首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Introduction

Preclinical in vivo imaging requires precise and reproducible delineation of brain structures. Manual segmentation is time consuming and operator dependent. Automated segmentation as usually performed via single atlas registration fails to account for anatomo-physiological variability. We present, evaluate, and make available a multi-atlas approach for automatically segmenting rat brain MRI and extracting PET activies.

Methods

High-resolution 7T 2DT2 MR images of 12 Sprague-Dawley rat brains were manually segmented into 27-VOI label volumes using detailed protocols. Automated methods were developed with 7/12 atlas datasets, i.e. the MRIs and their associated label volumes. MRIs were registered to a common space, where an MRI template and a maximum probability atlas were created. Three automated methods were tested: 1/registering individual MRIs to the template, and using a single atlas (SA), 2/using the maximum probability atlas (MP), and 3/registering the MRIs from the multi-atlas dataset to an individual MRI, propagating the label volumes and fusing them in individual MRI space (propagation & fusion, PF). Evaluation was performed on the five remaining rats which additionally underwent [18F]FDG PET. Automated and manual segmentations were compared for morphometric performance (assessed by comparing volume bias and Dice overlap index) and functional performance (evaluated by comparing extracted PET measures).

Results

Only the SA method showed volume bias. Dice indices were significantly different between methods (PF>MP>SA). PET regional measures were more accurate with multi-atlas methods than with SA method.

Conclusions

Multi-atlas methods outperform SA for automated anatomical brain segmentation and PET measure’s extraction. They perform comparably to manual segmentation for FDG-PET quantification. Multi-atlas methods are suitable for rapid reproducible VOI analyses.  相似文献   

2.

Objective

To study mood and behavioral effects of unilateral and staged bilateral subthalamic nucleus (STN) and globus pallidus internus (GPi) deep brain stimulation (DBS) for Parkinson''s disease (PD).

Background

There are numerous reports of mood changes following DBS, however, most have focused on bilateral simultaneous STN implants with rapid and aggressive post-operative medication reduction.

Methods

A standardized evaluation was applied to a subset of patients undergoing STN and GPi DBS and who were also enrolled in the NIH COMPARE study. The Unified Parkinson Disease Rating Scale (UPDRS III), the Hamilton depression (HAM-D) and anxiety rating scales (HAM-A), the Yale-Brown obsessive-compulsive rating scale (YBOCS), the Apathy Scale (AS), and the Young mania rating scale (YMRS) were used. The scales were repeated at acute and chronic intervals. A post-operative strategy of non-aggressive medication reduction was employed.

Results

Thirty patients were randomized and underwent unilateral DBS (16 STN, 14 GPi). There were no baseline differences. The GPi group had a higher mean dopaminergic dosage at 1-year, however the between group difference in changes from baseline to 1-year was not significant. There were no differences between groups in mood and motor outcomes. When combining STN and GPi groups, the HAM-A scores worsened at 2-months, 4-months, 6-months and 1-year when compared with baseline; the HAM-D and YMRS scores worsened at 4-months, 6-months and 1-year; and the UPDRS Motor scores improved at 4-months and 1-year. Psychiatric diagnoses (DSM-IV) did not change. No between group differences were observed in the cohort of bilateral cases.

Conclusions

There were few changes in mood and behavior with STN or GPi DBS. The approach of staging STN or GPi DBS without aggressive medication reduction could be a viable option for managing PD surgical candidates. A study of bilateral DBS and of medication reduction will be required to better understand risks and benefits of a bilateral approach.  相似文献   

3.

Background

Artifacts caused by dental restorations, such as dental crowns, dental fillings and orthodontic appliances, are a common problem in MRI and CT scans of the head and neck. The aim of this in-vitro study was to identify and evaluate the artifacts produced by different dental restoration materials in CT and MRI images.

Methods

Test samples of 44 materials (Metal and Non-Metal) commonly used in dental restorations were fabricated and embedded with reference specimens in gelatin moulds. MRI imaging of 1.5T and CT scan were performed on the samples and evaluated in two dimensions. Artifact size and distortions were measured using a digital image analysis software.

Results

In MRI, 13 out of 44 materials produced artifacts, while in CT 41 out of 44 materials showed artifacts. Artifacts produced in both MRI and CT images were categorized according to the size of the artifact.

Significance

Metal based restoration materials had strong influence on CT and less artifacts in MRI images. Rare earth elements such as Ytterbium trifluoride found in composites caused artifacts in both MRI and CT. Recognizing these findings would help dental materials manufacturers and developers to produce materials which can cause less artifacts in MRI and CT images.  相似文献   

4.

Background

Vascular risk factors may be associated with disability independently of vascular events. We examined whether the American Heart Association’s 7 ideal cardiovascular health (CVH) metrics were independently associated with disability in a nationally representative cohort.

Methods

Adults age ≥20 years from the National Health and Nutrition Examination Survey 2005–2012 were included. Ideal CVH was calculated as a composite of 7 measures, each scored 0–2. Primary predictors were number of ideal CVH metrics and score of CVH metrics. The outcome was a dichotomous score from 20 activities of daily living (ADL) and instrumental ADLs. Unadjusted and adjusted weighted logistic models estimated associations between ideal CVH and disability. The data were analyzed in 2015.

Results

Among 22692 participants, mean age was 46.9 years. Cardiac disease and stroke were present in 6.6% and 2.8%; 90.3% had poor physical activity and 89.9% poor diet. Among 3975 individuals with full CVH data, in fully adjusted models, OR for disability was 0.90 (95% CI 0.83–0.98) per point increase in ideal CVH score, and 0.84 (0.73–0.97) per additional number of ideal CVH metrics.

Conclusions

CVH metrics were strongly and significantly associated with reduced odds of disability independently of vascular and non-vascular conditions. Poorer CVH may cause subclinical vascular disease resulting in disability.  相似文献   

5.

Objective

To evaluate the utilization trends of advanced radiology, i.e. computed tomography (CT) and magnetic resonance imaging (MRI), examination in an emergency department (ED) of an academic medical center from 2001 to 2010.

Patients and Methods

We assessed the overall CT and MRI utilization, and the ED patient encounters. Each examination was evaluated according to the patient’s age and anatomically relevant regions.

Results

During the study period, 737,760 patient visited the ED, and 156,287 CT and 35,018 MRI examinations were performed. The number of annual ED patients increased from 63,770 in 2001 to 94,609 in 2010 (P = 0.018). The rate of CT utilization increased from 105.5 per 1000 patient visits in 2001 to 289.2 in 2010 (P<0.001), and the rate of MRI utilization increased from 8.1 per 1000 patient visits in 2001 to 74.6 in 2010 (P<0.001). In all of the patient age groups, the overall CT and MRI utilization increased. The greater the patient age, the more likely the use of advanced radiology [CT: 87.1 per 1000 patients in age <20 vs. 293.9 per 1000 in age>60 (P<0.001); MRI: 5.1 per 1000 patients in age <20 vs. 108.7 per 1000 in age>60 (P<0.001)]. Abdomen-pelvis (40.2%) and the head (35.7%) comprised the majority of CT scans, while the head (86.4%) comprised the majority of MRI examinations. The rates of advanced radiology use increased across all anatomical regions, with the highest increase being in chest CT (5.9 per 1000 to 49.2) and head MRI (7.2 per 1000 to 61.9).

Conclusion

We report a three-fold and nine-fold increase in the use of CT and MRI, respectively, during the study period. Additional studies will be required to understand the causes of this change and to determine the effect of advanced radiology utilization on the patient outcome.  相似文献   

6.

Objective

Impulse control disorders (ICDs) and dopamine dysregulation syndrome (DDS) are important behavioral problems that affect a subpopulation of patients with Parkinson''s disease (PD) and typically result in markedly diminished quality of life for patients and their caregivers. We aimed to investigate the effects of subthalamic nucleus (STN) and internal globus pallidus (GPi) deep brain stimulation (DBS) on ICD/DDS frequency and dopaminergic medication usage.

Methods

A retrospective chart review was performed on 159 individuals who underwent unilateral or bilateral PD DBS surgery in either STN or GPi. According to published criteria, pre- and post-operative records were reviewed to categorize patients both pre- and post-operatively as having ICD, DDS, both ICD and DDS, or neither ICD nor DDS. Group differences in patient demographics, clinical presentations, levodopa equivalent dose (LED), and change in diagnosis following unilateral/bilateral by brain target (STN or GPi DBS placement) were examined.

Results

28 patients met diagnostic criteria for ICD or DDS pre- or post-operatively. ICD or DDS classification did not differ by GPi or STN target stimulation. There was no change in DDS diagnosis after unilateral or bilateral stimulation. For ICD, diagnosis resolved in 2 of 7 individuals after unilateral or bilateral DBS. Post-operative development of these syndromes was significant; 17 patients developed ICD diagnoses post-operatively with 2 patients with pre-operative ICD developing DDS post-operatively.

Conclusions

Unilateral or bilateral DBS did not significantly treat DDS or ICD in our sample, even though a few cases of ICD resolved post-operatively. Rather, our study provides preliminary evidence that DDS and ICD diagnoses may emerge following DBS surgery.  相似文献   

7.

Objectives

To investigate associations between nurse work practice environment measured at department level and individual level work-family conflict on burnout, measured as emotional exhaustion, depersonalization and personal accomplishment among Swedish RNs.

Methods

A multilevel model was fit with the individual RN at the 1st, and the hospital department at the 2nd level using cross-sectional RN survey data from the Swedish part of RN4CAST, an EU 7th framework project. The data analysed here is based on a national sample of 8,620 RNs from 369 departments in 53 hospitals.

Results

Generally, RNs reported high values of personal accomplishment and lower values of emotional exhaustion and depersonalization. High work-family conflict increased the risk for emotional exhaustion, but for neither depersonalization nor personal accomplishment. On department level adequate staffing and good leadership and support for nurses reduced the risk for emotional exhaustion and depersonalization. Personal accomplishment was statistically significantly related to staff adequacy.

Conclusions

The findings suggest that adequate staffing, good leadership, and support for nurses are crucial for RNs'' mental health. Our findings also highlight the importance of hospital managers developing policies and practices to facilitate the successful combination of work with private life for employees.  相似文献   

8.

Objective

Diagnoses using imaging-based measures alone offer the hope of improving the accuracy of clinical diagnosis, thereby reducing the costs associated with incorrect treatments. Previous attempts to use brain imaging for diagnosis, however, have had only limited success in diagnosing patients who are independent of the samples used to derive the diagnostic algorithms. We aimed to develop a classification algorithm that can accurately diagnose chronic, well-characterized neuropsychiatric illness in single individuals, given the availability of sufficiently precise delineations of brain regions across several neural systems in anatomical MR images of the brain.

Methods

We have developed an automated method to diagnose individuals as having one of various neuropsychiatric illnesses using only anatomical MRI scans. The method employs a semi-supervised learning algorithm that discovers natural groupings of brains based on the spatial patterns of variation in the morphology of the cerebral cortex and other brain regions. We used split-half and leave-one-out cross-validation analyses in large MRI datasets to assess the reproducibility and diagnostic accuracy of those groupings.

Results

In MRI datasets from persons with Attention-Deficit/Hyperactivity Disorder, Schizophrenia, Tourette Syndrome, Bipolar Disorder, or persons at high or low familial risk for Major Depressive Disorder, our method discriminated with high specificity and nearly perfect sensitivity the brains of persons who had one specific neuropsychiatric disorder from the brains of healthy participants and the brains of persons who had a different neuropsychiatric disorder.

Conclusions

Although the classification algorithm presupposes the availability of precisely delineated brain regions, our findings suggest that patterns of morphological variation across brain surfaces, extracted from MRI scans alone, can successfully diagnose the presence of chronic neuropsychiatric disorders. Extensions of these methods are likely to provide biomarkers that will aid in identifying biological subtypes of those disorders, predicting disease course, and individualizing treatments for a wide range of neuropsychiatric illnesses.  相似文献   

9.

Background

Posttreatment surveillance for the local and regional recurrence of the head and neck squamous cell carcinoma often requires a multimodality techniques that include PET combined with CT, MRI, US.

Aim

The purpose of this study is to compare the diagnostic performance of two imaging techniques (PET/CT and US), and their combined use for the detection of a subclinical regional recurrence in patients after HNSCC treatment.

Materials and methods

83 patients after completion of the HNSCC treatment underwent both US and PET/CT on the mean follow-up of 14 months after initial treatment.

Results

The sensitivity and specificity of PET/CT were 86% and 82%, respectively; US values reached 81% and 87%, respectively. PPV was 79% for PET/CT, and 83% for US. NPV was 89% for PET/CT, and 85% for US. The overall accuracy for PET/CT and US was 84% for both methods.

Conclusion

US could be regarded as complementary to PET/CT as the procedures with highest sensitivity, specificity and NPV for detecting subclinical regional recurrences after HNSCC treatment.  相似文献   

10.

Objectives

To objectively evaluate automatic volumetric breast density assessment in Full-Field Digital Mammograms (FFDM) using measurements obtained from breast Magnetic Resonance Imaging (MRI).

Material and Methods

A commercially available method for volumetric breast density estimation on FFDM is evaluated by comparing volume estimates obtained from 186 FFDM exams including mediolateral oblique (MLO) and cranial-caudal (CC) views to objective reference standard measurements obtained from MRI.

Results

Volumetric measurements obtained from FFDM show high correlation with MRI data. Pearson’s correlation coefficients of 0.93, 0.97 and 0.85 were obtained for volumetric breast density, breast volume and fibroglandular tissue volume, respectively.

Conclusions

Accurate volumetric breast density assessment is feasible in Full-Field Digital Mammograms and has potential to be used in objective breast cancer risk models and personalized screening.  相似文献   

11.

Purpose

To develop a Gamma Knife-based mouse model of late time-to-onset, cerebral radiation necrosis (RN) with serial evaluation by magnetic resonance imaging (MRI) and histology.

Methods and Materials

Mice were irradiated with the Leksell Gamma Knife® (GK) PerfexionTM (Elekta AB; Stockholm, Sweden) with total single-hemispheric radiation doses (TRD) of 45- to 60-Gy, delivered in one to three fractions. RN was measured using T2-weighted MR images, while confirmation of tissue damage was assessed histologically by hematoxylin & eosin, trichrome, and PTAH staining.

Results

MRI measurements demonstrate that TRD is a more important determinant of both time-to-onset and progression of RN than fractionation. The development of RN is significantly slower in mice irradiated with 45-Gy than 50- or 60-Gy, where RN development is similar. Irradiated mouse brains demonstrate all of the pathologic features observed clinically in patients with confirmed RN. A semi-quantitative (0 to 3) histologic grading system, capturing both the extent and severity of injury, is described and illustrated. Tissue damage, as assessed by a histologic score, correlates well with total necrotic volume measured by MRI (correlation coefficient = 0.948, with p<0.0001), and with post-irradiation time (correlation coefficient = 0.508, with p<0.0001).

Conclusions

Following GK irradiation, mice develop late time-to-onset cerebral RN histology mirroring clinical observations. MR imaging provides reliable quantification of the necrotic volume that correlates well with histologic score. This mouse model of RN will provide a platform for mechanism of action studies, the identification of imaging biomarkers of RN, and the development of clinical studies for improved mitigation and neuroprotection.  相似文献   

12.
Infant brain atlases from neonates to 1- and 2-year-olds   总被引:1,自引:0,他引:1  
Shi F  Yap PT  Wu G  Jia H  Gilmore JH  Lin W  Shen D 《PloS one》2011,6(4):e18746

Background

Studies for infants are usually hindered by the insufficient image contrast, especially for neonates. Prior knowledge, in the form of atlas, can provide additional guidance for the data processing such as spatial normalization, label propagation, and tissue segmentation. Although it is highly desired, there is currently no such infant atlas which caters for all these applications. The reason may be largely due to the dramatic early brain development, image processing difficulties, and the need of a large sample size.

Methodology

To this end, after several years of subject recruitment and data acquisition, we have collected a unique longitudinal dataset, involving 95 normal infants (56 males and 39 females) with MRI scanned at 3 ages, i.e., neonate, 1-year-old, and 2-year-old. State-of-the-art MR image segmentation and registration techniques were employed, to construct which include the templates (grayscale average images), tissue probability maps (TPMs), and brain parcellation maps (i.e., meaningful anatomical regions of interest) for each age group. In addition, the longitudinal correspondences between age-specific atlases were also obtained. Experiments of typical infant applications validated that the proposed atlas outperformed other atlases and is hence very useful for infant-related studies.

Conclusions

We expect that the proposed infant 0–1–2 brain atlases would be significantly conducive to structural and functional studies of the infant brains. These atlases are publicly available in our website, http://bric.unc.edu/ideagroup/free-softwares/.  相似文献   

13.

Background

Syndromic surveillance promotes the early detection of diseases outbreaks. Although syndromic surveillance has increased in developing countries, performance on outbreak detection, particularly in cases of multi-stream surveillance, has scarcely been evaluated in rural areas.

Objective

This study introduces a temporal simulation model based on healthcare-seeking behaviors to evaluate the performance of multi-stream syndromic surveillance for influenza-like illness.

Methods

Data were obtained in six towns of rural Hubei Province, China, from April 2012 to June 2013. A Susceptible-Exposed-Infectious-Recovered model generated 27 scenarios of simulated influenza A (H1N1) outbreaks, which were converted into corresponding simulated syndromic datasets through the healthcare-behaviors model. We then superimposed converted syndromic datasets onto the baselines obtained to create the testing datasets. Outbreak performance of single-stream surveillance of clinic visit, frequency of over the counter drug purchases, school absenteeism, and multi-stream surveillance of their combinations were evaluated using receiver operating characteristic curves and activity monitoring operation curves.

Results

In the six towns examined, clinic visit surveillance and school absenteeism surveillance exhibited superior performances of outbreak detection than over the counter drug purchase frequency surveillance; the performance of multi-stream surveillance was preferable to signal-stream surveillance, particularly at low specificity (Sp <90%).

Conclusions

The temporal simulation model based on healthcare-seeking behaviors offers an accessible method for evaluating the performance of multi-stream surveillance.  相似文献   

14.

Background

How does the brain estimate object stability? Objects fall over when the gravity-projected centre-of-mass lies outside the point or area of support. To estimate an object''s stability visually, the brain must integrate information across the shape and compare its orientation to gravity. When observers lie on their sides, gravity is perceived as tilted toward body orientation, consistent with a representation of gravity derived from multisensory information. We exploited this to test whether vestibular and kinesthetic information affect this visual task or whether the brain estimates object stability solely from visual information.

Methodology/Principal Findings

In three body orientations, participants viewed images of objects close to a table edge. We measured the critical angle at which each object appeared equally likely to fall over or right itself. Perceived gravity was measured using the subjective visual vertical. The results show that the perceived critical angle was significantly biased in the same direction as the subjective visual vertical (i.e., towards the multisensory estimate of gravity).

Conclusions/Significance

Our results rule out a general explanation that the brain depends solely on visual heuristics and assumptions about object stability. Instead, they suggest that multisensory estimates of gravity govern the perceived stability of objects, resulting in objects appearing more stable than they are when the head is tilted in the same direction in which they fall.  相似文献   

15.

Background

miRNAs are key players in gene expression regulation. To fully understand the complex nature of cellular differentiation or initiation and progression of disease, it is important to assess the expression patterns of as many miRNAs as possible. Thereby, identifying novel miRNAs is an essential prerequisite to make possible a comprehensive and coherent understanding of cellular biology.

Methodology/Principal Findings

Based on two extensive, but previously published, small RNA sequence datasets from human embryonic stem cells and human embroid bodies, respectively [1], we identified 112 novel miRNA-like structures and were able to validate miRNA processing in 12 out of 17 investigated cases. Several miRNA candidates were furthermore substantiated by including additional available small RNA datasets, thereby demonstrating the power of combining datasets to identify miRNAs that otherwise may be assigned as experimental noise.

Conclusions/Significance

Our analysis highlights that existing datasets are not yet exhaustedly studied and continuous re-analysis of the available data is important to uncover all features of small RNA sequencing.  相似文献   

16.

Background

In past reports, researchers have seldom attached importance to achievements in transforming digital anatomy to radiological diagnosis. However, investigators have been able to illustrate communication relationships in the retroperitoneal space by drawing potential routes in computerized tomography (CT) images or a virtual anatomical atlas. We established a new imaging anatomy research method for comparisons of the communication relationships of the retroperitoneal space in combination with the Visible Human Project and CT images. Specifically, the anatomic pathways of peripancreatic fluid extension to the mediastinum that may potentially transform into fistulas were studied.

Methods

We explored potential pathways to the mediastinum based on American and Chinese Visible Human Project datasets. These drainage pathways to the mediastinum were confirmed or corrected in CT images of 51 patients with recurrent acute pancreatitis in 2011. We also investigated whether additional routes to the mediastinum were displayed in CT images that were not in Visible Human Project images.

Principal Findings

All hypothesized routes to the mediastinum displayed in Visible Human Project images, except for routes from the retromesenteric plane to the bilateral retrorenal plane across the bilateral fascial trifurcation and further to the retrocrural space via the aortic hiatus, were confirmed in CT images. In addition, route 13 via the narrow space between the left costal and crural diaphragm into the retrocrural space was demonstrated for the first time in CT images.

Conclusion

This type of exploration model related to imaging anatomy may be used to support research on the communication relationships of abdominal spaces, mediastinal spaces, cervical fascial spaces and other areas of the body.  相似文献   

17.

Introduction

Few data are available concerning structural changes at the hip observed by magnetic resonance imaging (MRI) in people with or without hip osteoarthritis (OA). The aim of this study was to compare cartilage volume and the presence of cartilage defects and bone marrow lesions (BMLs) in participants with and without diagnosed hip OA.

Methods

Femoral head cartilage volume was measured by MRI for 141 community-based persons with no diagnosed hip OA, and 19 with diagnosed hip OA. Cartilage defects and BMLs were regionally scored at the femoral head and acetabulum.

Results

Compared with those without diagnosed hip OA, people with diagnosed hip OA had less femoral head cartilage volume (1763 mm3 versus 3343 mm3; p <0.001) and more prevalent cartilage defects and BMLs (all p ≤0.05) at all sites other than the central inferomedial region of the femoral head. In those with no diagnosed hip OA, cartilage defects in the anterior and central superolateral region of the femoral head were associated with reduced femoral head cartilage volume (all p ≤0.02). Central superolateral BMLs at all sites were associated with reduced femoral head cartilage volume (all p ≤0.003), with a similar trend occurring when BMLs were located in the anterior region of the hip (all p ≤0.08).

Conclusions

Compared with community-based adults with no diagnosed hip OA, people with diagnosed hip OA have less femoral head cartilage volume and a higher prevalence of cartilage defects and BMLs. For people with no diagnosed hip OA, femoral head cartilage volume was reduced where cartilage defects and/or BMLs were present in the anterior and central superolateral regions of the hip joint. Cartilage defects and BMLs present in the anterior and central superolateral regions may represent early structural damage in the pathogenesis of hip OA.  相似文献   

18.

Objective

To study whether maternal cigarette smoking during pregnancy is associated with alterations in the growth of fetal lungs, kidneys, liver, brain, and placenta.

Design

A case-control study, with operators performing the image analysis blinded.

Setting

Study performed on a research-dedicated magnetic resonance imaging (MRI) scanner (1.5 T) with participants recruited from a large teaching hospital in the United Kingdom.

Participants

A total of 26 pregnant women (13 current smokers, 13 non smokers) were recruited; 18 women (10 current smokers, 8 nonsmokers) returned for the second scan later in their pregnancy.

Methods

Each fetus was scanned with MRI at 22–27 weeks and 33–38 weeks gestational age (GA).

Main outcome measures

Images obtained with MRI were used to measure volumes of the fetal brain, kidneys, lungs, liver and overall fetal size, as well as placental volumes.

Results

Exposed fetuses showed lower brain volumes, kidney volumes, and total fetal volumes, with this effect being greater at visit 2 than at visit 1 for brain and kidney volumes, and greater at visit 1 than at visit 2 for total fetal volume. Exposed fetuses also demonstrated lower lung volume and placental volume, and this effect was similar at both visits. No difference was found between the exposed and nonexposed fetuses with regards to liver volume.

Conclusion

Magnetic resonance imaging has been used to show that maternal smoking is associated with reduced growth of fetal brain, lung and kidney; this effect persists even when the volumes are corrected for maternal education, gestational age, and fetal sex. As expected, the fetuses exposed to maternal smoking are smaller in size. Similarly, placental volumes are smaller in smoking versus nonsmoking pregnant women.  相似文献   

19.

Object

We sought to detect an acute soft tissue infection in rats by magnetic resonance imaging (MRI) using granulocytes, previously labeled with superparamagnetic particles of iron oxide (SPIO).

Materials and Methods

Parasternal infection was induced by subcutaneous inoculation of Staphylococcus aureus suspension in rats. Granulocytes isolated from isogenic donor rats were labeled with SPIO. Infected rats were imaged by MRI before, 6 and 12 hours after intravenous injection of SPIO-labeled or unlabeled granulocytes. MR findings were correlated with histological analysis by Prussian blue staining and with re-isolated SPIO-labeled granulocytes from the infectious area by magnetic cell separation.

Results

Susceptibility effects were present in infected sites on post-contrast T2*-weighted MR images in all animals of the experimental group. Regions of decreased signal intensity (SI) in MRI were detected at 6 hours after granulocyte administration and were more pronounced at 12 hours. SPIO-labeled granulocytes were identified by Prussian blue staining in the infected tissue and could be successfully re-isolated from the infected area by magnetic cell separation.

Conclusion

The application of SPIO-labeled granulocytes in MRI offers new perspectives in diagnostic specificity and sensitifity to detect early infectious processes.  相似文献   

20.

Background

Head and neck Magnetic Resonance (MR) Images are vulnerable to the arterial blood in-flow effect. To compensate for this effect and enhance accuracy and reproducibility, dynamic tracer concentration in veins was proposed and investigated for quantitative dynamic contrast-enhanced (DCE) MRI analysis in head and neck.

Methodology

21 patients with head and neck tumors underwent DCE-MRI at 3T. An automated method was developed for blood vessel selection and separation. Dynamic concentration-time-curves (CTCs) in arteries and veins were used for the Tofts model parameter estimations. The estimation differences by using CTCs in arteries and veins were compared. Artery and vein voxels were accurately separated by the automated method. Remarkable inter-slice tracer concentration differences were found in arteries while the inter-slice concentration differences in veins were moderate. Tofts model fitting by using the CTCs in arteries and veins produced significantly different parameter estimations. The individual artery CTCs resulted in large (>50% generally) inter-slice parameter estimation variations. Better inter-slice consistency was achieved by using the vein CTCs.

Conclusions

The use of vein CTCs helps to compensate for arterial in-flow effect and reduce kinetic parameter estimation error and inconsistency for head and neck DCE-MRI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号