pancreatic cancer cell growth isolated from KrasG12D transgenic mice. XTT assays were performed to measure cell viability. AsPC-1 cells were injected subcutaneously into Balb c nude mice and treated with embelin. Cell proliferation and apoptosis were measured by Ki67 and TUNEL staining, respectively. The expression of Akt, and Sonic Hedgehog (Shh) and their target gene products were measured by the immunohistochemistry, and Western blot analysis. The effects of embelin on pancreatic cancer cells isolated from 10-months old KrasG12D mice were also examined. Embelin inhibited cell viability in pancreatic cancer AsPC-1, PANC-1, MIA PaCa-2 and Hs 766T cell lines, and these inhibitory effects were blocked either by constitutively active Akt or Shh protein. Embelin-treated mice showed significant inhibition in tumor growth which was associated with reduced expression of markers of cell proliferation (Ki67, PCNA and Bcl-2) and cell cycle (cyclin D1, CDK2, and CDK6), and induction of apoptosis (activation of caspase-3 and cleavage of PARP, and increased expression of Bax). In addition, embelin inhibited the expression of markers of angiogenesis (COX-2, VEGF, VEGFR, and IL-8), and metastasis (MMP-2 and MMP-9) in tumor tissues. Antitumor activity of embelin was associated with inhibition of Akt and Shh pathways in xenografts, and pancreatic cancer cells isolated from KrasG12D mice. Furthermore, embelin also inhibited epithelial-to-mesenchymal transition (EMT) by up-regulating E-cadherin and inhibiting the expression of Snail, Slug, and ZEB1. These data suggest that embelin can inhibit pancreatic cancer growth, angiogenesis and metastasis by suppressing Akt and Shh pathways, and can be developed for the treatment and/or prevention of pancreatic cancer.  相似文献   

13.
Sorafenib is a multi-kinase inhibitor that has been proven effective for the treatment of unresectable hepatocellular carcinoma (HCC). However, its precise mechanisms of action and resistance have not been well established. We have developed high-density fluorescence reverse-phase protein arrays and used them to determine the status of 180 phosphorylation sites of signaling molecules in the 120 pathways registered in the NCI-Nature curated database in 23 HCC cell lines. Among the 180 signaling nodes, we found that the level of ribosomal protein S6 phosphorylated at serine residue 235/236 (p-RPS6 S235/236) was most significantly correlated with the resistance of HCC cells to sorafenib. The high expression of p-RPS6 S235/236 was confirmed immunohistochemically in biopsy samples obtained from HCC patients who responded poorly to sorafenib. Sorafenib-resistant HCC cells showed constitutive activation of the mammalian target of rapamycin (mTOR) pathway, but whole-exon sequencing of kinase genes revealed no evident alteration in the pathway. p-RPS6 S235/236 is a potential biomarker that predicts unresponsiveness of HCC to sorafenib. The use of mTOR inhibitors may be considered for the treatment of such tumors.Hepatocellular carcinoma (HCC)1 is the third most common cause of cancer-related death worldwide (1). Advanced HCC often cannot be managed with local treatments (surgical resection, ethanol injection, radiofrequency ablation, chemoembolization), but no systemic chemotherapy with conventional cytotoxic agents had been shown to be effective until a landmark phase III clinical trial (the Sorafenib HCC Assessment Randomized Protocol) revealed significant survival prolongation in patients treated with sorafenib (Nexavar; Bayer Healthcare Pharmaceuticals Inc. Berlin, Germany) (2). Furthermore, it has been reported that some patients show remarkable tumor shrinkage after short-term administration of sorafenib (3). Based on these results, sorafenib monotherapy has been employed as the current standard first-line treatment for unresectable HCC. However, not all HCC patients show the desired therapeutic benefits of sorafenib. The overall survival prolongation of unselected patients in the SHARP trial was limited to 2.8 months (2), and an objective tumor response was observed only in a small proportion of patients (0.6% to 2%) (2, 4). Given the relatively high cost and occasional severe adverse events (diarrhea, hand-foot skin reaction, hypertension, and others) (2, 4), there is an urgent need to identify a predictive biomarker that could exclude advanced HCC patients who are unlikely to benefit from sorafenib therapy.Sorafenib is a multi-kinase inhibitor that blocks tumor cell proliferation and angiogenesis through the inhibition of c-RAF and b-RAF, as well as many receptor tyrosine kinases, including vascular endothelial growth factor receptors 2 and 3, platelet-derived growth factor receptor-α, Fms-related tyrosine kinase 3, RET, and c-KIT (5). In view of this broad inhibitory spectrum, the precise mechanisms underlying the anti-tumor activity remain elusive. To date, factors that have been identified as correlated with the efficacy of sorafenib include phosphorylated extracellular signal-regulated kinase 1 (p-ERK) (6), serum des-γ-carboxyprothrombin level (7), phosphorylated c-Jun protein (8), and fibroblast growth factor-3/4 gene amplification (3), but their clinical utility as predictive biomarkers has not been established.In the present study, we developed a new technique, high-density fluorescence reverse-phase protein array (RPPA), and used it to search for a biomarker that would identify patients in whom sorafenib would be effective, employing a large library of phosphorylation-site-specific antibodies. RPPA represents an emerging technology for proteomics, and it is well suited for the profiling of phosphorylated proteins. It involves micro-format dot immunoblotting of lysates from tissues or cells (9), allowing simultaneous monitoring of the expression of a particular phosphoprotein in hundreds to thousands of samples under identical conditions in a highly quantitative manner (10). In this study we profiled the activation status of 180 key signaling nodes across a panel of 23 HCC cell lines and identified de novo activation of mTOR signaling in sorafenib-resistant HCC cells.  相似文献   

14.
The role of persistent activation of pancreatic stellate cells (PSCs) in the fibrosis associated with chronic pancreatitis (CP) is increasingly being recognized. Recent studies have shown that Wnt signaling is involved in the development of fibrosis in multiple organs, however, the role of specific Wnts in pancreatic fibrosis remains unknown. We investigated the role of Wnt signaling during PSC activation in CP and the effect of β-catenin inhibition and Dickkopf-related protein 1 (Dkk1) restoration on the phenotype of PSCs. CP was induced in mice by repetitive caerulein injection and mouse PSCs were isolated and activated in vitro. The expression of Wnts, β-catenin, secreted frizzled-related proteins (sFRPs) and Dkks was analyzed by quantitative RT-PCR and western blotting. The canonical Wnt signaling pathway was examined by immunofluorescence and western blot detection of nuclear β-catenin expression. The effect of recombinant mouse Dkk-1 (rmDkk-1) on cell proliferation and apoptosis was assessed by flow cytometry, immunofluorescence, immunocytochemistry and Cell Counting Kit-8 (CCK-8) analysis. The expression of β-catenin, collagen1α1, TGFβRII, PDGFRβ and α-SMA in PSCs treated with different concentrations of rmDkk-1 or siRNA against β-catenin was determined by quantitative RT-PCR and western blotting. Wnt2 was the only Wnt whose expression was significantly upregulated in response to PSC activation, and Wnt2 and β-catenin protein levels were significantly increased in the pancreas of CP mice, whereas Dkk-1 expression was evidently decreased. Nuclear β-catenin levels were markedly increased in activated PSCs, and rmDkk-1 suppressed the nuclear translocation of β-catenin and the proliferation and extracellular matrix production of PSCs through the downregulation of PDGFRβ and TGFβRII. Upregulation of Dkk-1 expression increased apoptosis in cultured PSCs. These results indicate that Wnt signaling may mediate the profibrotic effect of PSC activation, and Wnt2/Dkk-1 could be potential therapeutic targets for CP.  相似文献   

15.

Targeting apoptosis in the ischemic penumbra is a rational therapeutic approach for restricting cerebral infarct volume after clinical stroke. The present work explored the capability of the obestatin peptide, as a novel approach to inhibit apoptotic signaling cascades on PC12 cells. According to the results, obestatin treatment significantly reduced nutrient deprivation-induced apoptotic cell death. The protective effects were related to the regulation of the anti-apoptotic protein, BCL-2, and the apoptotic protein caspase-3. This encompasses the control of apoptosis by the interplay between Akt, ERK1/2 and AMPK signaling pathways. The activation of Akt and AMPK was concomitant with the phosphorylation of their downstream targets, GSK3 and ACC, respectively. Besides, obestatin also causes FoxO1 nuclear export supporting the prevention of the apoptosome formation. The concurrent activation of Akt and AMPK by obestatin via the GPR39 receptor, supports a role for this system in the balance concerning the catabolic and the anabolic signaling to sustain cellular function and viability. Furthermore, these results provide both an insight into how the obestatin/GPR39 system regulates anti-apoptotic pathways, and a framework for ascertaining how this system can be optimally targeted in treatment of brain cell death after stroke.

  相似文献   

16.
Patients with ER/HER2-positive breast cancer have a poor prognosis and are less responsive to selective estrogen receptor modulators; this is presumably due to the crosstalk between ER and HER2. Fatty acid synthase (FASN) is essential for the survival and maintenance of the malignant phenotype of breast cancer cells. An intimate relationship exists between FASN, ER and HER2. We hypothesized that FASN may be the downstream effector underlying ER/HER2 crosstalk through the PI3K/AKT/mTOR pathway in ER/HER2-positive breast cancer. The present study implicated the PI3K/AKT/mTOR pathway in the regulation of FASN expression in ER/HER2-positive breast cancer cells and demonstrated that rapamycin, an mTOR inhibitor, inhibited FASN expression. Cerulenin, a FASN inhibitor, synergized with rapamycin to induce apoptosis and inhibit cell migration and tumorigenesis in ER/HER2-positive breast cancer cells. Our findings suggest that inhibiting the mTOR-FASN axis is a promising new strategy for treating ER/HER2-positive breast cancer.  相似文献   

17.
The small GTPase RhoA has been implicated in various cellular activities, including the formation of stress fibers, cell motility, and cytokinesis. In addition to the canonical GTPase cycle, recent findings have suggested that phosphorylation further contributes to the tight regulation of Rho GTPases. Indeed, RhoA is phosphorylated on serine 188 (188S) by a number of protein kinases. We have recently reported that Rac1 is phosphorylated on threonine 108 (108T) by extracellular signal-regulated kinases (ERK) in response to epidermal growth factor (EGF) stimulation. Here, we provide evidence that RhoA is phosphorylated by ERK on 88S and 100T in response to EGF stimulation. We show that ERK interacts with RhoA and that this interaction is dependent on the ERK docking site (D-site) at the C-terminus of RhoA. EGF stimulation enhanced the activation of the endogenous RhoA. The phosphomimetic mutant, GFP-RhoA S88E/T100E, when transiently expressed in COS-7 cells, displayed higher GTP-binding than wild type RhoA. Moreover, the expression of GFP-RhoA S88E/T100E increased actin stress fiber formation in COS-7 cells, which is consistent with its higher activity. In contrast to Rac1, phosphorylation of RhoA by ERK does not target RhoA to the nucleus. Finally, we show that regardless of the phosphorylation status of RhoA and Rac1, substitution of the RhoA PBR with the Rac1 PBR targets RhoA to the nucleus and substitution of Rac1 PBR with RhoA PBR significantly reduces the nuclear localization of Rac1. In conclusion, ERK phosphorylates RhoA on 88S and 100T in response to EGF, which upregulates RhoA activity.  相似文献   

18.
目的:探讨细胞外基质金属蛋白酶诱导分子(CD147)在胰腺癌细胞(Panc-1)及胰腺星状细胞(PSCs)的表达。方法:应用QRT-PCR,免疫细胞化学和免疫印迹分析方法检测Panc-1和PSCs细胞中EMMRPIN的表达,应用脱糖基化试剂N-glycosidase F及Endoglycosidase H鉴定CD147糖基化形式。结果:CD147在Panc-1和PSCs细胞质膜及细胞质中高表达,通过脱糖基化法首次鉴定出胰腺癌细胞及胰腺星状细胞中CD147不同的糖基化修饰。结论:CD147的糖基化修饰具有细胞特异性,可能与细胞恶性程度相关。  相似文献   

19.
目的:探讨细胞外基质金属蛋白酶诱导分子(CD147)在胰腺癌细胞(Panc-1)及胰腺星状细胞(PSCs)的表达。方法:应用QRT—PCR,免疫细胞化学和免疫印迹分析方法检测Panc-1和PSCs细胞中EMMRPIN的表达,应用脱糖基化试剂N—glycosidase F及Endoglycosidase H鉴定CD147糖基化形式。结果:CD147在Panc-1和PSCs细胞质膜及细胞质中高表达,通过脱糖基化法首次鉴定出胰腺癌细胞及胰腺星状细胞中CD147不同的糖基化修饰。结论:CD147的糖基化修饰具有细胞特异性,可能与细胞恶性程度相关。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号