首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The proper spatial and temporal coordination of mitosis and cytokinesis is essential for maintaining genomic integrity. We describe the identification and characterization of the Saccharomyces cerevisiae IBD1 gene, which encodes a novel protein that regulates the proper nuclear division and bud separation. IBD1 was identified by the limited homology to byr4, a dosage-dependent regulator of cytokinesis in Schizosaccharomyces pombe. IBD1 is not an essential gene, and the knock-out cells show no growth defects except for the reduced mating efficiency [1]. However, upon ectopic expression from an inducible promoter, IBD1 is lethal to the cell and leads to abnormal nuclear division and bud separation. In detail, approximately 90% of the IBD1 overexpressing cells arrest at large bud stages with dividing or divided nuclei. In some IBD1 overexpressing cells, spindle elongation and chromosome separation occur within the mother cell, leading to anucleated and binucleate daughter cells. The anucleated cell can not bud, but the binucleate cell proceeds through another cell cycle(s) to produce a cell with multiple nuclei and multiple buds. Observations of the F-actin and chitin rings in the IBD1 overexpressing cells reveal that these cells lose the polarity for bud site selection and growth or attain the hyper-polarity for growth. Consistent with the phenotypes, the IBD1 overexpressing cells contain a broad range of DNA content, from 2 to 4 N or more. A functional Ibd1p-GFP fusion protein localizes to a single dot at the nuclear DNA boundary in the divided nuclei or to double dots in dividing nuclei, suggesting its localization on the spindle pole body (SPB). The cross-species expressions of IBD1 in S. pombe and byr4 in S. cerevisiae cause defects in shape, implicating the presence of a conserved mechanism for the control of cytokinesis in eukaryotes. We propose that Ibd1p is an SPB associated protein that links proper nuclear division to cytokinesis and bud separation.  相似文献   

2.
We examined the relationship between polarized growth and division site selection, two fundamental processes important for proper development of eukaryotes. Diploid Saccharomyces cerevisiae cells exhibit an ellipsoidal shape and a specific division pattern (a bipolar budding pattern). We found that the polarity genes SPA2, PEA2, BUD6, and BNI1 participate in a crucial step of bud morphogenesis, apical growth. Deleting these genes results in round cells and diminishes bud elongation in mutants that exhibit pronounced apical growth. Examination of distribution of the polarized secretion marker Sec4 demonstrates that spa2Delta, pea2Delta, bud6Delta, and bni1Delta mutants fail to concentrate Sec4 at the bud tip during apical growth and at the division site during repolarization just prior to cytokinesis. Moreover, cell surface expansion is not confined to the distal tip of the bud in these mutants. In addition, we found that the p21-activated kinase homologue Ste20 is also important for both apical growth and bipolar bud site selection. We further examined how the duration of polarized growth affects bipolar bud site selection by using mutations in cell cycle regulators that control the timing of growth phases. The grr1Delta mutation enhances apical growth by stabilizing G(1) cyclins and increases the distal-pole budding in diploids. Prolonging polarized growth phases by disrupting the G(2)/M cyclin gene CLB2 enhances the accuracy of bud site selection in wild-type, spa2Delta, and ste20Delta cells, whereas shortening the polarized growth phases by deleting SWE1 decreases the fidelity of bipolar budding. This study reports the identification of components required for apical growth and demonstrates the critical role of polarized growth in bipolar bud site selection. We propose that apical growth and repolarization at the site of cytokinesis are crucial for establishing spatial cues used by diploid yeast cells to position division planes.  相似文献   

3.
The RHO1 gene encodes a homolog of mammalian RhoA small GTP binding protein in the yeast Saccharomyces cerevisiae. Rho1p is localized at the growth sites, including the bud tip and the cytokinesis site, and is required for bud formation. We have recently shown that Pkc1p, a yeast homolog of mammalian protein kinase C, and glucan synthase are targets of Rho1p. Using the two-hybrid screening system, we cloned a gene encoding a protein which interacted with the GTP-bound form of Rho1p. This gene was identified as BNI1, known to be implicated in cytokinesis or establishment of cell polarity in S.cerevisiae. Bni1p shares homologous domains (FH1 and FH2 domains) with proteins involved in cytokinesis or establishment of cell polarity, including formin of mouse, capu and dia of Drosophila and FigA of Aspergillus. A temperature-sensitive mutation in which the RHO1 gene was replaced by the mammalian RhoA gene showed a synthetically lethal interaction with the bni1 mutation and the RhoA bni1 mutant accumulated cells with a deficiency in cytokinesis. Furthermore, this synthetic lethality was caused by the incapability of RhoA to activate Pkc1p, but not glucan synthase. These results suggest that Rho1p regulates cytoskeletal reorganization at least through Bni1p and Pkc1p.  相似文献   

4.
The first step towards cytokinesis in budding yeast is the assembly of a septin ring at the future site of bud emergence. Integrity of this ring is crucial for cytokinesis, proper spindle positioning, and the spindle position checkpoint (SPOC). This checkpoint delays mitotic exit and cytokinesis as long as the anaphase spindle does not properly align with the division axis. SPOC signalling requires the Kin4 protein kinase and the Kin4-regulating Elm1 kinase, which also controls septin dynamics. Here, we show that the two redundant ubiquitin-ligases Dma1 and Dma2 control septin dynamics and the SPOC by promoting the efficient recruitment of Elm1 to the bud neck. Indeed, dma1 dma2 mutant cells show reduced levels of Elm1 at the bud neck and Elm1-dependent activation of Kin4. Artificial recruitment of Elm1 to the bud neck of the same cells is sufficient to re-establish a normal septin ring, proper spindle positioning, and a proficient SPOC response in dma1 dma2 cells. Altogether, our data indicate that septin dynamics and SPOC function are intimately linked and support the idea that integrity of the bud neck is crucial for SPOC signalling.  相似文献   

5.
BACKGROUND: In many cell types, microtubules are thought to direct the spatial distribution of F-actin in cell polarity. Schizosaccharomyces pombe cells exhibit a regulated program of polarized cell growth: after cell division, they grow first in a monopolar manner at the old end, and in G2 phase, initiate growth at the previous cell division site (the new end). The role of microtubule ends in cell polarity is highlighted by the finding that the cell polarity factor, tea1p, is present on microtubule plus ends and cell tips [1]. RESULTS: Here, we characterize S. pombe bud6p/fat1p, a homolog of S. cerevisiae Bud6/Aip3. bud6Delta mutant cells have a specific defect in the efficient initiation of growth at the new end and like tea1Delta cells, form T-shaped cells in a cdc11 background. Bud6-GFP localizes to both cell tips and the cytokinesis ring. Maintenance of cell tip localization is dependent upon actin but not microtubules. Bud6-GFP localization is tea1p dependent, and tea1p localization is not bud6p dependent. tea1Delta and bud6Delta cells generally grow in a monopolar manner but exhibit different growth patterns. tea1(Delta)bud6Delta mutants resemble tea1Delta mutants. Tea1p and bud6p coimmunoprecipitate and comigrate in large complexes. CONCLUSIONS: Our studies show that tea1p (a microtubule end-associated factor) and bud6p (an actin-associated factor) function in a common pathway, with bud6p downstream of tea1p. To our knowledge, bud6p is the first protein shown to interact physically with tea1p. These studies delineate a pathway for how microtubule plus ends function to polarize the actin cytoskeleton through actin-associated polarity factors.  相似文献   

6.
The p21-activated kinases (PAKs) are effectors for the Rho-family GTPase Cdc42p. Here we define the in vivo function of the kinase activity of the budding yeast PAK Cla4p, using cla4 alleles that are specifically inhibited by a cell-permeable compound that does not inhibit the wild-type kinase. CLA4 kinase inhibition in cells lacking the partially redundant PAK Ste20p causes reversible SWE1-dependent cell-cycle arrest and gives rise to narrow, highly elongated buds in which both actin and septin are tightly polarized to bud tips. Inhibition of Cla4p does not prevent polarization of F-actin, and cytokinesis is blocked only in cells that have not formed a bud before inhibitor treatment; cell polarization and bud emergence are not affected by Cla4p inhibition. Although localization of septin to bud necks is restored in swe1Delta cells, cytokinesis remains defective. Inhibition of Cla4p activity in swe1Delta cells causes a delay of bud emergence after cell polarization, indicating that this checkpoint may mediate an adaptive response that is capable of promoting budding when Cla4p function is reduced. Our data indicate that CLA4 PAK activity is required at an early stage of budding, after actin polarization and coincident with formation of the septin ring, for early bud morphogenesis and assembly of a cytokinesis site.  相似文献   

7.
Septins are GTPases involved in cytokinesis. In yeast, they form a ring at the cleavage site. Using FRAP, we show that septins are mobile within the ring at bud emergence and telophase and are immobile during S, G2, and M phases. Immobilization of the septins is dependent on both Cla4, a PAK-like kinase, and Gin4, a septin-dependent kinase that can phosphorylate the septin Shs1/Sep7. Induction of septin ring dynamics in telophase is triggered by the translocation of Rts1, a kinetochore-associated regulatory subunit of PP2A phosphatase, to the bud neck and correlates with Rts1-dependent dephosphorylation of Shs1. In rts1-Delta cells, the actomyosin ring contracts properly but cytokinesis fails. Together our results implicate septins in a late step of cytokinesis and indicate that proper regulation of septin dynamics, possibly through the control of their phosphorylation state, is required for the completion of cytokinesis.  相似文献   

8.
Formin homology (FH) proteins are implicated in cell polarization and cytokinesis through actin organization. There are two FH proteins in the yeast Saccharomyces cerevisiae, Bni1p and Bnr1p. Bni1p physically interacts with Rho family small G proteins (Rho1p and Cdc42p), actin, two actin-binding proteins (profilin and Bud6p), and a polarity protein (Spa2p). Here we analyzed the in vivo localization of Bni1p by using a time-lapse imaging system and investigated the regulatory mechanisms of Bni1p localization and function in relation to these interacting proteins. Bni1p fused with green fluorescent protein localized to the sites of cell growth throughout the cell cycle. In a small-budded cell, Bni1p moved along the bud cortex. This dynamic localization of Bni1p coincided with the apparent site of bud growth. A bni1-disrupted cell showed a defect in directed growth to the pre-bud site and to the bud tip (apical growth), causing its abnormally spherical cell shape and thick bud neck. Bni1p localization at the bud tips was absolutely dependent on Cdc42p, largely dependent on Spa2p and actin filaments, and partly dependent on Bud6p, but scarcely dependent on polarized cortical actin patches or Rho1p. These results indicate that Bni1p regulates polarized growth within the bud through its unique and dynamic pattern of localization, dependent on multiple factors, including Cdc42p, Spa2p, Bud6p, and the actin cytoskeleton.  相似文献   

9.
Cytokinesis requires the polarization of the actin cytoskeleton, the secretion machinery, and the correct positioning of the division axis. Budding yeast cells commit to their cytokinesis plane by choosing a bud site and polarizing their growth. Iqg1p (Cyk1p) was previously implicated in cytokinesis (Epp and Chant, 1997; Lippincott and Li, 1998; Osman and Cerione, 1998), as well as in the establishment of polarity and protein trafficking (Osman and Cerione, 1998). To better understand how Iqg1p influences these processes, we performed a two-hybrid screen and identified the spatial landmark Bud4p as a binding partner. Iqg1p can be coimmunoprecipitated with Bud4p, and Bud4p requires Iqg1p for its proper localization. Iqg1p also appears to specify axial bud-site selection and mediates the proper localization of the septin, Cdc12p, as well as binds and helps localize the secretion landmark, Sec3p. The double mutants iqg1Deltasec3Delta and bud4Deltasec3Delta display defects in polarity, budding pattern and cytokinesis, and electron microscopic studies reveal that these cells have aberrant septal deposition. Taken together, these findings suggest that Iqg1p recruits landmark proteins to form a targeting patch that coordinates axial budding with cytokinesis.  相似文献   

10.
During the cell cycle of the yeast Saccharomyces cerevisiae, the actin cytoskeleton and cell surface growth are polarized, mediating bud emergence, bud growth, and cytokinesis. We have determined whether p21-activated kinase (PAK)-family kinases regulate cell and actin polarization at one or several points during the yeast cell cycle. Inactivation of the PAK homologues Ste20 and Cla4 at various points in the cell cycle resulted in loss of cell and actin cytoskeletal polarity, but not in depolymerization of F-actin. Loss of PAK function in G1 depolarized the cortical actin cytoskeleton and blocked bud emergence, but allowed isotropic growth and led to defects in septin assembly, indicating that PAKs are effectors of the Rho-guanosine triphosphatase Cdc42. PAK inactivation in S/G2 resulted in depolarized growth of the mother and bud and a loss of actin polarity. Loss of PAK function in mitosis caused a defect in cytokinesis and a failure to polarize the cortical actin cytoskeleton to the mother-bud neck. Cla4-green fluorescent protein localized to sites where the cortical actin cytoskeleton and cell surface growth are polarized, independently of an intact actin cytoskeleton. Thus, PAK family kinases are primary regulators of cell and actin cytoskeletal polarity throughout most or all of the yeast cell cycle. PAK-family kinases in higher organisms may have similar functions.  相似文献   

11.
The establishment of cell polarity was examined in the budding yeast, S. cerevisiae. The distribution of a polarized protein, the SPA2 protein, was followed throughout the yeast cell cycle using synchronized cells and cdc mutants. The SPA2 protein localizes to a patch at the presumptive bud site of G1 cells. Later it concentrates at the bud tip in budded cells. At cytokinesis, the SPA2 protein is at the neck between the mother and daughter cells. Analysis of unbudded haploid cells has suggested a series of events that occurs during G1. The SPA2 patch is established very early in G1, while the spindle pole body residues on the distal side of the nucleus. Later, microtubules emanating from the spindle pole body intersect the SPA2 crescent, and the nucleus probably rotates towards the SPA2 patch. By middle G1, most cells contain the SPB on the side of the nucleus proximal to the SPA2 patch, and a long extranuclear microtubule bundle intersects this patch. We suggest that a microtubule capture site exists in the SPA2 staining region that stabilizes the long microtubule bundle; this capture site may be responsible for rotation of the nucleus. Cells containing a polarized distribution of the SPA2 protein also possess a polarized distribution of actin spots in the same region, although the actin staining is much more diffuse. Moreover, cdc4 mutants, which form multiple buds at the restrictive temperature, exhibit simultaneous staining of the SPA2 protein and actin spots in a subset of the bud tips. spa2 mutants contain a polarized distribution of actin spots, and act1-1 and act1-2 mutants often contain a polarized distribution of the SPA2 protein suggesting that the SPA2 protein is not required for localization of the actin spots and the actin spots are not required for localization of the SPA2 protein. cdc24 mutants, which fail to form buds at the restrictive temperature, fail to exhibit polarized localization of the SPA2 protein and actin spots, indicating that the CDC24 protein is directly or indirectly responsible for controlling the polarity of these proteins. Based on the cell cycle distribution of the SPA2 protein, a "cytokinesis tag" model is proposed to explain the mechanism of the non-random positioning of bud sites in haploid yeast cells.  相似文献   

12.
The RHO1 gene encodes a homologue of mammalian RhoA small G-protein in the yeast Saccharomyces cerevisiae. Rho1p is required for bud formation and is localized at a bud tip or a cytokinesis site. We have recently shown that Bni1p is a potential target of Rho1p. Bni1p shares the FH1 and FH2 domains with proteins involved in cytokinesis or establishment of cell polarity. In S. cerevisiae, there is an open reading frame (YIL159W) which encodes another protein having the FH1 and FH2 domains and we have named this gene BNR1 (BNI1 Related). Bnr1p interacts with another Rho family member, Rho4p, but not with Rho1p. Disruption of BNI1 or BNR1 does not show any deleterious effect on cell growth, but the bni1 bnr1 mutant shows a severe temperature-sensitive growth phenotype. Cells of the bni1 bnr1 mutant arrested at the restrictive temperature are deficient in bud emergence, exhibit a random distribution of cortical actin patches and often become multinucleate. These phenotypes are similar to those of the mutant of PFY1, which encodes profilin, an actin-binding protein. Moreover, yeast two-hybrid and biochemical studies demonstrate that Bni1p and Bnr1p interact directly with profilin at the FH1 domains. These results indicate that Bni1p and Bnr1p are potential targets of the Rho family members, interact with profilin and regulate the reorganization of actin cytoskeleton.  相似文献   

13.
14.
Budding cells of the yeast Saccharomyces cerevisiae possess a ring of 10-nm-diameter filaments, of unknown biochemical nature, that lies just inside the plasma membrane in the neck connecting the mother cell to its bud. Electron microscopic observations suggest that these filaments assemble at the budding site coincident with bud emergence and disassemble shortly before cytokinesis (Byers, B. and L. Goetsch. 1976. J. Cell Biol. 69:717-721). Mutants defective in any of four genes (CDC3, CDC10, CDC11, or CDC12) lack these filaments and display a pleiotropic phenotype that involves abnormal bud growth and an inability to complete cytokinesis. We showed previously by immunofluorescence that the CDC12 gene product is probably a constituent of the ring of 10-nm filaments (Haarer, B. and J. Pringle. 1987. Mol. Cell. Biol. 7:3678-3687). We now report the use of fusion proteins to generate polyclonal antibodies specific for the CDC3 gene product. In immunofluorescence experiments, these antibodies decorated the neck regions of wild-type and mutant cells in patterns suggesting that the CDC3 gene product is also a constituent of the ring of 10-nm filaments. We also used the CDC3-specific and CDC12-specific antibodies to investigate the timing of localization of these proteins to the budding site. The results suggest that the CDC3 protein is organized into a ring at the budding site well before bud emergence and remains so organized for some time after cytokinesis. The CDC12 product appears to behave similarly, but may arrive at the budding site closer to the time of bud emergence, and disappear from that site more quickly after cytokinesis, than does the CDC3 product. Examination of mating cells and cells responding to purified mating pheromone revealed novel arrangements of the CDC3 and CDC12 products in the regions of cell wall reorganization. Both proteins were present in normal-looking ring structures at the bases of the first zygotic buds.  相似文献   

15.
In many cell types, septins assemble into filaments and rings at the neck of cellular appendages and/or at the cleavage furrow to help compartmentalize the plasma membrane and support cytokinesis. How septin ring assembly is coordinated with membrane remodeling and controlled by mechanical stress at these sites is unclear. Through a genetic screen, we uncovered an unanticipated link between the conserved Rho1 GTPase and its effector protein kinase C (Pkc1) with septin ring stability in yeast. Both Rho1 and Pkc1 stabilize the septin ring, at least partly through phosphorylation of the membrane-associated F-BAR protein Syp1, which colocalizes asymmetrically with the septin ring at the bud neck. Syp1 is displaced from the bud neck upon Pkc1-dependent phosphorylation at two serines, thereby affecting the rigidity of the new-forming septin ring. We propose that Rho1 and Pkc1 coordinate septin ring assembly with membrane and cell wall remodeling partly by controlling Syp1 residence at the bud neck.  相似文献   

16.
17.
In budding yeast, septin plays as a scaffold to recruits protein components and regulates crucial cellular events including bud site selection, bud morphogenesis, Cdc28 activation pathway, and cytokinesis. Phosphorylation of Bni5 isolated as a suppressor for septin defect is essential to Swe1-dependent regulation of bud morphogenesis and mitotic entry. The mechanism by which Bni5 regulates normal septin function is not completely understood. Here, we provide evidence that Bni5 phosphorylation is important for interaction with septin component Cdc11 and for timely delocalization from septin filament at late mitosis. Phosphorylation-deficient bni5-4A was synthetically lethal with hof1Delta. bni5-4A cells had defective structure of septin ring and connected cell morphology, indicative of defects in cytokinesis. Two-hybrid analysis revealed that bni5-4A has a defect in direct interaction with Cdc11 and Cdc12. GFP-tagged bni5-4A was normally localized at mother-bud neck of budded cells before middle of mitosis. In contrast, at large-budded telophase cells, bni5-4A-GFP was defective in localization and disappeared from the neck approximately 2 min earlier than that of wild type, as evidenced by time-lapse analysis. Therefore, earlier delocalization of bni5-4A from septin filament is consistent with phosphorylation-dependent interaction with the septin component. These results suggest that timely delocalization of Bni5 by phosphorylation is important for septin function and regulation of cytokinesis.  相似文献   

18.
Cell polarization occurs along a single axis that is generally determined by a spatial cue. Cells of the budding yeast exhibit a characteristic pattern of budding, which depends on cell-type-specific cortical markers, reflecting a genetic programming for the site of cell polarization. The Cdc42 GTPase plays a key role in cell polarization in various cell types. Although previous studies in budding yeast suggested positive feedback loops whereby Cdc42 becomes polarized, these mechanisms do not include spatial cues, neglecting the normal patterns of budding. Here we combine live-cell imaging and mathematical modeling to understand how diploid daughter cells establish polarity preferentially at the pole distal to the previous division site. Live-cell imaging shows that daughter cells of diploids exhibit dynamic polarization of Cdc42-GTP, which localizes to the bud tip until the M phase, to the division site at cytokinesis, and then to the distal pole in the next G1 phase. The strong bias toward distal budding of daughter cells requires the distal-pole tag Bud8 and Rga1, a GTPase activating protein for Cdc42, which inhibits budding at the cytokinesis site. Unexpectedly, we also find that over 50% of daughter cells lacking Rga1 exhibit persistent Cdc42-GTP polarization at the bud tip and the distal pole, revealing an additional role of Rga1 in spatiotemporal regulation of Cdc42 and thus in the pattern of polarized growth. Mathematical modeling indeed reveals robust Cdc42-GTP clustering at the distal pole in diploid daughter cells despite random perturbation of the landmark cues. Moreover, modeling predicts different dynamics of Cdc42-GTP polarization when the landmark level and the initial level of Cdc42-GTP at the division site are perturbed by noise added in the model.  相似文献   

19.
Cytoskeletal rearrangements during the cell cycle and in response to signals are regulated by small Rho-type GTPases, but it is not known how these GTPases are activated in a spatial and temporal manner. Here we show that Cdc24, the guanine-nucleotide exchange factor for the yeast GTPase Cdc42, is sequestered in the cell nucleus by Far1. Export of Cdc24 to a site of cell polarization is mediated by two mechanisms. At bud emergence, activation of the G1 cyclin-dependent kinase Cdc28-Cln triggers degradation of Far1 and, as a result, relocation of Cdc24 to the cytoplasm. Cells overexpressing a non-degradable Far1 were unable to polarize their actin cytoskeleton because they failed to relocate Cdc24 to the incipient bud site. In contrast, in response to mating pheromones, the Far1-Cdc24 complex is exported from the nucleus by Msn5. This mechanism ensures that Cdc24 is targeted to the site of receptor-associated heterotrimeric G-protein activation at the plasma membrane, thereby allowing polarization of the actin cytoskeleton along the morphogenetic gradient of pheromone. Either degradation of Far1 or its nuclear export by Msn5 was sufficient for cell growth, suggesting that the two mechanisms are redundant for cell viability. Taken together, our results indicate that Far1 functions as a nuclear anchor for Cdc24. This sequestration regulates cell polarity in response to pheromones by restricting activation of Cdc42 to the site of pheromone receptor activation.  相似文献   

20.
Polarized cell division is a fundamental process that occurs in a variety of organisms; it is responsible for the proper positioning of daughter cells and the correct segregation of cytoplasmic components. The SPA2 gene of yeast encodes a nonessential protein that localizes to sites of cell growth and to the site of cytokinesis. spa2 mutants exhibit slightly altered budding patterns. In this report, a genetic screen was used to isolate a novel ochre allele of CDC10, cdc10-10; strains containing this mutation require the SPA2 gene for growth. CDC10 encodes a conserved potential GTP-binding protein that previously has been shown to localize to the bud neck and to be important for cytokinesis. The genetic interaction of cdc10-10 and spa2 suggests a role for SPA2 in cytokinesis. Most importantly, strains that contain a cdc10-10 mutation and those containing mutations affecting other putative neck filament proteins do not form buds at their normal proximal location. The finding that a component involved in cytokinesis is also important in bud site selection provides strong evidence for the cytokinesis tag model; i.e., critical components at the site of cytokinesis are involved in determining the next site of polarized growth and division.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号