首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An enhanced formation of reactive oxygen species and peroxynitrite occurs in several clinical settings including diabetes, coronary artery disease, stroke, sepsis, and chronic inflammatory diseases. Peroxynitrite oxidizes methionine and tyrosine residues to methionine sulfoxide (MetSO) and 3-nitrotyrosine (NT), respectively. Notably, ADAMTS-13 cleaves von Willebrand factor (VWF) exclusively at the Tyr1605–Met1606 peptide bond in the A2 domain. We hypothesized that peroxynitrite could oxidize either or both of these amino acid residues, thus potentially affecting ADAMTS-13-mediated cleavage. We tested our hypothesis using synthetic peptide substrates based on: (1) VWF Asp1596–Ala1669 sequence (VWF74) and (2) VWF Asp1596–Ala1669 sequence containing nitrotyrosine (VWF74-NT) or methionine sulfoxide (VWF74-MetSO) at position 1605 or 1606, respectively. The peptides were treated with recombinant ADAMTS-13 and the cleavage products analyzed by RP-HPLC. VWF74 oxidized by peroxynitrite underwent a severe impairment of its hydrolysis. Likewise, VWF74-MetSO was minimally hydrolyzed, whereas VWF74-NT was hydrolyzed slightly more efficiently than VWF74. Oxidation by peroxynitrite of purified VWF multimers inhibited ADAMTS-13 hydrolysis, but did not alter their electrophoretic pattern nor their ability to induce platelet agglutination by ristocetin. Moreover, VWF purified from type 2 diabetic patients showed oxidative damage, as revealed by enhanced carbonyl, NT, and MetSO content and was partially resistant to ADAMTS-13 hydrolysis. In conclusion, peroxynitrite may contribute to prothrombotic effects, hindering the proteolytic processing by ADAMTS-13 of high-molecular-weight VWF multimers, which have the highest ability to bind and activate platelets in the microcirculation.  相似文献   

2.
Thrombotic thrombocytopenic purpura is caused by congenital or acquired deficiency of ADAMTS-13, a metalloprotease that cleaves the endothelium-derived ultra-large multimers of von Willebrand factor (ULVWF). The proteolysis converts hyper-reactive and thrombogenic ULVWF into smaller and less adhesive plasma forms. Activity of ADAMTS-13 is usually measured in a static system under non-physiological conditions that require protein denaturation and prolonged incubation. We have demonstrated previously that ULVWF multimers, upon release from endothelial cells, form platelet-decorated string-like structures that are rapidly cleaved by ADAMTS-13. Here we report the direct interaction between ADAMTS-13 and VWF under both static and flowing conditions. ADAMTS-13-coated beads adhered to both immobilized VWF and ULVWF strings presented by stimulated endothelial cells. These beads adhered to VWF under both venous (2.5 dynes/cm2) and arterial (30 dynes/cm2) shear stresses. We then demonstrated that ADAMTS-13 beads adhered to immobilized recombinant VWF-A1 and -A3 domains, but soluble metalloprotease bound preferentially to the A3 domain, suggesting that the VWF A3 domain may be the primary docking site for the metalloprotease. We suggest that tensile stresses imposed by fluid shear stretch endothelial bound ULVWF multimers to expose binding sites within the A domains for circulating ADAMTS-13. The bound enzyme then cleaves within the A2 domain that lies in close proximity and releases smaller VWF multimers into the plasma. Once released, these cleaved VWF fragments become inaccessible for the metalloprotease to prevent further cleavage.  相似文献   

3.
von Willebrand factor (VWF) binding to platelets under high fluid shear is an important step regulating atherothrombosis. We applied light and small angle neutron scattering to study the solution structure of human VWF multimers and protomer. Results suggest that these proteins resemble prolate ellipsoids with radius of gyration (R(g)) of approximately 75 and approximately 30 nm for multimer and protomer, respectively. The ellipsoid dimensions/radii are 175 x 28 nm for multimers and 70 x 9.1 nm for protomers. Substructural repeat domains are evident within multimeric VWF that are indicative of elements of the protomer quarternary structure (16 nm) and individual functional domains (4.5 nm). Amino acids occupy only approximately 2% of the multimer and protomer volume, compared with 98% for serum albumin and 35% for fibrinogen. VWF treatment with guanidine.HCl, which increases VWF susceptibility to proteolysis by ADAMTS-13, causes local structural changes at length scales <10 nm without altering protein R(g). Treatment of multimer but not protomer VWF with random homobifunctional linker BS(3) prior to reduction of intermonomer disulfide linkages and Western blotting reveals a pattern of dimer and trimer units that indicate the presence of stable intermonomer non-covalent interactions within the multimer. Overall, multimeric VWF appears to be a loosely packed ellipsoidal protein with non-covalent interactions between different monomer units stabilizing its solution structure. Local, and not large scale, changes in multimer conformation are sufficient for ADAMTS-13-mediated proteolysis.  相似文献   

4.

Background

Thrombocytopenia, bleeding and plasma leakage are cardinal features of severe dengue. Endothelial cell activation with exocytosis of Weibel-Palade bodies (WPBs) may play an etiological role in this condition.

Methods and Principal Findings

In a cohort of 73 Indonesian children with dengue hemorrhagic fever (DHF), of which 30 with dengue shock syndrome (DSS), we measured plasma levels of the WPB constituents von Willebrand factor antigen (VWF:Ag), VWF propeptide and osteoprotegerin (OPG), together with activity levels of the VWF-cleaving enzyme ADAMTS-13 and the amount of VWF in a platelet binding conformation (VWF activation factor). Compared with healthy controls (n = 17), children with DHF/DSS had significantly higher levels of VWF:Ag, VWF propeptide and OPG and decreased ADAMTS-13 activity. The VWF activation factor was also significantly higher in DHF/DSS and highest in children who died. There were significant differences in the kinetics of the various WPB constituents: VWF propeptide and OPG levels decreased toward discharge, while VWF:Ag levels were lower than expected at enrollment with plasma levels increasing toward discharge. Moreover, VWF propeptide levels correlated better with markers of disease severity (platelet count, liver enzymes, serum albumin and pleural effusion index) than corresponding VWF levels. Together, these findings suggest that there is consumption of VWF in DHF/DSS. In 4 out of 15 selected children with low ADAMTS-13 levels on admission, we found a remarkable reduction in the large and intermediate VWF multimers in the discharge blood samples, consistent with an acquired von Willebrand disease.

Conclusion

These findings suggest that severe dengue is associated with exocytosis of WPBs with increased circulating levels of VWF:Ag, VWF propeptide and OPG. High circulating levels of VWF in its active conformation, together with low ADAMTS-13 activity levels, are likely to contribute to the thrombocytopenia and complications of dengue. During the convalescence phase, qualitative defects in VWF with loss of larger VWF multimers may develop.  相似文献   

5.
Von Willebrand factor (VWF), a multimeric multidomain glycoprotein secreted into the blood from vascular endothelial cells, initiates platelet adhesion at sites of vascular injury. This process requires the binding of platelet glycoprotein Ib-IX-V to the A1 domain of VWF monomeric subunits under fluid shear stress. The A2 domain of VWF monomers contains a proteolytic site specific for a circulating plasma VWF metalloprotease, A Disintegrin and Metalloprotease with Thrombospondin motifs, member #13 of the ADAMTS enzyme family (ADAMTS-13), that functions to reduce adhesiveness of newly released, unusually large (UL), hyperactive forms of VWF. Shear stress assists ADAMTS-13 proteolysis of ULVWF multimers allowing ADAMTS-13 cleavage of an exposed peptide bond in the A2 domain. Shear stress may induce conformational changes in VWF, and even unfold regions of VWF monomeric subunits. We used urea as a surrogate for shear to study denaturation of the individual VWF recombinant A domains, A1, A2, and A3, and the domain triplet, A1-A2-A3. Denaturation was evaluated as a function of the urea concentration, and the intrinsic thermodynamic stability of the domains against unfolding was determined. The A1 domain unfolded in a 3-state manner through a stable intermediate. Domains A2 and A3 unfolded in a 2-state manner from native to denatured. The A1-A2-A3 triple domain unfolded in a 6-state manner through four partially folded intermediates between the native and denatured states. Urea denaturation of A1-A2-A3 was characterized by two major unfolding transitions: the first corresponding to the simultaneous complete unfolding of A2 and partial unfolding of A1 to the intermediate state; and the second corresponding to the complete unfolding of A3 followed by gradual unfolding of the intermediate state of A1 at high urea concentration. The A2 domain containing the cleavage site for ADAMTS-13 was the least stable of the three domains and was the most susceptible to unfolding. The low stability of the A2 domain is likely to be important in regulating the exposure of the A2 domain cleavage site in response to shear stress, ULVWF platelet adherence, and the attachment of ADAMTS-13 to ULVWF.  相似文献   

6.
Complement factor H (fH) is a plasma protein that regulates activation of the alternative pathway, and mutations in fH are associated with a rare form of thrombotic microangiopathy (TMA), known as atypical hemolytic uremic syndrome (aHUS). A more common TMA is thrombotic thrombocytopenic purpura, which is caused by the lack of normal ADAMTS-13-mediated cleavage of von Willebrand factor (VWF). We investigated whether fH interacts with VWF and affects cleavage of VWF. We found that factor H binds to VWF in plasma, to plasma-purified VWF, and to recombinant A1 and A2 domains of VWF as detected by co-immunoprecipitation (co-IP) and surface plasmon resonance assays. Factor H enhanced ADAMTS-13-mediated cleavage of recombinant VWF-A2 as determined by quantifying the cleavage products using Western-blotting, enhanced cleavage of a commercially available fragment of VWF-A2 (FRETS-VWF73) as determined by fluorometric assay, and enhanced cleavage of ultralarge (UL) VWF under flow conditions as determined by cleavage of VWF-platelet strings attached to histamine stimulated endothelial cells. Using recombinant full-length and truncated fH molecules, we found that the presence of the C-terminal half of fH molecule is important for binding to VWF-A2 and for enhancing cleavage of the A2 domain by ADAMTS-13. We conclude that factor H binds to VWF and may modulate cleavage of VWF by ADAMTS-13.  相似文献   

7.
Plasma von Willebrand factor (VWF) is a multimeric glycoprotein from endothelial cells and platelets that mediates adhesion of platelets to sites of vascular injury. In the shear force of flowing blood, however, only the very large VWF multimers are effective in capturing platelets. The multimeric size of VWF can be controlled by proteolysis at the Tyr(842)-Met(843) peptide bond by ADAMTS13 or cleavage of the disulfide bonds that hold VWF multimers together by thrombospondin-1 (TSP-1). The average multimer size of plasma VWF in TSP-1 null mice was significantly smaller than in wild type mice. In addition, the multimer size of VWF released from endothelium in vivo was reduced more rapidly in TSP-1 null mice than in wild type mice. TSP-1, like ADAMTS13, bound to the VWF A3 domain. TSP-1 in the wild type mice, therefore, may compete with ADAMTS13 for interaction with the A3 domain and slow the rate of VWF proteolysis. TSP-1 is stored in platelet alpha-granules and is released upon platelet activation. Significantly, platelet VWF multimer size was reduced upon lysis or activation of wild type murine platelets but not TSP-1 null platelets. This difference had functional consequences in that there was an increase in collagen- and VWF-mediated aggregation of the TSP-1 null platelets under both static and shear conditions. These findings indicate that TSP-1 influences plasma and platelet VWF multimeric size differently and may be more relevant for control of the VWF released from platelets.  相似文献   

8.
The cytotoxic lymphocyte protease granzyme B (GrB) is elevated in the plasma of individuals with diseases that elicit a cytotoxic lymphocyte-mediated immune response. Given the recently recognized ability of GrB to cleave extracellular matrix proteins, we examined the effect of GrB on the pro-hemostatic molecule von Willebrand factor (VWF). GrB delays ristocetin-induced platelet aggregation and inhibits platelet adhesion and spreading on immobilized VWF under static conditions. It efficiently cleaves VWF at two sites within the A1-3 domains that are essential for the VWF-platelet interaction. Like the VWF regulatory proteinase ADAMTS-13, GrB-mediated cleavage is dependent upon VWF conformation. In vitro, GrB cannot cleave the VWF conformer found in solution, but cleavage is induced when VWF is artificially unfolded or presented as a matrix. GrB cleaves VWF with comparable efficiency to ADAMTS-13 and rapidly processes ultra-large VWF multimers released from activated endothelial cells under physiological shear. GrB also cleaves the matrix form of fibrinogen at several sites. These studies suggest extracellular GrB may help control localized coagulation during inflammation.  相似文献   

9.
Physiological concentrations of NaCl inhibit the hydrolysis of von Willebrand factor (VWF) by ADAMTS-13. This effect is because of the specific binding of chloride ions to VWF. Urea-induced unfolding was measured in the presence of NaCl, CH3COONa, and NaClO4 at pH 8.0, 25 degrees C, for multimeric VWF, the recombinant A1-A2-A3 VWF domains, and the A1 domain. Chloride stabilizes the folded conformation of the A1-A2-A3 and A1 domains more efficiently than acetate but less strongly than perchlorate. Spectroscopic evidence showed that chloride binds to both the A1 and A1-A2 domain but not to the isolated A2 domain. Binding of Cl- to both wild type (WT) and the natural mutant p.R1306W A1-A2-A3 domains of VWF has a large heat capacity change equal to -1 and -0.4 kcal mol(-1) K(-1) for WT and p.R1306W A1-A2-A3 domains, respectively. This result implies that a burial of a vast apolar surface area is caused by conformational transitions linked to chloride binding. At any temperature, chloride affinity was higher for WT than for the mutant p.R1306W form. Chloride ions inhibit hydrolysis by ADAMTS-13 of the A1-A2-A3 and A1-A2 domains in the presence of either urea or high shear stress, whereas this effect was either absent or negligible in experiments using A2 and A2-A3 domains. These findings show that the A1 domain contains the binding site of chloride ions that control allosterically the proteolysis by ADAMTS-13 of the Tyr1605-Met1606 bond in the A2 domain and that the R1306W mutation of type 2B VWD quenches the binding of chloride ion to the A1 domain.  相似文献   

10.
Shiga toxin (Stx) produced by enterohemorrhagic Escherichia coli causes diarrhea-associated hemolytic-uremic syndrome (DHUS), a severe renal thrombotic microangiopathy. We investigated the interaction between Stx and von Willebrand Factor (VWF), a multimeric plasma glycoprotein that mediates platelet adhesion, activation, and aggregation. Stx bound to ultra-large VWF (ULVWF) secreted from and anchored to stimulated human umbilical vein endothelial cells, as well as to immobilized VWF-rich human umbilical vein endothelial cell supernatant. This Stx binding was localized to the A1 and A2 domain of VWF monomeric subunits and reduced the rate of ADAMTS-13-mediated cleavage of the Tyr1605-Met1606 peptide bond in the A2 domain. Stx-VWF interaction and the associated delay in ADAMTS-13-mediated cleavage of VWF may contribute to the pathophysiology of DHUS.  相似文献   

11.
ADAMTS13 (A disintegrin and metalloprotease with thrombospondin type 1 repeats) is the specific von Willebrand factor (VWF)-cleaving protease. ADAMTS13 was partially purified from human plasma in 1996 and its gene was cloned in 2001. In case of vascular injury, multimeric VWF is the mediator of both platelet adhesion to the sub-endothelium and platelet aggregation within the microvessels at high shear rates of blood flow. ADAMTS13 regulates VWF adhesive capacity by reducing the size of VWF multimers. A severe functional deficiency of ADAMTS13 (activity lower than 10%) is associated with most cases of thrombotic thrombocytopenic purpura (TTP), a thrombotic microangiopathy characterized by the spontaneous formation, within the microcirculation, of VWF-rich platelet thrombi responsible for a mechanical hemolytic anemia, a consumption thrombocytopenia and a multivisceral ishemia. TTP is a rare disease (4 cases/10(6)/year) with a life-threatening prognosis in the absence of an appropriate treatment in emergency (plasmatherapy). In 90% of cases, TTP is acquired and related to the development of auto-antibodies to ADAMTS13. In the other cases, TTP is inherited via bi-allelic autosomic recessive mutations of ADAMTS13 gene (Upshaw-Schulman syndrome). A better characterization of ADAMTS13 structure/function combined to clinical trials led in TTP patients is crucial to evaluate the relevance of either a -plasma-purified or a -recombinant ADAMTS13 as a therapeutic agent.  相似文献   

12.
ADAMTS proteases typically employ some combination of ancillary C-terminal disintegrin-like, thrombospondin-1, cysteine-rich, and spacer domains to bind substrates and facilitate proteolysis by an N-terminal metalloprotease domain. We constructed chimeric proteases and substrates to examine the role of C-terminal domains of ADAMTS13 and ADAMTS5 in the recognition of their physiological cleavage sites in von Willebrand factor (VWF) and aggrecan, respectively. ADAMTS5 cleaves Glu(373)-Ala(374) and Glu(1480)-Gly(1481) bonds in bovine aggrecan but does not cleave VWF. Conversely, ADAMTS13 cleaves the Tyr(1605)-Met(1606) bond of VWF, which is exposed by fluid shear stress but cannot cleave aggrecan. Replacing the thrombospondin-1/cysteine-rich/spacer domains of ADAMTS5 with those of ADAMTS13 conferred the ability to cleave the Glu(1615)-Ile(1616) bond of VWF domain A2 in peptide substrates or VWF multimers that had been sheared; native (unsheared) VWF multimers were resistant. Thus, by recombining exosites, we engineered ADAMTS5 to cleave a new bond in VWF, preserving physiological regulation by fluid shear stress. The results demonstrate that noncatalytic thrombospondin-1/cysteine-rich/spacer domains are principal modifiers of substrate recognition and cleavage by both ADAMTS5 and ADAMTS13. Noncatalytic domains may perform similar functions in other ADAMTS family members.  相似文献   

13.
Oxidative stress has been suggested to play a main role in the pathogenesis of type 2 diabetes mellitus and its complications. As a consequence of this increased oxidative status a cellular adaptive response occurs requiring functional chaperones, antioxidant production and protein degradation. This study was designed to evaluate systemic oxidative stress and cellular stress response in patients suffering from type 2 diabetes and in age-matched healthy subjects. Systemic oxidative stress has been evaluated by measuring plasma reduced and oxidized glutathione, as well as pentosidine, protein carbonyls lipid oxidation products 4-hydroxy-2-nonenal and F2-isoprostanes in plasma, and lymphocytes, whereas the lymphocyte levels of the heat shock proteins (HSP) HO-1, Hsp72, Sirtuin-1, Sirtuin-2 and thioredoxin reductase-1 (TrxR-1) have been measured to evaluate the systemic cellular stress response. Plasma GSH/GSSG showed a significant decrease in type 2 diabetes as compared to control group, associated with increased pentosidine, F2-isoprostanes, carbonyls and HNE levels. In addition, lymphocyte levels of HO-1, Hsp70, Trx and TrxR-1 (P<0.05 and P<0.01) in diabetic patients were higher than in normal subjects, while sirtuin-1 and sirtuin-2 protein was significantly decreased (p<0.05). In conclusion, patients affected by type 2 diabetes are under condition of systemic oxidative stress and, although the relevance of downregulation in sirtuin signal has to be fully understood, however induction of HSPs and thioredoxin protein system represent a maintained response in counteracting systemic pro-oxidant status. This article is part of a Special Issue entitled: Antioxidants and Antioxidant Treatment in Disease.  相似文献   

14.
Von Willebrand factor (VWF) is a multimeric glycoprotein present in circulating blood and in secretory granules of endothelial cells and platelets. VWF is sensitive to hydrodynamic shear stress that promotes conformational changes, rendering it able to interact with subendothelial proteins and platelets, thus promoting primary haemostasis. Likewise, the binding of the glycopeptide antibiotic ristocetin to VWF triggers hemostatically relevant conformational transitions. These changes reveal both the interaction site for platelet receptor GpIbα and the Tyr1605-Met1606 peptide bond, which is cleaved by the regulatory metalloprotease ADAMTS-13. In this study we investigated by a combined approach of light scattering spectroscopy and turbidimetry the ability of VWF to self-associate in solution in the presence of ristocetin and in the absence of any protein adsorbing surface. Micro- and macro-aggregates induced by ristocetin, have been characterized under static conditions in the early stage of formation and on a longer time scale (up to 10 h). These findings show that VWF multimers form supramolecular structures favoring platelet trapping not only under high shear stress or interaction with external surfaces, but also in solution under static conditions when the conformational state of the protein is changed only by chemical potential of allosteric effectors.  相似文献   

15.

Background

Thrombotic complications in Sickle Cell Disease (SCD) arise since infancy, but the role of the coagulation system in children has been poorly explored. To determine its role in the development of clinical complications in childhood we measured coagulation and endothelial parameters in children with SCD at steady state.

Methods

Markers of thrombin generation, fibrin dissolution and endothelial activation were evaluated in 38 children with SS-Sβ°, 6 with SC disease and 50 age and blood group matched controls. Coagulation variables were correlated with markers of hemolysis and inflammation, with the presence of cerebral and lung vasculopathy and with the frequency of clinical complications.

Results

SS-Sβ° patients presented higher levels of factor VIII, von Willebrand factor antigen (VWF:Ag) and collagen binding activity, tissue plasminogen activator antigen (t-PA:Ag), D-dimer, p-selectin, prothrombin fragment1+2 (F1+2) and lower ADAMTS-13:activity/VWF:Ag (p<0.05) compared to controls and SC patients. In SS-Sβ° patients coagulation variables correlated positively with markers of inflammation, hemolysis, and negatively with HbF (p<0.05). Patients with cerebral silent infarcts showed significant decrease in t-PA:Ag and ADAMTS-13 Antigen and a tendency toward higher D-dimer, F1+2, TAT compared to patients without them. D-dimer was associated with a six fold increased risk of cerebral silent infarcts. No correlation was found between coagulation activation and large vessel vasculopathy or other clinical events except for decreased t-PA:Ag in patients with tricuspid Rigurgitant Velocity >2.5m/sec.

Conclusions

SS-Sβ° disease is associated with extensive activation of the coagulation system at steady state since young age. ADAMTS-13 and t-PA:Ag are involved in the development of cerebral silent infarcts.  相似文献   

16.
Von Willebrand factor (VWF) is a pro-hemostatic multimeric plasma protein that promotes platelet aggregation and stabilizes coagulation factor VIII (FVIII) in plasma. The metalloproteinase ADAMTS13 regulates the platelet aggregation function of VWF via proteolysis. Severe deficiency of ADAMTS13 is associated with thrombotic thrombocytopenic purpura, but does not always correlate with its clinical course. Therefore, other proteases could also be important in regulating VWF activity. In the present study, we demonstrate that VWF is cleaved by the cytotoxic lymphocyte granule component granzyme M (GrM). GrM cleaved both denaturated and soluble plasma-derived VWF after Leu at position 276 in the D3 domain. GrM is unique in that it did not affect the multimeric size and pro-hemostatic platelet aggregation ability of VWF, but instead destroyed the binding of VWF to FVIII in vitro. In meningococcal sepsis patients, we found increased plasma GrM levels that positively correlated with an increased plasma VWF/FVIII ratio in vivo. We conclude that, next to its intracellular role in triggering apoptosis, GrM also exists extracellularly in plasma where it could play a physiological role in controlling blood coagulation by determining plasma FVIII levels via proteolytic processing of its carrier VWF.  相似文献   

17.
Von Willebrand factor (VWF) plays a central role in hemostasis. Triggered by shear-stress, it adheres to platelets at sites of vascular injury. Inactivation of VWF has been associated to the shielding of its adhesion sites and proteolytic cleavage. However, the molecular nature of this shielding and its coupling to cleavage under shear-forces in flowing blood remain unknown. In this study, we describe, to our knowledge, a new force-sensory mechanism for VWF-platelet binding, which addresses these questions, based on a combination of molecular dynamics (MD) simulations, atomic force microscopy (AFM), and microfluidic experiments. Our MD simulations demonstrate that the VWF A2 domain targets a specific region at the VWF A1 domain, corresponding to the binding site of the platelet glycoprotein Ibα (GPIbα) receptor, thereby causing its blockage. This implies autoinhibition of the VWF for the binding of platelets mediated by the A1-A2 protein-protein interaction. During force-probe MD simulations, a stretching force dissociated the A1A2 complex, thereby unblocking the GPIbα binding site. Dissociation was found to be coupled to the unfolding of the A2 domain, with dissociation predominantly occurring before exposure of the cleavage site in A2, an observation that is supported by our AFM experiments. This suggests that the A2 domain prevents platelet binding in a force-dependent manner, ensuring that VWF initiates hemostasis before inactivation by proteolytic cleavage. Microfluidic experiments with an A2-deletion VWF mutant resulted in increased platelet binding, corroborating the key autoinhibitory role of the A2 domain within VWF multimers. Overall, autoinhibition of VWF mediated by force-dependent interdomain interactions offers the molecular basis for the shear-sensitive growth of VWF-platelet aggregates, and might be similarly involved in shear-induced VWF self-aggregation and other force-sensing functions in hemostasis.  相似文献   

18.
CKD (chronic kidney disease) is a life-threatening pathology, often requiring HD (haemodialysis) and characterized by high OS (oxidative stress), inflammation and perturbation of vascular endothelium. HD patients have increased levels of vWF (von Willebrand factor), a large protein (~240?kDa) released as UL-vWF (ultra large-vWF polymers, molecular mass ~20000-50000?kDa) from vascular endothelial cells and megakaryocytes, and responsible for the initiation of primary haemostasis. The pro-haemostatic potential of vWF increases with its length, which is proteolytically regulated by ADAMTS-13 (a disintegrin and metalloproteinase with thrombospondin motifs 13), a zinc-protease cleaving vWF at the single Tyr1605-Met1606 bond, and by LSPs (leucocyte serine proteases), released by activated PMNs (polymorphonuclear cells) during bacterial infections. Previous studies have shown that in vitro oxidation of Met1606 hinders vWF cleavage by ADAMTS-13, resulting in the accumulation of UL-vWF that are not only more pro-thrombotic than shorter vWF oligomers, but also more efficient in binding to bacterial adhesins during sepsis. Notably, HD patients have increased risk of developing dramatic cardiovascular and septic complications, whose underlying mechanisms are largely unknown. In the present study, we first purified vWF from HD patients and then chemically characterized its oxidative state. Interestingly, HD-vWF contains high carbonyl levels and increased proportion of UL-vWF polymers that are also more resistant to ADAMTS-13. Using TMS (targeted MS) techniques, we estimated that HD-vWF contains >10% of Met1606 in the sulfoxide form. We conclude that oxidation of Met1606, impairing ADAMTS-13 cleavage, results in the accumulation of UL-vWF polymers, which recruit and activate platelets more efficiently and bind more tightly to bacterial adhesins, thus contributing to the development of thrombotic and septic complications in CKD.  相似文献   

19.
Oxidative stress has been suggested to play a main role in the pathogenesis of type 2 diabetes mellitus and its complications. As a consequence of this increased oxidative status, a cellular-adaptive response occurs requiring functional chaperones, antioxidant production, and protein degradation. This study was designed to evaluate systemic oxidative stress and cellular stress response in patients suffering from type 2 diabetes-induced nephropathy and in age-matched healthy subjects. Systemic oxidative stress has been evaluated by measuring advanced glycation end-products (pentosidine), protein oxidation (protein carbonyls [DNPH]), and lipid oxidation (4-hydroxy-2-nonenal [HNE] and F2-isoprostanes) in plasma, lymphocytes, and urine, whereas the lymphocyte levels of the heat shock proteins (Hsps) heme oxygenase-1 (HO-1), Hsp70, and Hsp60 as well as thioredoxin reductase-1 (TrxR-1) have been measured to evaluate the systemic cellular stress response. We found increased levels of pentosidine (P < 0.01), DNPH (P < 0.05 and P < 0.01), HNE (P < 0.05 and P < 0.01), and F2-isoprostanes (P < 0.01) in all the samples from type 2 diabetic patients with nephropathy with respect to control group. This was paralleled by a significant induction of cellular HO-1, Hsp60, Hsp70, and TrxR-1 (P < 0.05 and P < 0.01). A significant upregulation of both HO-1 and Hsp70 has been detected also in lymphocytes from type 2 diabetic patients without uraemia. Significant positive correlations between DNPH and Hsp60, as well as between the degree of renal failure and HO-1 or Hsp70, also have been found in diabetic uremic subjects. In conclusion, patients affected by type 2 diabetes complicated with nephropathy are under condition of systemic oxidative stress, and the induction of Hsp and TrxR-1 is a maintained response in counteracting the intracellular pro-oxidant status.  相似文献   

20.
Dong J  Zhao X  Shi S  Ma Z  Liu M  Wu Q  Ruan C  Dong N 《PloS one》2012,7(3):e33263
von Willebrand factor (VWF) is essential for normal hemostasis. VWF gene mutations cause the hemorrhagic von Willebrand disease (VWD). In this study, a 9-year-old boy was diagnosed as type 2A VWD, based on a history of abnormal bleeding, low plasma VWF antigen and activity, low plasma factor VIII activity, and lack of plasma high-molecular-weight (HMW) VWF multimers. Sequencing analysis detected a 6-bp deletion in exon 28 of his VWF gene, which created a mutant lacking D1529V1530 residues in VWF A2 domain. This mutation also existed in his family members with abnormal bleedings but not in >60 normal controls. In transfected HEK293 cells, recombinant VWF ΔD1529V1530 protein had markedly reduced levels in the conditioned medium (42±4% of wild-type (WT) VWF, p<0.01). The mutant VWF in the medium had less HMW multimers. In contrast, the intracellular levels of the mutant VWF in the transfected cells were significantly higher than that of WT (174±29%, p<0.05), indicating intracellular retention of the mutant VWF. In co-transfection experiments, the mutant reduced WT VWF secretion from the cells. By immunofluorescence staining, the retention of the mutant VWF was identified within the endoplasmic reticulum (ER). Together, we identified a unique VWF mutation responsible for the bleeding phenotype in a patient family with type 2A VWD. The mutation impaired VWF trafficking through the ER, thereby preventing VWF secretion from the cells. Our results illustrate the diversity of VWF gene mutations, which contributes to the wide spectrum of VWD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号