首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Our previous studies have demonstrated that prion protein (PrP) leads to disassembly of microtubular cytoskeleton through binding to tubulin and its oligomerization. Here we found that PrP-treated cells exhibited improper morphology of mitotic spindles. Formation of aberrant spindles may result not only from altered microtubule dynamics - as expected from PrP-induced tubulin oligomerization - but also from impairing the function of molecular motors. Therefore we checked whether binding of PrP to microtubules affected movement generated by Ncd - a kinesin responsible for the proper organization of division spindles. We found that PrP inhibited Ncd-driven transport of microtubules. Most probably, the inhibition of the microtubule movement resulted from PrP-induced changes in the microtubule structure since Ncd-microtubule binding was reduced already at low PrP to tubulin molar ratios. This study suggests another plausible mechanism of PrP cytotoxicity related to the interaction with tubulin, namely impeding microtubule-dependent transport.  相似文献   

2.
Members of the kinesin‐8 motor class have the remarkable ability to both walk towards microtubule plus‐ends and depolymerise these ends on arrival, thereby regulating microtubule length. To analyse how kinesin‐8 multitasks, we studied the structure and function of the kinesin‐8 motor domain. We determined the first crystal structure of a kinesin‐8 and used cryo‐electron microscopy to calculate the structure of the microtubule‐bound motor. Microtubule‐bound kinesin‐8 reveals a new conformation compared with the crystal structure, including a bent conformation of the α4 relay helix and ordering of functionally important loops. The kinesin‐8 motor domain does not depolymerise stabilised microtubules with ATP but does form tubulin rings in the presence of a non‐hydrolysable ATP analogue. This shows that, by collaborating, kinesin‐8 motor domain molecules can release tubulin from microtubules, and that they have a similar mechanical effect on microtubule ends as kinesin‐13, which enables depolymerisation. Our data reveal aspects of the molecular mechanism of kinesin‐8 motors that contribute to their unique dual motile and depolymerising functions, which are adapted to control microtubule length.  相似文献   

3.
The kinesin-8 family of microtubule motors plays?a critical role in microtubule length control in cells. These motors have complex effects on microtubule dynamics: they destabilize growing microtubules yet stabilize shrinking microtubules. The budding yeast kinesin-8, Kip3, accumulates on plus ends of growing but not shrinking microtubules. Here we identify an essential role of the tail domain of Kip3 in mediating both its destabilizing and its stabilizing activities. The Kip3 tail promotes Kip3's accumulation at the plus ends and facilitates the destabilizing effect of Kip3. However, the Kip3 tail also inhibits microtubule shrinkage and is required for promoting microtubule rescue by Kip3. These effects of the tail domain are likely to be mediated by the tubulin- and microtubule-binding activities that we describe. We propose a concentration-dependent model for the coordination of the destabilizing and stabilizing activities of Kip3 and discuss its relevance to cellular microtubule organization.  相似文献   

4.
End binding 1 (EB1) is a plus-end-tracking protein (+TIP) that localizes to microtubule plus ends where it modulates their dynamics and interactions with intracellular organelles. Although the regulating activity of EB1 on microtubule dynamics has been studied in cells and purified systems, the molecular mechanisms involved in its specific activity are still unclear. Here, we describe how EB1 regulates the dynamics and structure of microtubules assembled from pure tubulin. We found that EB1 stimulates spontaneous nucleation and growth of microtubules, and promotes both catastrophes (transitions from growth to shrinkage) and rescues (reverse events). Electron cryomicroscopy showed that EB1 induces the initial formation of tubulin sheets, which rapidly close into the common 13-protofilament-microtubule architecture. Our results suggest that EB1 favours the lateral association of free tubulin at microtubule-sheet edges, thereby stimulating nucleation, sheet growth and closure. The reduction of sheet length at microtubule growing-ends together with the elimination of stressed microtubule lattices may account for catastrophes. Conversely, occasional binding of EB1 to the microtubule lattice may induce rescues.  相似文献   

5.
Microtubule dynamics in interphase cells   总被引:67,自引:50,他引:17       下载免费PDF全文
The sites of microtubule growth and the kinetics of elongation have been studied in vivo by microinjection of biotin-labeled tubulin and subsequent visualization with immunocytochemical probes. Immunofluorescence and immunoelectron microscopy demonstrate that injected biotin-labeled subunits are incorporated into new segments of growth which are contiguous with unlabeled microtubules. Rapid incorporation occurs by elongation of existing microtubules and new nucleation off the centrosome. The growth rate is 3.6 micron/min and is independent of the concentration of injected labeled tubulin. This rate of incorporation together with turnover of existing microtubules leads to approximately 80% exchange in 15 min. The observed kinetics and pattern of microtubule turnover allow for an evaluation of the relevance of several in vitro models for steady-state dynamics to the in vivo situation. We have also observed a substantial population of quasi-stable microtubules that does not exchange subunits as rapidly as the majority of microtubules and may have specialized functions in the cell.  相似文献   

6.
Tubulin undergoes posttranslational modifications proposed to specify microtubule subpopulations for particular functions. Most of these modifications occur on the C-termini of tubulin and may directly affect the binding of microtubule-associated proteins (MAPs) or motors. Acetylation of Lys-40 on α-tubulin is unique in that it is located on the luminal surface of microtubules, away from the interaction sites of most MAPs and motors. We investigate whether acetylation alters the architecture of microtubules or the conformation of tubulin, using cryo–electron microscopy (cryo-EM). No significant changes are observed based on protofilament distributions or microtubule helical lattice parameters. Furthermore, no clear differences in tubulin structure are detected between cryo-EM reconstructions of maximally deacetylated or acetylated microtubules. Our results indicate that the effect of acetylation must be highly localized and affect interaction with proteins that bind directly to the lumen of the microtubule. We also investigate the interaction of the tubulin acetyltransferase, αTAT1, with microtubules and find that αTAT1 is able to interact with the outside of the microtubule, at least partly through the tubulin C-termini. Binding to the outside surface of the microtubule could facilitate access of αTAT1 to its luminal site of action if microtubules undergo lateral opening between protofilaments.  相似文献   

7.
Microtubules are essential cytoskeletal structures that mediate several dynamic processes in a cell. To shed light on the structural processes relating to microtubule formation and dynamic instability, we investigated microtubules composed of 15 protofilaments using cryo-electron microscopy, helical image reconstruction and computational modelling. Analysis of the configuration of the alpha beta-tubulin heterodimer shows distinct structural differences in both subunits, and illustrates that the tubulin subunits have different roles in the microtubule lattice. Our modelling data suggest that after GTP hydrolysis microtubules, adopt a conformational state somewhere between a straight protofilament conformation--as found in zinc-induced tubulin sheets--and an outward curved conformation--as found in tubulin-stathmin complexes. The tendency towards a curved conformation seems to be mediated mostly by beta-tubulin, whereas alpha-tubulin resembles a state more related to the straight structure. Our data suggest a possible explanation of dynamic instability of microtubules, and for nucleotide-sensitive microtubule-binding properties of microtubule-associated proteins and molecular motors.  相似文献   

8.
Erent M  Drummond DR  Cross RA 《PloS one》2012,7(2):e30738
The kinesins-8 were originally thought to be microtubule depolymerases, but are now emerging as more versatile catalysts of microtubule dynamics. We show here that S. pombe Klp5-436 and Klp6-440 are non-processive plus-end-directed motors whose in vitro velocities on S. pombe microtubules at 7 and 23 nm s(-1) are too slow to keep pace with the growing tips of dynamic interphase microtubules in living S. pombe. In vitro, Klp5 and 6 dimers exhibit a hitherto-undescribed combination of strong enhancement of microtubule nucleation with no effect on growth rate or catastrophe frequency. By contrast in vivo, both Klp5 and Klp6 promote microtubule catastrophe at cell ends whilst Klp6 also increases the number of interphase microtubule arrays (IMAs). Our data support a model in which Klp5/6 bind tightly to free tubulin heterodimers, strongly promoting the nucleation of new microtubules, and then continue to land as a tubulin-motor complex on the tips of growing microtubules, with the motors then dissociating after a few seconds residence on the lattice. In vivo, we predict that only at cell ends, when growing microtubule tips become lodged and their growth slows down, will Klp5/6 motor activity succeed in tracking growing microtubule tips. This mechanism would allow Klp5/6 to detect the arrival of microtubule tips at cells ends and to amplify the intrinsic tendency for microtubules to catastrophise in compression at cell ends. Our evidence identifies Klp5 and 6 as spatial regulators of microtubule dynamics that enhance both microtubule nucleation at the cell centre and microtubule catastrophe at the cell ends.  相似文献   

9.
We propose a stochastic model that accounts for the growth, catastrophe and rescue processes of steady-state microtubules assembled from MAP-free tubulin in the possible presence of a microtubule-associated drug. As an example of the latter, we both experimentally and theoretically study the perturbation of microtubule dynamic instability by S-methyl-D-DM1, a synthetic derivative of the microtubule-targeted agent maytansine and a potential anticancer agent. Our model predicts that among the drugs that act locally at the microtubule tip, primary inhibition of the loss of GDP tubulin results in stronger damping of microtubule dynamics than inhibition of GTP tubulin addition. On the other hand, drugs whose action occurs in the interior of the microtubule need to be present in much higher concentrations to have visible effects.  相似文献   

10.
Tubulin modifications and their cellular functions   总被引:7,自引:0,他引:7  
All microtubules are built from a basic alpha/beta-tubulin building block, yet subpopulations of microtubules can be differentially marked by a number of post-translational modifications. These modifications, conserved throughout evolution, are thought to act individually or in combination to control specific microtubule-based functions, analogous to how histone modifications regulate chromatin functions. Here we review recent studies demonstrating that tubulin modifications influence microtubule-associated proteins such as severing proteins, plus-end tracking proteins, and molecular motors. In this way, tubulin modifications play an important role in regulating microtubule properties, such as stability and structure, as well as microtubule-based functions, such as ciliary beating, cell division, and intracellular trafficking.  相似文献   

11.
Ji XY  Feng XQ 《PloS one》2011,6(12):e29049
Microtubule dynamics is largely influenced by nucleotide hydrolysis and the resultant tubulin configuration changes. The GTP cap model has been proposed to interpret the stabilizing mechanisms of microtubule growth from the view of hydrolysis effects. Besides, the growth of a microtubule involves the closure of a curved sheet at its growing end. The curvature conversion from the longitudinal direction to the circumferential direction also helps to stabilize the successive growth, and the curved sheet is referred to as the conformational cap. However, there still lacks theoretical investigation on the mechanical-chemical coupling growth process of microtubules. In this paper, we study the growth mechanisms of microtubules by using a coarse-grained molecular method. First, the closure process involving a sheet-to-tube transition is simulated. The results verify the stabilizing effect of the sheet structure and predict that the minimum conformational cap length that can stabilize the growth is two dimers. Then, we show that the conformational cap and the GTP cap can function independently and harmoniously, signifying the pivotal role of mechanical factors. Furthermore, based on our theoretical results, we describe a Tetris-like growth style of microtubules: the stochastic tubulin assembly is regulated by energy and harmonized with the seam zipping such that the sheet keeps a practically constant length during growth.  相似文献   

12.
The post-translational modification of tubulin appears to be a highly controlled mechanism that regulates microtubule functioning. Acetylation of the ϵ-amino group of Lys-40 of α-tubulin marks stable microtubules, although the causal relationship between tubulin acetylation and microtubule stability has remained poorly understood. HDAC6, the tubulin deacetylase, plays a key role in maintaining typical distribution of acetylated microtubules in cells. Here, by using tubastatin A, an HDAC6-specific inhibitor, and siRNA-mediated depletion of HDAC6, we have explored whether tubulin acetylation has a role in regulating microtubule stability. We found that whereas both pharmacological inhibition of HDAC6 as well as its depletion enhance microtubule acetylation, only pharmacological inhibition of HDAC6 activity leads to an increase in microtubule stability against cold and nocodazole-induced depolymerizing conditions. Tubastatin A treatment suppressed the dynamics of individual microtubules in MCF-7 cells and delayed the reassembly of depolymerized microtubules. Interestingly, both the localization of HDAC6 on microtubules and the amount of HDAC6 associated with polymeric fraction of tubulin were found to increase in the tubastatin A-treated cells compared with the control cells, suggesting that the pharmacological inhibition of HDAC6 enhances the binding of HDAC6 to microtubules. The evidence presented in this study indicated that the increased binding of HDAC6, rather than the acetylation per se, causes microtubule stability. The results are in support of a hypothesis that in addition to its deacetylase function, HDAC6 might function as a MAP that regulates microtubule dynamics under certain conditions.  相似文献   

13.
Alzheimer's disease (AD) is the most common form of dementia in the elderly. Hallmark AD neuropathology includes extracellular amyloid plaques composed largely of the amyloid-β protein (Aβ), intracellular neurofibrillary tangles (NFTs) composed of hyper-phosphorylated microtubule-associated protein tau (MAP-tau), and microtubule destabilization. Early-onset autosomal dominant AD genes are associated with excessive Aβ accumulation, however cognitive impairment best correlates with NFTs and disrupted microtubules. The mechanisms linking Aβ and NFT pathologies in AD are unknown. Here, we propose that sequestration of zinc by Aβ-amyloid deposits (Aβ oligomers and plaques) not only drives Aβ aggregation, but also disrupts zinc homeostasis in zinc-enriched brain regions important for memory and vulnerable to AD pathology, resulting in intra-neuronal zinc levels, which are either too low, or excessively high. To evaluate this hypothesis, we 1) used molecular modeling of zinc binding to the microtubule component protein tubulin, identifying specific, high-affinity zinc binding sites that influence side-to-side tubulin interaction, the sensitive link in microtubule polymerization and stability. We also 2) performed kinetic modeling showing zinc distribution in extra-neuronal Aβ deposits can reduce intra-neuronal zinc binding to microtubules, destabilizing microtubules. Finally, we 3) used metallomic imaging mass spectrometry (MIMS) to show anatomically-localized and age-dependent zinc dyshomeostasis in specific brain regions of Tg2576 transgenic, mice, a model for AD. We found excess zinc in brain regions associated with memory processing and NFT pathology. Overall, we present a theoretical framework and support for a new theory of AD linking extra-neuronal Aβ amyloid to intra-neuronal NFTs and cognitive dysfunction. The connection, we propose, is based on β-amyloid-induced alterations in zinc ion concentration inside neurons affecting stability of polymerized microtubules, their binding to MAP-tau, and molecular dynamics involved in cognition. Further, our theory supports novel AD therapeutic strategies targeting intra-neuronal zinc homeostasis and microtubule dynamics to prevent neurodegeneration and cognitive decline.  相似文献   

14.
Estimation of the diffusion-limited rate of microtubule assembly.   总被引:2,自引:0,他引:2       下载免费PDF全文
Microtubule assembly is a complex process with individual microtubules alternating stochastically between extended periods of assembly and disassembly, a phenomenon known as dynamic instability. Since the discovery of dynamic instability, molecular models of assembly have generally assumed that tubulin incorporation into the microtubule lattice is primarily reaction-limited. Recently this assumption has been challenged and the importance of diffusion in microtubule assembly dynamics asserted on the basis of scaling arguments, with tubulin gradients predicted to extend over length scales exceeding a cell diameter, approximately 50 microns. To assess whether individual microtubules in vivo assemble at diffusion-limited rates and to predict the theoretical upper limit on the assembly rate, a steady-state mean-field model for the concentration of tubulin about a growing microtubule tip was developed. Using published parameter values for microtubule assembly in vivo (growth rate = 7 microns/min, diffusivity = 6 x 10(-12) m2/s, tubulin concentration = 10 microM), the model predicted that the tubulin concentration at the microtubule tip was approximately 89% of the concentration far from the tip, indicating that microtubule self-assembly is not diffusion-limited. Furthermore, the gradients extended less than approximately 50 nm (the equivalent of about two microtubule diameters) from the microtubule tip, a distance much less than a cell diameter. In addition, a general relation was developed to predict the diffusion-limited assembly rate from the diffusivity and bulk tubulin concentration. Using this relation, it was estimated that the maximum theoretical assembly rate is approximately 65 microns/min, above which tubulin can no longer diffuse rapidly enough to support faster growth.  相似文献   

15.
Freedman H  Luchko T  Luduena RF  Tuszynski JA 《Proteins》2011,79(10):2968-2982
Tubulin, an α/β heterodimer, has had most of its 3D structure analyzed; however, the carboxy (C)-termini remain elusive. Importantly, the C-termini play critical roles in regulating microtubule structure and function. They are sites of most of the post-translational modifications of tubulin and interaction sites with molecular motors and microtubule-associated proteins. Simulated annealing was used in our molecular dynamics modeling to predict the interactions of the C-terminal tails with the tubulin dimer. We examined differences in their flexibility, interactions with the body of tubulin, and the existence of structural motifs. We found that the α-tubulin tail interacts with the H11 helix of β-tubulin, and the β-tubulin tail interacts with the H11 helix of α-tubulin. Tail domains and H10/B9 loops interact with each other and compete for interactions with positively-charged residues of the H11 helix on the neighboring monomer. In a simulation in which α-tubulin's H10/B9 loop switches on sub-nanosecond intervals between interactions with the C-terminal tail of α-tubulin and the H11 helix of β-tubulin, the intermediate domain of α-tubulin showed more fluctuations compared to those in the other simulations, indicating that tail domains may cause shifts in the position of this domain. This suggests that C-termini may affect the conformation of the tubulin dimer which may explain their essential function in microtubule formation and effects on ligand binding to microtubules. Our modeling also provides evidence for a disordered-helical/helical double-state system of the T3/H3 region of the microtubule, which could be linked to depolymerization following GTP hydrolysis.  相似文献   

16.
Microtubule dynamics have key roles in mitotic spindle assembly and chromosome movement [1]. Fast turnover of spindle microtubules at metaphase and polewards flux of microtubules (polewards movement of the microtubule lattice with depolymerization at the poles) at both metaphase and anaphase have been observed in mammalian cells [2]. Imaging spindle dynamics in genetically tractable yeasts is now possible using green fluorescent protein (GFP)-tagging of tubulin and sites on chromosomes [3] [4] [5] [6] [7] [8]. We used photobleaching of GFP-labeled tubulin to observe microtubule dynamics in the fission yeast Schizosaccharomyces pombe. Photobleaching did not perturb progress through mitosis. Bleached marks made on the spindle during metaphase recovered their fluorescence rapidly, indicating fast microtubule turnover. Recovery was spatially non-uniform, but we found no evidence for polewards flux. Marks made during anaphase B did not recover fluorescence, and were observed to slide away from each other at the same rate as spindle elongation. Fast microtubule turnover at metaphase and a switch to stable microtubules at anaphase suggest the existence of a cell-cycle-regulated molecular switch that controls microtubule dynamics and that may be conserved in evolution. Unlike the situation for vertebrate spindles, microtubule depolymerization at poles and polewards flux may not occur in S. pombe mitosis. We conclude that GFP-tubulin photobleaching in conjunction with mutant cells should aid research on molecular mechanisms causing and regulating dynamics.  相似文献   

17.
Regeneration of mirror symmetrical limbs in the axolotl   总被引:20,自引:0,他引:20  
J M Slack  S Savage 《Cell》1978,14(1):1-8
Measurements of tubulin exchange into and from bovine brain microtubules at steady state in vitro were made with 3H-GTP as a marker for tubulin addition to or loss from microtubules. Tubulin has an exchangeable GTP binding site that becomes nonexchangeable in the microtubule. We found that tubulin addition to and loss from microtubules under steady state conditions occurred at equivalent rates, that loss and gain were linear, and that exchange rates (percentage of total tubulin in microtubules lost or gained per hour) were dependent upon microtubule length. Furthermore, we found that podophyllotoxin blocked steady state assembly, but did not alter the rate of steady state tubulin loss. When the assembling microtubule end was pulsed with 3H-GTP at steady state, the label was almost completely retained during a subsequent chase. We conclude that the microtubule assembly-disassembly "equilibrium" is a steady state summation of two different reactions which occur at opposite ends of the microtubule, and that assembly and disassembly occur predominantly and perhaps exclusively at the opposite ends under steady state conditions in vitro.  相似文献   

18.
A combined morphometric and biochemical approach has been used to identify and quantitate microtubules and tubulin in isolated hepatocytes. The total soluble pool of microtubule protein was estimated by specific high affinity binding to radiolabeled colchicine. Scatchard analysis of the data identified two populations of binding sites: high affinity-low capacity sites resembling tubulin and low affinity-high capacity sites believed to represent nonspecific colchicine-binding sites. Data from these studies indicate that tubulin represents 1% of the soluble protein of the cell, that 9.0 X 10(-14) dimers of tubulin are present per microgram soluble hepatocyte protein, and that the average hepatocyte contains 3.1 X 10(7) tubulin dimers. Our calculations suggest that this amount of tubulin would form a microtubule 1.9 cm in length if totally assembled. However, stereological measurements indicate that the actual length of microtubules in the cytosolic compartment of the average hepatocyte is only 0.28 cm. Thus, these experiments suggest that only 15% of the available tubulin in hepatocytes of postabsorptive rats is assembled in the form of microtubules.  相似文献   

19.
The microtubule cytoskeleton is assembled from a finite pool of α,β-tubulin, the size of which is controlled by an autoregulation mechanism. Cells also tightly regulate the architecture and dynamic behavior of microtubule arrays. Here, we discuss progress in our understanding of how tubulin autoregulation is achieved and highlight work showing that tubulin, in its unassembled state, is relevant for regulating the formation and organization of microtubules. Emerging evidence suggests that tubulin regulates microtubule-associated proteins and kinesin motors that are critical for microtubule nucleation, dynamics, and function. These relationships create feedback loops that connect the tubulin assembly cycle to the organization and dynamics of microtubule networks. We term this concept the ‘tubulin economy’, which emphasizes the idea that tubulin is a resource that can be deployed for the immediate purpose of creating polymers, or alternatively as a signaling molecule that has more far-reaching consequences for the organization of microtubule arrays.  相似文献   

20.
R Melki  M F Carlier    D Pantaloni 《The EMBO journal》1988,7(9):2653-2659
The essential reactions involved in the oscillatory kinetics of microtubule polymerization have been investigated. The rate of GDP dissociation from tubulin decreased cooperatively upon increasing tubulin concentration above 20 microM, consistent with the formation of GDP oligomers whose dissociation is rate limiting in nucleotide exchange. The apparent rate constant for nucleotide exchange at high tubulin concentration was 0.02 s-1 at 37 degrees C, which is the exact value needed in previous theoretical simulations to obtain oscillations with the real period of 70-80 s. A glass filter assay separating microtubules from oligomers and tubulin allowed nucleotide bound to non-microtubular tubulin during the oscillations to be monitored. In agreement with nucleotide exchange data, tubulin-bound GDP was found to oscillate in antiphase with microtubules. By varying the concentration of an enzymatic GTP-regenerating system, we could demonstrate that the period of the oscillations is directly controlled by the rate at which GTP is regenerated on tubulin, and oscillations can be observed under conditions where the dissociation of oligomers is no longer rate limiting. The possible physiological significance of GTP-regenerating systems in establishing synchrony in a microtubule population is evoked. The present data confirm and extend the model that we previously proposed to account for the oscillations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号