首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bateman''s principles explain sex roles and sexual dimorphism through sex-specific variance in mating success, reproductive success and their relationships within sexes (Bateman gradients). Empirical tests of these principles, however, have come under intense scrutiny. Here, we experimentally show that in replicate groups of red junglefowl, Gallus gallus, mating and reproductive successes were more variable in males than in females, resulting in a steeper male Bateman gradient, consistent with Bateman''s principles. However, we use novel quantitative techniques to reveal that current methods typically overestimate Bateman''s principles because they (i) infer mating success indirectly from offspring parentage, and thus miss matings that fail to result in fertilization, and (ii) measure Bateman gradients through the univariate regression of reproductive over mating success, without considering the substantial influence of other components of male reproductive success, namely female fecundity and paternity share. We also find a significant female Bateman gradient but show that this likely emerges as spurious consequences of male preference for fecund females, emphasizing the need for experimental approaches to establish the causal relationship between reproductive and mating success. While providing qualitative support for Bateman''s principles, our study demonstrates how current approaches can generate a misleading view of sex differences and roles.  相似文献   

2.
Classic sex roles depict females as choosy, but polyandry is widespread. Empirical attempts to understand the evolution of polyandry have often focused on its adaptive value to females, whereas 'convenience polyandry' might simply decrease the costs of sexual harassment. We tested whether constraint-free female strategies favour promiscuity over mating selectivity through an original experimental design. We investigated variation in mating behaviour in response to a reversible alteration of sexual dimorphism in body mass in the grey mouse lemur, a small primate where female brief sexual receptivity allows quantifying polyandry. We manipulated body condition in captive females, predicting that convenience polyandry would increase when females are weaker than males, thus less likely to resist their solicitations. Our results rather support the alternative hypothesis of 'adaptive polyandry': females in better condition are more polyandrous. Furthermore, we reveal that multiple mating incurs significant energetic costs, which are strikingly symmetrical between the sexes. Our study shows that mouse lemur females exert tight control over mating and actively seek multiple mates. The benefits of remating are nevertheless not offset by its costs in low-condition females, suggesting that polyandry is a flexible strategy yielding moderate fitness benefits in this small mammal.  相似文献   

3.
The Darwin–Bateman paradigm recognizes competition among males for access to multiple mates as the main driver of sexual selection. Increasingly, however, females are also being found to benefit from multiple mating so that polyandry can generate competition among females for access to multiple males, and impose sexual selection on female traits that influence their mating success. Polyandry can reduce a male''s ability to monopolize females, and thus weaken male focused sexual selection. Perhaps the most important effect of polyandry on males arises because of sperm competition and cryptic female choice. Polyandry favours increased male ejaculate expenditure that can affect sexual selection on males by reducing their potential reproductive rate. Moreover, sexual selection after mating can ameliorate or exaggerate sexual selection before mating. Currently, estimates of sexual selection intensity rely heavily on measures of male mating success, but polyandry now raises serious questions over the validity of such approaches. Future work must take into account both pre- and post-copulatory episodes of selection. A change in focus from the products of sexual selection expected in males, to less obvious traits in females, such as sensory perception, is likely to reveal a greater role of sexual selection in female evolution.  相似文献   

4.
Although only one or just a few matings are considered sufficient to maximise a female's reproductive success, polyandry is a common mating system in insects and other animals. Female polyandry may either result from direct or indirect benefits of mating multiply, or from male harassment and thus sexual conflict over mating. Here, we test whether the latter is involved in determining female mating frequency in the butterfly Bicyclus anynana. We used a full‐factorial design with three different sex ratios and densities each, resulting in a total of nine treatment groups. Sex ratio but not density affected female mating frequency, which increased with an increasingly male‐biased sex ratio. Our results thus suggest that female polyandry in B. anynana results from sexual conflict, although females seem to be able to reject courting males at least to some extent. Therefore, polyandry in this species may occur in the first place from convenience, as the costs of resisting male harassment may be higher than mating repeatedly.  相似文献   

5.
The extent of female multiple mating (polyandry) can strongly impact on the intensity of sexual selection, sexual conflict, and the evolution of cooperation and sociality. More subtly, polyandry may protect populations against intragenomic conflicts that result from the invasion of deleterious selfish genetic elements (SGEs). SGEs commonly impair sperm production, and so are likely to be unsuccessful in sperm competition, potentially reducing their transmission in polyandrous populations. Here, we test this prediction in nature. We demonstrate a heritable latitudinal cline in the degree of polyandry in the fruitfly Drosophila pseudoobscura across the USA, with northern population females remating more frequently in both the field and the laboratory. High remating was associated with low frequency of a sex-ratio-distorting meiotic driver in natural populations. In the laboratory, polyandry directly controls the frequency of the driver by undermining its transmission. Hence we suggest that the cline in polyandry represents an important contributor to the cline in sex ratio in nature. Furthermore, as the meiotic driver causes sex ratio bias, variation in polyandry may ultimately determine population sex ratio across the USA, a dramatic impact of female mating decisions. As SGEs are ubiquitous it is likely that the reduction of intragenomic conflict by polyandry is widespread.  相似文献   

6.
Bateman''s principle is not only used to explain sex differences in mating behaviour, but also to determine which sex has the greater opportunity for sexual selection. It predicts that the relationship between the number of mates and the number of offspring produced should be stronger for males than for females. Yet, it is unclear whether Bateman''s principle holds in cooperatively breeding systems where the strength of selection on traits used in intrasexual competition is high in both sexes. We tested Bateman''s principle in the cooperatively breeding superb starling (Lamprotornis superbus), finding that only females showed a significant, positive Bateman gradient. We also found that the opportunity for selection was on average higher in females, but that its strength and direction oscillated through time. These data are consistent with the hypothesis that sexual selection underlies the female trait elaboration observed in superb starlings and other cooperative breeders. Even though the Bateman gradient was steeper for females than for males, the year-to-year oscillation in the strength and direction of the opportunity for selection likely explains why cooperative breeders do not exhibit sexual role reversal. Thus, Bateman''s principle may not hold in cooperative breeders where both sexes appear to be under mutually strong sexual selection.  相似文献   

7.
The costs and benefits of polyandry are central to understanding the near-ubiquity of female multiple mating. Here, we present evidence of a novel cost of polyandry: disrupted sex allocation. In Nasonia vitripennis, a species that is monandrous in the wild but engages in polyandry under laboratory culture conditions, sexual harassment during oviposition results in increased production of sons under conditions that favour female-biased sex ratios. In addition, females more likely to re-mate under harassment produce the least female-biased sex ratios, and these females are unable to mitigate this cost by increasing offspring production. Our results therefore argue that polyandry does not serve to mitigate the costs of harassment (convenience polyandry) in Nasonia. Furthermore, because males benefit from female-biased offspring sex ratios, harassment of ovipositing females also creates a novel cost of that harassment for males.  相似文献   

8.
Although sexual selection and sexual conflict are important evolutionary forces in animals, their significance in plants is uncertain. In hermaphroditic organisms, such as many plants, sexual conflict may occur both between mating partners (interlocus conflict) and between male and female sex roles within an individual (intralocus conflict). We performed experimental evolution, involving lines that were crossed with either one or two pollen donors (monogamous or polyandrous lines), in the hermaphroditic plant (Collinsia heterophylla) where early fertilizations are associated with female fitness costs (reduced seed set). Artificial polyandry for four generations resulted in enhanced pollen performance and increased female fitness costs compared to the monogamous and source (starting material) lines. Female fitness was also reduced in the monogamous line, indicating a possible trade‐off between sex roles, resulting from early pollination. We performed a second experiment to investigate a potential harming effect of pollen performance on seed set. We found that high siring success of early arriving pollen competing with later‐arriving pollen was associated with high female fitness costs, consistent with an interlocus sexual conflict. Our study provides evidence for the importance of sexual selection in shaping evolution of plant reproductive strategies, but also pinpoints the complexity of sexual conflict in hermaphroditic species.  相似文献   

9.
Conflict between the sexes over mating decision may result in antagonistic coevolution in structures that increase control over copulation. In Aquarius paludum both females and males have long abdominal spines. We tested the hypothesis that abdominal spines increase female ability to resist male mating attempts and reduce the costs of mating in A. paludum. We manipulated female spine length and observed female mating and egg-production rate in two different studies. We found that females with intact spines succeeded to reject male mating attempt more often than females with removed spines. Intact females also mated less often than females with removed or shortened spines. Male presence and mating rate increased female egg number. Our results thus support the hypothesis that abdominal spines help female to reject male mating attempts but contrary to predictions, we found that A. paludum females somehow benefit from multiple matings in spite of the sexual conflict.  相似文献   

10.
Monandry, in which a female has only one mating partner during the reproductive period, is established when a female spontaneously refrains from re-mating, or when a partner male interferes with the attempts of a female to mate again. In the latter case, however, females often have countermeasures against males, which may explain why polyandry is ubiquitous. Here, I demonstrate that the genital appendage, or scape, of the female orb-web spider (Cyclosa argenteoalba) is injured after her first mating, possibly by her first male partner. This female genital mutilation (FGM) permanently precludes copulation, and females appear to have no countermeasures. FGM is considered to confer a strong advantage to males in sexual conflicts over the number of female matings, and it may widely occur in spiders.  相似文献   

11.
Males typically gain fitness from multiple mating, whereas females often lose fitness from numerous mating, potentially leading to sexual conflict over mating. This conflict is expected to favour the evolution of female resistance to mating. However, females may incur male harassment if they refuse to copulate; thus, greater female resistance may increase costs imposed by males. Here, I show that the evolution of resistance to mating raises fitness disadvantages of interacting with males when mating is harmful in female adzuki bean beetles, Callosobruchus chinensis. Females that were artificially selected for higher and lower remating propensity evolved to accept and resist remating, respectively. Compared with females that evolved to accept remating, females that evolved to resist it suffered higher fitness costs from continuous exposure to males. The costs of a single mating measured by the effect on longevity did not differ among selection line females. This study indicates that receptive rather than resistant females mitigate the fitness loss resulting from sexual conflict, suggesting that even though mating is harmful, females can evolve to accept additional mating.  相似文献   

12.
Courtship is well known for its positive effects on mating success. However, in polyandrous species, sexual selection continues to operate after copulation. Cryptic female choice is expected under unpredictable mating rates in combination with sequential mate encounters. However, there are very few accounts of the effects of courtship on cryptic female choice, and the available evidence is often correlative.Mature Argiope bruennichi females are always receptive and never attack or reject males before mating, although sexual cannibalism after mating occurs regularly. Still, males usually perform an energetic vibratory display prior to copulation. We tested the hypothesis that beneficial effects of courtship arise cryptically, during or after mating, resulting in increased paternity success under polyandry. Manipulating courtship duration experimentally, we found that males that mated without display had a reduced paternity share even though no differences in post-copulatory cannibalism or copulation duration were detected. This suggests that the paternity advantage associated with courtship arose through female-mediated processes after intromission, meeting the definition of cryptic female choice.  相似文献   

13.
Taxa in which males alone invest in postzygotic care of offspring are often considered good models for investigating the proffered relationships between sexual selection and mating systems. In the pycnogonid sea spider Pycnogonum stearnsi, males carry large egg masses on their bodies for several weeks, so this species is a plausible candidate for sex-role reversal (greater intensity of sexual selection on females than on males). Here, we couple a microsatellite-based assessment of the mating system in a natural population with formal quantitative measures of genetic fitness to investigate the direction of sexual selection in P. stearnsi. Both sexes proved to be highly polygamous and showed similar standardized variances in reproductive and mating successes. Moreover, the fertility (number of progeny) of males and females appeared to be equally and highly dependent on mate access, as shown by similar Bateman gradients for the two sexes. The absence of sex-role reversal in this population of P. stearnsi is probably attributable to the fact that males are not limited by brooding space but have evolved an ability to carry large numbers of progeny. Body length was not a good predictor of male mating or reproductive success, so the aim of future studies should be to determine what traits are the targets of sexual selection in this species.  相似文献   

14.
Despite its potential importance, the role of the timing of mating(s) as a source of variation in female lifetime reproductive success has been largely overlooked. Here, using a laboratory‐adapted population of the model species Drosophila melanogaster, we explore how temporal variation in the patterns of single and multiple matings influences female fecundity. We find that the boost to fecundity known to occur after a virgin female’s initial mating also extends to subsequent matings as nonvirgins, but only for a short duration. This fecundity boost at least partially offsets the direct costs of multiple matings to females in this population of D. melanogaster. The implications of these results for our understanding of the evolution and maintenance of polyandry in this species are discussed in the context of sexual conflict.  相似文献   

15.
Sexual conflict is now recognised as an important driver of sexual trait evolution. However, due to their variable outcomes and effects on other fitness components, the detection of sexual conflicts on individual traits can be complicated. This difficulty is exemplified in the beetle Callosobruchus maculatus, where longer matings increase the size of nutritious ejaculates but simultaneously reduce female future receptivity. While previous studies show that females gain direct benefits from extended mating duration, females show conspicuous copulatory kicking behaviour, apparently to dislodge mating males prematurely. We explore the potential for sexual conflict by comparing several fitness components and remating propensity in pairs of full sibling females where each female mated with a male from an unrelated pair of full sibling males. For one female, matings were terminated at the onset of kicking, whereas the other’s matings remained uninterrupted. While fecundity (number of eggs) was similar between treatments, uninterrupted matings enhanced adult offspring numbers and fractionally also longevity. However, females whose matings were interrupted at the onset of kicking exhibited an increased propensity to remate. Since polyandry can benefit female fitness in this species, we argue that kicking, rather than being maladaptive, may indicate that females prefer remating over increased ejaculate size. It may thus be difficult to assess the presence of sexual conflict over contested traits such as mating duration when females face a trade off between direct benefits gained from one mating and indirect benefits from additional matings.  相似文献   

16.
In polygynandrous animals, post‐copulatory processes likely interfere with precopulatory sexual selection. In water striders, sexual conflict over mating rate and post‐copulatory processes are well documented, but their combined effect on reproductive success has seldom been investigated. We combine genetic parentage analyses and behavioural observations conducted in a competitive reproductive environment to investigate how pre‐ and post‐copulatory processes influence reproductive success in Gerris buenoi Kirkaldy. Precopulatory struggles had antagonistic effects on male and female reproductive success: efficiently gaining copulations was beneficial for males, whereas efficiently avoiding copulations was profitable for females. Also, high mating rates and an intermediate optimal resistance level of females supported the hypothesis of convenience polyandry. Contrary to formal predictions, high mating rates (i.e. the number of copulations) did not increase reproductive success in males or decrease reproductive success in females. Instead, the reproductive success of both sexes was higher when offspring were produced with several partners and when there were few unnecessary matings. Thus, male and female G. buenoi displayed different interests in reproduction, but post‐copulatory processes were masking the effects of copulatory mating success on reproductive success. Given the high mating rates observed, sperm competition could easily counter the effect of mating rates, perhaps in interaction with cryptic female choice and/or fecundity selection. Our study presents a complex but realistic overview of sexual selection forces at work in a model organism for the study of sexual conflict, confirming that insights are gained from investigating all episodes in the reproduction cycle of polygynandrous animals.  相似文献   

17.
An evolutionary conflict often exists between the sexes in regard to female mating patterns. Females can benefit from polyandry, whereas males mating with polyandrous females lose reproductive opportunities because of sperm competition. Where this conflict occurs, the evolution of mechanisms whereby males can control female remating, often at a fitness cost to the female, are expected to evolve. The fitness cost to the female will be increased in systems where a few high status males monopolise mating opportunities and thus have limited sperm supplies. Here we show that in the cockroach Nauphoeta cinerea, a species where males enforce female monogamy in the first reproductive cycle, males that have become sperm depleted continue to be able to manipulate female remating behaviour. Although the manipulation severely decreases fecundity in females mated to sperm-depleted males, males benefit, increasing their relative fitness by preventing other males from reproducing. Our results suggest that there is selection on maintaining the mechanism of manipulation rather than maintaining sperm numbers. Taken with previous research on sexual conflict in N. cinerea, this study suggests that the causes and consequences of sexual conflict are complex and can change across the life history of an individual.  相似文献   

18.
Selfish genetic elements (SGEs) are ubiquitous in eukaryotes and bacteria, and make up a large part of the genome. They frequently target sperm to increase their transmission success, but these manipulations are often associated with reduced male fertility. Low fertility of SGE-carrying males is suggested to promote polyandry as a female strategy to bias paternity against male carriers. Support for this hypothesis is found in several taxa, where SGE-carrying males have reduced sperm competitive ability. In contrast, when SGEs give rise to reproductive incompatibilities between SGE-carrying males and females, polyandry is not necessarily favoured, irrespective of the detrimental impact on male fertility. This is due to the frequency-dependent nature of these incompatibilities, because they will decrease in the population as the frequency of SGEs increases. However, reduced fertility of SGE-carrying males can prevent the successful population invasion of SGEs. In addition, SGEs can directly influence male and female mating behaviour, mating rates and reproductive traits (e.g. female reproductive tract length and male sperm). This reveals a potent and dynamic interaction between SGEs and polyandry highlighting the potential to generate sexual selection and conflict, but also indicates that polyandry can promote harmony within the genome by undermining the spread of SGEs.  相似文献   

19.
Females often mate with several different males, which may promote sperm competition and increase offspring viability. However, the potential benefits of polyandry remain controversial, particularly in birds where recent reviews have suggested that females gain few genetic benefits from extra‐pair mating. In tree swallows (Tachycineta bicolor), we found that females with prior breeding experience had more sires per brood when paired to genetically similar social mates, and, among experienced females, broods with more sires had higher hatching success. Individual females breeding in two consecutive years also produced broods with more sires when they were more genetically similar to their mate. Thus, experienced females were able to avoid the costs of mating with a genetically similar social mate and realize fitness benefits from mating with a relatively large number of males. This is one of the first studies to show that female breeding experience influences polyandry and female fitness in a natural population of vertebrates. Our results suggest that the benefits of polyandry may only be clear when considering both the number of mates females acquire and their ability to modify the outcome of sexual conflict.  相似文献   

20.
What explains variation in the strength of sexual selection across species, populations or differences between the sexes? Here, we show that unifying two well‐known lines of thinking provides the necessary conceptual framework to account for variation in sexual selection. The Bateman gradient and the operational sex ratio (OSR) are incomplete in complementary ways: the former describes the fitness gain per mating and the latter the potential difficulty of achieving it. We combine this insight with an analysis of the scope for sexually selected traits to spread despite naturally selected costs. We explain why the OSR sometimes does not affect the strength of sexual selection. An explanation of sexual selection becomes more logical when a long ‘dry time’ (‘time out’, recovery after mating due to e.g. parental care) is understood to reduce the expected time to the next mating when in the mating pool (i.e. available to mate again). This implies weaker selection to shorten the wait. An integrative view of sexual selection combines an understanding of the origin of OSR biases with how they are reflected in the Bateman gradient, and how this can produce selection for mate acquisition traits despite naturally selected costs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号