首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Gender Medicine》2012,9(3):139-146
BackgroundPreeclampsia (PE), new-onset hypertension with proteinuria during pregnancy, is associated with increased reactive oxygen species, the vasoactive peptide endothelin-1 (ET-1), T and B lymphocytes, soluble antiangiogenic factors sFlt-1 and sEndoglin (sFlt-1 and sEng), and agonistic autoantibodies to the angiotensin II type I receptor (AT1-AA).ObjectivesOne important area of investigation for our laboratory was to determine what role AT1-AA plays in the pathophysiology associated with PE.MethodsTo achieve this goal, we examined the effect of AT1-AA suppression on hypertension in response to placental ischemia as well as the effect of AT1-AA on increased blood pressure, ET-1, reactive oxygen species, and sFlt-1 in normal pregnant rats (NP).ResultsWe demonstrated reductions in uterine perfusion pressure (RUPP) to be a stimulus for AT1-AA during pregnancy. We utilized the technique of B-cell depletion to suppress circulating AT1-AA in RUPP rats and found that AT1-AA suppression in RUPP rats was associated with lower blood pressure and ET-1 activation. To determine a role for AT1-AA to mediate hypertension during pregnancy, we infused purified rat AT1-AA (1:50) into NP rats, and analyzed blood pressure and soluble factors. We consistently found that AT1-AA infused rats had significantly increased AT1-AA and blood pressure above NP rats. This hypertension was associated with significantly increased ET-1 in renal cortices (11-fold) and placenta (4-fold), and there was an approximately 2- to 3-fold increase in placental oxidative stress. Furthermore, antiangiogenic factors sFlt-1 and sEng were significantly increased in the AT1-AA induced hypertensive group compared with the NP controls.ConclusionsCollectively, these data indicated an important role for AT1-AA stimulated in response to placental ischemia that caused hypertension during pregnancy.  相似文献   

2.
Preeclampsia (PE) is associated with increased total peripheral resistance (TPR), reduced cardiac output (CO), and diminished uterine and placental blood flow. We have developed an animal model that employs chronic reductions in uterine perfusion pressure (RUPP) in pregnant rats to generate a "preeclamptic-like" state during late gestation that is characterized by hypertension, proteinuria, and endothelial dysfunction. Although this animal model has many characteristics of human PE, the systemic hemodynamic and regional changes in blood flow that occur in response to chronic RUPP remains unknown. Therefore, we hypothesized that RUPP would decrease uteroplacental blood flow and CO, and increase TPR. Mean arterial pressure (MAP), CO, cardiac index (CI), TPR, and regional blood flow to various tissues were measured using radiolabeled microspheres in the following two groups of conscious rats: normal pregnant rats (NP; n = 8) and RUPP rats (n = 8). MAP was increased (132 +/- 4 vs. 99 +/- 3 mmHg) in the RUPP rats compared with the NP dams. The hypertension in RUPP rats was associated with increased TPR (2.15 +/- 0.02 vs. 0.98 +/- 0.08 mmHg x ml(-1) x min(-1)) and decreased CI (246 +/- 20 vs. 348 +/- 19 ml x min(-1) x kg(-1), P < 0.002) when contrasted with NP dams. Furthermore, uterine (0.16 +/- 0.03 vs. 0.38 +/- 0.09 ml x min(-1) x g tissue(-1)) and placental blood flow (0.30 +/- 0.08 vs. 0.70 +/- 0.10 ml x min(-1) x g tissue(-1)) were decreased in RUPP compared with the NP dams. These data demonstrate that the RUPP model of pregnancy-induced hypertension has systemic hemodynamic and regional blood flow alterations that are strikingly similar to those observed in women with PE.  相似文献   

3.
In this study we tested the hypothesis that expression of heme oxygenases HO-1 and HO-2, which are responsible for the production of carbon monoxide, are reduced in the placenta and placental bed of pregnancies complicated by preeclampsia (PE) and fetal growth restriction (FGR) compared with control third-trimester pregnancies. Placental protein expression was determined by Western blotting (n=10 in each group) and immunohistochemistry (controls n=18, PE n=19, FGR n=10). Extravillous trophoblast expression was determined by immunohistochemistry of placental bed biopsy samples (controls n=17, PE n=19, FGR n=10). Western blot analysis of placental homogenates showed no overall differences in HO-2 among groups. However, immunohistochemical analysis showed a reduction in HO-2 expression in endothelial cells in both abnormal groups (PE P<0.01; FGR P<0.0005 vs. control group) but no differences in villous trophoblast staining. HO-1 was undetectable by Western blotting in control and abnormal pregnancies and immunoreactivity was very low, suggesting that there is little HO-1 in the placenta. Within the placental bed, HO-2 but not HO-1 was detected on all populations of extravillous trophoblast, but expression of HO-2 or HO-1 did not change in PE or FGR. The reduced expression of HO-2 on endothelial cells in PE and FGR may be responsible for reduced placental blood flow in these conditions. The data do not show changes in HO in the placental bed in PE or FGR.  相似文献   

4.
BackgroundTrace elements are an essential requirement for human health and development and changes in trace element status have been associated with pregnancy complications such as gestational diabetes mellitus (GDM), pre-eclampsia (PE), fetal growth restriction (FGR), and preterm birth. Elemental metabolomics, which involves the simultaneous quantification and characterisation of multiple elements, could provide important insights into these gestational disorders.MethodsThis study used an Agilent 7900 inductively coupled plasma mass spectrometer (ICP-MS) to simultaneously measure 68 elements, in 166 placental cord blood samples collected from women with various pregnancy complications (control, hypertensive, PE, GDM, FGR, pre-term, and post-term birth).ResultsThere were single element differences across gestational outcomes for elements Mg, P, Cr, Ni, Sr, Mo, I, Au, Pb, and U. Hypertensive and post-term pregnancies were significantly higher in Ni concentrations when compared to controls (control = 2.74 μg/L, hypertensive = 6.72 μg/L, post-term = 7.93 μg/L, p < 0.05), iodine concentration was significantly higher in post-term pregnancies (p < 0.05), and Pb concentrations were the lowest in pre-term pregnancies (pre-term = 2.79 μg/L, control = 4.68 μg/L, PE = 5.32 μg/L, GDM = 8.27 μg/L, p < 0.01). Further analysis was conducted using receiver operating characteristic (ROC) curves for differentiating pregnancy groups. The ratio of Sn/Pb showed the best diagnostic power in discriminating between control and pre-term birth with area under the curve (AUC) 0.86. When comparing control and post-term birth, Mg/Cr (AUC = 0.84), and Cr (AUC = 0.83) had the best diagnostic powers. In pre-term and post-term comparisons Ba was the best single element (81.5%), and P/Cu provided the best ratio (91.7%).ConclusionsThis study has shown that analysis of multiple elements can enable differentiation between fetal cord blood samples from control, hypertensive, PE, GDM, FGR, pre and post-term pregnancies. This data highlights the power of elemental metabolomics and provides a basis for future gestational studies.  相似文献   

5.
Diabetes-induced kidney cell injury involves an increase in matrix protein expression that is only partly alleviated by current treatment, prompting a search for new modalities. We have previously shown that hydrogen sulfide (H2S) inhibits high glucose-induced protein synthesis in kidney podocytes. We tested whether tadalafil, a phosphodiesterase 5 inhibitor used to treat erectile dysfunction, ameliorates high glucose stimulation of matrix proteins by generating H2S in podocytes. Tadalafil abrogated high glucose stimulation of global protein synthesis and matrix protein laminin γ1. Tadalafil inhibited high glucose-induced activation of mechanistic target of rapamycin complex 1 and laminin γ1 accumulation in an AMP-activated protein kinase (AMPK)-dependent manner. Tadalafil increased AMPK phosphorylation by stimulating calcium-calmodulin kinase kinase β. Tadalafil rapidly increased the expression and activity of the H2S-generating enzyme cystathionine γ-lyase (CSE) by promoting its translation. dl-Propargylglycine, a CSE inhibitor, and siRNA against CSE inhibited tadalafil-induced AMPK phosphorylation and abrogated the tadalafil effect on high glucose stimulation of laminin γ1. In tadalafil-treated podocytes, we examined the interaction between H2S and nitric oxide (NO). Nω-Nitro-l-arginine methyl ester and 1H-[1,2,4]-oxadiazolo-[4,3-a]-quinoxalin-1-one, inhibitors of NO synthase (NOS) and soluble guanylyl cyclase, respectively, abolished tadalafil induction of H2S and AMPK phosphorylation. Tadalafil rapidly augmented inducible NOS (iNOS) expression by increasing its mRNA, and siRNA for iNOS and 1400W, an iNOS blocker, inhibited tadalafil stimulation of CSE expression and AMPK phosphorylation. We conclude that tadalafil amelioration of high glucose stimulation of synthesis of proteins including matrix proteins in podocytes requires integration of the NO-H2S-AMPK axis leading to the inhibition of high glucose-induced mechanistic target of rapamycin complex 1 activity and mRNA translation.  相似文献   

6.
Increased uterine artery resistance and angiogenic imbalance characterized by increased soluble fms-like tyrosine kinase-1 (sFlt-1) and decreased free vascular endothelial growth factor (VEGF) are often associated with placental insufficiency and preeclampsia but not synonymous with hypertension. We hypothesized chronic reductions in utero-placental perfusion (RUPP) for 5 days (d) during either mid- (d12-d17) or late (d14-d19) gestation would have disparate effects on plasma sFlt-1 and VEGF levels and blood pressure. Five days of chronic RUPP was achieved by placement of silver clips on the abdominal aorta and ovarian arteries on either gestational d12 or d14. Arterial pressure was increased (P < 0.05) in RUPP vs. normal pregnant (NP) in both d17 (10%) and d19 (25%) groups, respectively. Circulating free VEGF was decreased (P < 0.05) and sFlt-1:VEGF ratio increased (P < 0.05) after 5 days of RUPP ending on d19 but not d17 compared with NP controls. Angiogenic imbalance, measured by an endothelial tube formation assay, was present in the d19 RUPP but not the d17 RUPP compared with age-matched NP rats. Five days of RUPP from days 14 to 19 decreased fetal and placental weights 10% (P < 0.01) compared with d19 NP controls. After 5 days of RUPP, from days 12 to 17 of pregnancy, fetal weights were 21% lighter (P < 0.01) compared with d17 NP controls, but placental weight was unchanged. These findings suggest that the timing during which placental insufficiency occurs may play an important role in determining the extent of alterations in angiogenic balance, fetal growth restriction, and the severity of placental ischemia-induced hypertension.  相似文献   

7.
BackgroundThe epoxyeicosatrienoic acids (EETs) have antihypertensive, anti-inflammatory, and organ protective properties and their circulation levels are related to hypertension, diabetes mellitus, cardiovascular diseases, and preeclampsia. Soluble epoxide hydrolase (sEH) catalyses the degradation of EETs to less biologically active dihydroxyeicosatrienoic acids. Here, we sequenced the promoter region of EPHX2 to investigate the association between promoter sequence alterations that we thought to affect the expression levels of the enzyme and preeclampsia (PE).MethodsNucleotide sequencing of the promoter region of the EPHX2, spanning from position -671 to +30, was performed on 100 pregnant women with PE and, 20 or more weeks pregnant normotensive, healthy women (n=100).ResultsPregnant women who carry rs4149235, rs4149232, rs73227309, and rs62504268 polymorphisms have 4.4, 2.4, 2.3, and 2.8 times significantly increased risk of PE, respectively. CCGG (OR: 3.11; 95% CI: 1.12-8.62) and CCCA (OR: 0.45; 95% CI: 0.36-0.55) haplotypes were associated with an increased and decreased risk of PE, respectively.ConclusionsFour SNPs (rs4149232, rs4149235, rs73227309, and rs62504268) in the promoter region of the EPHX2, and CCGG and CCCA haplotypes of these 4 SNPs were significantly associated with PE. These SNPs in the promoter region may affect sEH expression and thus enzyme activity and may play a role in PE pathogenesis by causing individual differences in EET levels. However, future studies are needed to confirm our findings and examine the effect of these SNPs on the sEH expression and/or enzyme activity.  相似文献   

8.
Fetal growth restriction (FGR) is defined as the inability of a fetus to achieve its genetic growth potential and is associated with a significantly increased risk of morbidity and mortality. Clinically, FGR is diagnosed as a fetus falling below the 5th centile of customised growth charts. Sildenafil citrate (SC, Viagra™), a potent and selective phosphodiesterase-5 inhibitor, corrects ex vivo placental vascular dysfunction in FGR, demonstrating potential as a therapy for this condition. However, many FGR cases present without an abnormal vascular phenotype, as assessed by Doppler measures of uterine/umbilical artery blood flow velocity. Thus, we hypothesized that SC would not increase fetal growth in a mouse model of FGR, the placental-specific Igf2 knockout mouse, which has altered placental exchange capacity but normal placental blood flow. Fetal weights were increased (by 8%) in P0 mice following maternal SC treatment (0.4 mg/ml) via drinking water. There was also a trend towards increased placental weight in treated P0 mice (P = 0.056). Additionally, 75% of the P0 fetal weights were below the 5th centile, the criterion used to define human FGR, of the non-treated WT fetal weights; this was reduced to 51% when dams were treated with SC. Umbilical artery and vein blood flow velocity measures confirmed the lack of an abnormal vascular phenotype in the P0 mouse; and were unaffected by SC treatment. 14C-methylaminoisobutyric acid transfer (measured to assess effects on placental nutrient transporter activity) per g placenta was unaffected by SC, versus untreated, though total transfer was increased, commensurate with the trend towards larger placentas in this group. These data suggest that SC may improve fetal growth even in the absence of an abnormal placental blood flow, potentially affording use in multiple sub-populations of individuals presenting with FGR.  相似文献   

9.
Context: Preeclampsia (PE) is a pregnancy-related disease, and it is a leading cause of maternal and neonatal morbidity and mortality. It is characterized by the new onset of hypertension after 20?weeks of gestation together with signs of organ damage, most commonly the kidneys. The treatment of PE is symptomatic and final intervention requires delivery, regardless of the gestational age of the foetus. Furthermore, PE is a risk factor for developing cardiovascular disease and chronic kidney disease – even many years after the delivery.

Objective: Current research of PE has revealed that detection of podocytes in urine (podocyturia) could be a useful method for both confirmation of PE diagnosis and for the prediction of the severity of the disease.

Conclusion: The main aim of this review is to summarize the current state of available methods for podocyte detection and to discuss their relevance in clinical practice.  相似文献   

10.
Evidence continues to implicate reduced placental perfusion as the cause of preeclampsia, initiating a sequence of events leading to altered vascular function and hypertension. The present study was designed to determine the influence of reduced uteroplacental perfusion pressure (RUPP) on the responsiveness of uterine arcuate resistance arteries. A condition of RUPP was surgically induced in pregnant Sprague-Dawley rats on Gestational Day 14. On Gestational Day 20, uterine arcuate arteries were mounted on a small-vessel wire myograph and challenged with incremental concentrations of vasoconstrictors and vasorelaxants for measurement of isometric tension. Compared to the sham-operated controls, uterine arteries from the RUPP group demonstrated an increased maximal tension in response to phenylephrine (P < 0.01); potassium chloride at 30 mM (P < 0.05), 60 mM (P < 0.01), and 120 mM (P < 0.01); and angiotensin II (P < 0.05). In arteries from the RUPP and sham-operated control groups, endothelium-dependent relaxation in response to acetylcholine (P < 0.05) and calcium ionophore (A23187; P < 0.05) was significantly reduced in the RUPP group compared to the sham-operated controls. Fetal growth indices, including litter size, fetal weight, and placental weight, were significantly reduced in the RUPP group compared to sham-operated controls, which is consistent with significant growth restriction. Data suggest that RUPP promotes hyperresponsiveness and impaired endothelium-dependent relaxation in uterine arcuate arteries, leading to intrauterine fetal growth restriction.  相似文献   

11.
Preeclampsia (PE) is a potentially fatal pregnancy-related hypertensive disorder characterized by poor placenta development that can cause fetal growth restriction. PE-associated pathologies, including thrombosis, hypertension, and impaired placental development, may result from imbalances between thromboxane A2 (TXA2) and prostacyclin. Low-dose aspirin, which selectively inhibits TXA2 production, is used to prevent high-risk PE. However, the role of TXA2 in aspirin-mediated protective effects in women with PE is not understood fully. In this study, we examined the role of prostanoids in PE using human samples and an induced PE mouse model. We demonstrated that the administration of salted drinking water (2.7% NaCl) to wild-type mice resulted in elevated placental TXA2 synthase (TXAS) and plasma TXA2, but not prostacyclin, levels, which was also found in our clinical PE placenta samples. The high salt-treated wild-type pregnant mice had shown unchanged maternal body weight, hypertension (MAP increase 15 mmHg), and decreased pup weight (~50%) and size (~24%), but these adverse effects were ameliorated in TXAS knockout (KO) mice. Moreover, increased expression of interleukin-1β and downstream phosphorylated-p38-mitogen-activated protein kinase were concordant with apoptosis induction in the placentas of salt water-treated wild-type mice. These alterations were not observed in TXAS KO mice. Together, our data suggest that TXA2 depletion has anti-PE effects due to the prevention of hypertension and placental damage through downregulation of the interleukin-1β pathway.  相似文献   

12.
Ahmed A  Singh J  Khan Y  Seshan SV  Girardi G 《PloS one》2010,5(10):e13663

Background

Pre-eclampsia, a pregnancy-specific multisystemic disorder is a leading cause of maternal and perinatal mortality and morbidity. This syndrome has been known to medical science since ancient times. However, despite considerable research, the cause/s of preeclampsia remain unclear, and there is no effective treatment. Development of an animal model that recapitulates this complex pregnancy-related disorder may help to expand our understanding and may hold great potential for the design and implementation of effective treatment.

Methodology/Principal Findings

Here we show that the CBA/J x DBA/2 mouse model of recurrent miscarriage is also a model of immunologically-mediated preeclampsia (PE). DBA/J mated CBA/J females spontaneously develop many features of human PE (primigravidity, albuminuria, endotheliosis, increased sensitivity to angiotensin II and increased plasma leptin levels) that correlates with bad pregnancy outcomes. We previously reported that antagonism of vascular endothelial growth factor (VEGF) signaling by soluble VEGF receptor 1 (sFlt-1) is involved in placental and fetal injury in CBA/J x DBA/2 mice. Using this animal model that recapitulates many of the features of preeclampsia in women, we found that pravastatin restores angiogenic balance, ameliorates glomerular injury, diminishes hypersensitivity to angiotensin II and protects pregnancies.

Conclusions/Significance

We described a new mouse model of PE, were the relevant key features of human preeclampsia develop spontaneously. The CBA/J x DBA/2 model, that recapitulates this complex disorder, helped us identify pravastatin as a candidate therapy to prevent preeclampsia and its related complications. We recognize that these studies were conducted in mice and that clinical trials are needed to confirm its application to humans.  相似文献   

13.
Diabetic patients exhibit increased risk for the development of cardiovascular diseases primarily because of impaired nitric oxide (NO) bioavailability. The phosphodiesterase-5 (PDE-5) inhibitor sildenafil restores NO signaling and protects against ischemia/reperfusion (I/R) injury. In this study, we determined the effect of the long-acting PDE-5 inhibitor tadalafil on diabetes-associated complications and its role in attenuating oxidative stress after I/R injury in type 2 diabetic db/db mice. Adult male db/db mice (n=40/group) were randomized to receive dimethyl sulfoxide (10% DMSO, 0.2 ml, ip) or tadalafil (1 mg/kg in 10% DMSO, ip) for 28 days. After 28 days treatment, the hearts were isolated and subjected to 30 min global ischemia followed by 60 min reperfusion in the Langendorff mode. Infarct size was measured using computer morphometry of tetrazolium-stained sections. Cardiomyocytes were isolated from a subset of hearts and subjected to 40 min simulated ischemia followed by 1 h of reoxygenation (SI/RO). Dichlorodihydrofluorescein diacetate and JC-1 staining was used to measure reactive oxygen species (ROS) generation and mitochondrial membrane potential (Δψm), respectively. Another subset of hearts was used for the estimation of lipid peroxidation, glutathione, and the expression of myocardial pRac1, Rac1, gp91phox, p47phox, and p67phox by Western blot. Tadalafil treatment improved the metabolic status and reduced infarct size compared to the untreated db/db mice (21.2±1.8% vs 45.8±2.8%; p<0.01). The db/db mice showed enhanced oxidative stress in cardiomyocytes as indicated by a significant increase in ROS production. Cardiac NAD(P)H oxidase activity, lipid peroxidation, and oxidized glutathione were also increased in db/db mice compared to nondiabetic control animals. Tadalafil treatment in db/db mice suppressed oxidative stress, attenuated myocardial expression of pRac1 and gp91phox, and also preserved the loss of Δψm in cardiomyocytes after SI/RO. In conclusion, these results demonstrate that chronic treatment with tadalafil attenuates oxidative stress and improves mitochondrial integrity while providing powerful cardioprotective effects in type 2 diabetes.  相似文献   

14.
abstract

Membrane-type matrix metalloproteinases (MT-MMPs) are a sub-family of zinc-dependent endopeptidases involved in the degradation of the extracellular matrix. Although MT-MMPs have been mainly characterized in tumor biology, they also play a relevant role during pregnancy. Placental MT-MMPs are required for cytotrophoblast migration and invasion of the uterine wall and in the remodeling of the spiral arteries. They are involved in the fusion of cytotrophoblasts to form the syncytiotrophoblast as well as in angiogenesis. All these processes are crucial for establishing and maintaining a successful pregnancy and, thus, MT-MMP activity has to be tightly regulated in time and space. Indeed, a de-regulation of MT-MMP expression has been linked with pregnancy complications such as preeclampsia (PE), fetal growth restriction (FGR), gestational diabetes mellitus (GDM) and was also found in maternal obesity. Here we review what is currently known about MT-MMPs in the placenta, with a focus on their general features, their localization and their involvement in pregnancy disorders.  相似文献   

15.
16.
摘要 目的:探讨早发型重度子痫前期(SPE)患者血清非对称性二甲基精氨酸(ADMA)、抑制素A(INH-A)与胎儿生长受限(FGR)的关系。方法:选取2021年1月~2023年1月于海南医学院第一附属医院分娩的110例早发型SPE患者为观察组,另选取同期健康孕妇100例为对照组,根据是否合并FGR将早发型SPE患者分为FGR组46例和非FGR组64例。比较观察组与对照组血清ADMA、INH-A水平。采用多因素Logistic回归分析早发型SPE患者合并FGR的影响因素,受试者工作特征曲线(ROC)分析血清ADMA、INH-A水平对早发型SPE患者合并FGR的预测效能。结果:与对照组比较,观察组血清ADMA、INH-A水平升高(P<0.05)。与非FGR组比较,FGR组ADMA、INH-A、收缩压、舒张压、血肌酐、24 h尿蛋白定量、脐动脉血流收缩期末流速/舒张期末流速比值(S/D)水平升高,而孕前体质指数(BMI)降低(P<0.05)。多因素Logistic回归分析显示,24 h尿蛋白定量、动脉血流S/D、ADMA和INH-A升高为早发型SPE患者合并FGR的独立危险因素(P<0.05)。ROC分析显示,血清ADMA、INH-A水平联合预测早发型SPE患者合并FGR的曲线下面积大于单独预测。结论:早发型SPE患者血清ADMA、INH-A水平异常升高,且参与FGR的发生、发展,此外,血清ADMA、INH-A水平联合对早发型SPE患者合并FGR的预测效能较高。  相似文献   

17.
《Cytokine》2015,72(2):232-237
IntroductionPreeclampsia (PE) is a multi-system disorder of pregnancy characterized by hypertension and proteinuria. Healthy pregnancy is associated with a controlled inflammatory process, which is exacerbated in PE in response to excessive placental stimuli. Gene expression levels can affect inflammation and immune regulation. It is known that differences in cytokine allele frequencies amongst populations may contribute to difference in the incidence of several diseases.ObjectiveThe aim of this study was to investigate the frequency of TNF-α, IL-6, IFN-γ and IL-10 genes polymorphisms and their relationship with the cytokines plasma levels in PE.MethodsA total of 281 women were included in this study; 116 with severe PE, 107 normotensive pregnant and 58 non-pregnant women. Cytokine genotyping was carried out by the polymerase chain reaction. The analyzed polymorphisms were: TNF-α (−308 G  A), IL-10 (−1082 G  A), IL-6 (−174 G  C), and IFN-γ (+874 A  T). Cytokine plasma levels were measured by Cytometric Bead Array method.ResultsA higher frequency of the IFN-γ (+874) T/T genotype in severe PE comparing to normotensive pregnant women was found (P < 0.001). TNF-α, IL-6 and IFN-γ plasma levels were higher in PE women compared to non-pregnant women (P < 0.001; P < 0.001; P = 0.004). IL-6 and IFN-γ levels were also higher in PE women compared to normotensive pregnant (P < 0.001; P = 0.010). IL-10 levels were higher in normotensive pregnant women compared to PE (P < 0.001). IFN-γ and IL-6 genes polymorphisms influenced the genic expression in PE and normotensive pregnant women, respectively.ConclusionsThese results suggest that IFN-γ seems to play a role in PE occurrence.  相似文献   

18.
The placenta is important in providing a healthy environment for the fetus and plays a central role in the pathophysiology of preeclampsia (PE). Fetal and placental developments are influenced by epigenetic programming. There is some evidence that PE is controlled to an altered circadian homeostasis. In a nested case–control study embedded in the Rotterdam Periconceptional Cohort, we obtained placental tissue, umbilical cord leukocytes (UCL), and human umbilical venous endothelial cells of 13 early-onset PE, 16 late-onset PE and 83 controls comprising 36 uncomplicated and 47 complicated pregnancies, i.e. 27 fetal growth restricted and 20 spontaneous preterm birth. To investigate the associations between PE and the epigenetics of circadian clock and clock-controlled genes in placental and newborn tissues, genome-wide DNA methylation analysis was performed using the Illumina HumanMethylation450K BeadChip and a candidate-gene approach using ANCOVA was applied on 939 CpGs of 39 circadian clock and clock-controlled genes. DNA methylation significantly differed in early-onset PE compared with spontaneous preterm birth at 6 CpGs in placental tissue (3.73E-5p ≤ 0.016) and at 21 CpGs in UCL (1.09E-5p ≤ 0.024). In early-onset PE compared with fetal growth restriction 2 CpGs in placental tissue (p < 0.05) and 8 CpGs in uncomplicated controls (4.78E-5p ≤ 0.049) were significantly different. Moreover, significantly different DNA methylation in early-onset PE compared with uncomplicated controls was shown at 6 CpGs in placental tissue (1.36E-4p ≤ 0.045) and 11 CpGs in uncomplicated controls (2.52E-6p ≤ 0.009). No significant associations were shown with late-onset PE between study groups or tissues. The most differentially methylated CpGs showed hypomethylation in placental tissue and hypermethylation in uncomplicated controls. In conclusion, DNA methylation of circadian clock and clock-controlled genes demonstrated most differences in UCL of early-onset PE compared with spontaneous preterm birth. Implications of the tissue-specific variations in epigenetic programming for circadian performance and long-term health need further investigation.  相似文献   

19.
BackgroundPreeclampsia (PE) is a severe hypertension-related disorder occurring during pregnancy that leads to significant mortality and morbidity in both the foetus and mother. Atractylenolide (ATL), a traditional Chinese natural agent isolated from the herb Atractylodes macrocephala, exhibits a series of pharmacological activities, including anti-oxidative stress and anti-inflammatory effects.PurposeThe impacts of ATL on apoptosis and oxidative stress in HTR-8/SVneo cells during PE development was investigated.Study designWe identified ATL by an overlap analysis of the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) database using the keyword ‘gestational hypertension’ and Traditional Chinese Medicine (Batman-TCM) database using the keyword ‘Atractylodes macrocephala’.MethodsCell viability, proliferation, and migration were detected by CCK-8, EdU, and transwell assays. Flow cytometry and 2′,7′-dichlorodihydrofluorescein diacetate were used to assess apoptosis and reactive oxygen species (ROS) levels.ResultsEdU and CCK-8 assays demonstrated that ATL significantly enhanced the viability of HTR-8/SVneo cells. Transwell assays showed that ATL remarkably induced the migration of HTR-8/SVneo cells. Moreover, ROS production in HTR-8/SVneo cells was induced by H2O2, whilst ATL alleviated this H2O2-induced ROS production and apoptosis in cells.ConclusionATL attenuated apoptosis and oxidative stress in HTR-8/SVneo cells in PE by activating the MAPK/ERK signalling pathway. ATL has potential to be utilized as a potential therapeutic candidate for PE.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号