首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA mimic proteins have evolved to control DNA-binding proteins by competing with the target DNA for binding to the protein. The Ocr protein of bacteriophage T7 is the most studied DNA mimic and functions to block the DNA-binding groove of Type I DNA restriction/modification enzymes. This binding prevents the enzyme from cleaving invading phage DNA. Each 116 amino acid monomer of the Ocr dimer has an unusual amino acid composition with 34 negatively charged side chains but only 6 positively charged side chains. Extensive mutagenesis of the charges of Ocr revealed a regression of Ocr activity from wild-type activity to partial activity then to variants inactive in antirestriction but deleterious for cell viability and lastly to totally inactive variants with no deleterious effect on cell viability. Throughout the mutagenesis the Ocr mutant proteins retained their folding. Our results show that the extreme bias in charged amino acids is not necessary for antirestriction activity but that less charged variants can affect cell viability by leading to restriction proficient but modification deficient cell phenotypes.  相似文献   

2.
Estramustine-phosphate (EMP), a phosphorylated conjugate of estradiol and nor-nitrogen mustard binds to microtubule-associated proteins MAP-2 and tau. It was shown that this estramustine derivative inhibits the binding of the C-terminal tubulin peptide beta-(422-434) to both MAP-2 and tau. This tubulin segment constitutes a main binding domain for these microtubule-associated proteins. Interestingly, estramustine-phosphate interacted with the synthetic tau peptides V187-G204 and V218-G235, representing two major repeats within the conserved microtubule-binding domain on tau and also on MAP-2. This observation was corroborated by the inhibitory effects of estramustine-phosphate on the tau peptide-induced tubulin assembly into microtubules. On the other hand, the nonphosphorylated drug estramustine failed to block the MAP peptide-induced assembly, indicating that the negatively charged phosphate moiety of estramustine-phosphate is of importance for its inhibitory effect. These findings suggest that the molecular sites for the action of estramustine-phosphate are located within the microtubule binding domains on tau and MAP-2.  相似文献   

3.
Centromere function on minichromosomes isolated from budding yeast.   总被引:7,自引:1,他引:6       下载免费PDF全文
Centromeres are a complex of centromere DNA (CEN DNA) and specific factors that help mediate microtubule-dependent movement of chromosomes during mitosis. Minichromosomes can be isolated from budding yeast in a way that their centromeres retain the ability to bind microtubules in vitro. Here, we use the binding of these minichromosomes to microtubules to gain insight into the properties of centromeres assembled in vivo. Our results suggest that neither chromosomal DNA topology nor proximity of telomeres influence the cell's ability to assemble centromeres with microtubule-binding activity. The microtubule-binding activity of the minichromosome's centromere is stable in the presence of competitor CEN DNA, suggesting that the complex between the minichromosome CEN DNA and proteins directly bound to it is very stable. The efficiency of centromere binding to microtubules is dependent upon the concentration of microtubule polymer and is inhibited by ATP. These properties are similar to those exhibited by mechanochemical motors. The binding of minichromosomes to microtubules can be inactivated by the presence of 0.2 M NaCl and then reactivated by restoring NaCl to 0.1 M. In 0.2 M NaCl, some centromere factor(s) bind to microtubules, whereas other(s) apparently remain bound to the minichromosome's CEN DNA. Therefore, the yeast centromere appears to consist of two domains: the first consists of a stable core containing CEN DNA and CEN DNA-binding proteins; the second contains a microtubule-binding component(s). The molecular functions of this second domain are discussed.  相似文献   

4.
We present an in vitro system to analyze quantitatively the interactions of green fluorescent protein (GFP)-tagged recombinant proteins with microtubules. This method relies on photoconversion of GFP and time-lapse microscopy. Specific interactions can be detected and binding kinetics can be determined rapidly and accurately. This method provides an alternative to classical in vitro microtubule-binding assays to analyze microtubule-associated proteins binding to microtubules. It has the potential to be extended to study interactions of proteins or multi-protein complexes with different biopolymers like actin microfilaments or organelle membranes.  相似文献   

5.
The major component of the cytoskeleton of the parasitic hemoflagellate Trypanosoma brucei is a membrane skeleton which consists of a single layer of tightly spaced microtubules. This array encloses the entire cell body, and it is apposed to, and connected with, the overlying cell membrane. The microtubules of this array contain numerous microtubule-associated proteins. Prominent among those is a family of high molecular weight, repetitive proteins which consist to a large extent of tandemly arranged 38-amino acid repeat units. The binding of one of these proteins, MARP-1, to microtubules has now been characterized in vitro and in vivo. MARP-1 binds to microtubules via tubulin domains other than the COOH-termini used by microtubule-associated proteins from mammalian brain, e.g., MAP2 or Tau. In vitro binding assays using recombinant protein, as well as transfection of mammalian cell lines, have established that the repetitive 38-amino acid repeat units represent a novel microtubule-binding motif. This motif is very similar in length to those of the mammalian microtubule-associated proteins Tau, MAP2, and MAP-U, but both its sequence and charge are different. The observation that the microtubule-binding motifs both of the neural and the trypanosomal proteins are of similar length may reflect the fact that both mediate binding to the same repetitive surface, the microtubule, while their sequence and charge differences are in agreement with the observation that they interact with different domains of the tubulins.  相似文献   

6.
The enhanced thermodynamic stability of PNA:DNA and PNA:RNA duplexes compared with DNA:DNA and DNA:RNA duplexes has been attributed in part to the lack of electrostatic repulsion between the uncharged PNA backbone and negatively charged DNA or RNA backbone. However, there are no previously reported studies that systematically evaluate the effect of ionic strength on duplex stability for PNA having a charged backbone. Here we investigate the role of charge repulsion in PNA binding by synthesizing PNA strands having negatively or positively charged side chains, then measuring their duplex stability with DNA or RNA at varying salt concentrations. At low salt concentrations, positively charged PNA binds more strongly to DNA and RNA than does negatively charged PNA. However, at medium to high salt concentrations, this trend is reversed, and negatively charged PNA shows higher affinity for DNA and RNA than does positively charged PNA. These results show that charge screening by counterions in solution enables negatively charged side chains to be incorporated into the PNA backbone without reducing duplex stability with DNA and RNA. This research provides new insight into the role of electrostatics in PNA binding, and demonstrates that introduction of negatively charged side chains is not significantly detrimental to PNA binding affinity at physiological ionic strength. The ability to incorporate negative charge without sacrificing binding affinity is anticipated to enable the development of PNA therapeutics that take advantage of both the inherent benefits of PNA and the multitude of charge-based delivery technologies currently being developed for DNA and RNA.  相似文献   

7.
Microtubule-associated proteins (MAPs) use particular microtubule-binding domains that allow them to interact with microtubules in a manner specific to their individual cellular functions. Here, we have identified a highly basic microtubule-binding domain in the p150 subunit of dynactin that is only present in the dynactin members of the CAP-Gly family of proteins. Using single-particle microtubule-binding assays, we found that the basic domain of dynactin moves progressively along microtubules in the absence of molecular motors - a process we term 'skating'. In contrast, the previously described CAP-Gly domain of dynactin remains firmly attached to a single point on microtubules. Further analyses showed that microtubule skating is a form of one-dimensional diffusion along the microtubule. To determine the cellular function of the skating phenomenon, dynein and the dynactin microtubule-binding domains were examined in single-molecule motility assays. We found that the basic domain increased dynein processivity fourfold whereas the CAP-Gly domain inhibited dynein motility. Our data show that the ability of the basic domain of dynactin to skate along microtubules is used by dynein to maintain longer interactions for each encounter with microtubules.  相似文献   

8.
Summary In the telotrophic ovariole of Dysdercus intermedius the intercellular transport consists of different subsystems. Microinjection of FITC-labeled slowly diffusing proteins with opposite electrical net charges and of mitochondria was used to study the translocation of macromolecules and organelles. a) By intracellular measurements a voltage gradient of about 4 mV between the tropharium as the more negative side and the previtellogenic oocytes could be demonstrated. b) After injection into the tropharium negatively charged proteins migrated according to the electropotential gradient via the trophic cords into the oocytes. Positively charged proteins, however, were retained in the tropharium. c) After injection into previtellogenic oocytes both negatively and positively charged proteins moved into the trophic cords. Thus, the effectiveness of the electropotential gradient on the distribution of charged proteins is more pronounced from the tropharium side. d) Mitochondria microinjected into the trophic core were probably aligned along microtubules and translocated towards the trophic cords. — These results suggest that in the telotrophic bug ovariole a number of intercellular transport subsystems contribute to provide previtellogenic oocytes with nurse cells products. An electrophoretic transport mechanism for soluble proteins acting especially within the tropharium and a microtubule-associated transport for mitochondria could be evidenced.  相似文献   

9.
The capability for electrogenic inward transport of substrates that carry different net charge is a phenomenon observed in a variety of membrane-solute transporters but is not yet understood. We employed the two-electrode voltage clamp technique combined with intracellular pH recordings and the giant patch technique to assess the selectivity for bidirectional transport and the underlying stoichiometries in proton to substrate flux coupling for electrogenic transfer of selected anionic, cationic, and neutral dipeptides by the intestinal peptide transporter PEPT1. Anionic dipeptides such as Gly-Asp and Asp-Gly are transported in their neutral and negatively charged forms with high and low affinities, respectively. The positive transport current obtained with monoanionic substrates results from the cotransport of two protons. Cationic dipeptides can be transported in neutral and positively charged form, resulting in an excess transport current as compared with neutral substrates. However, binding and transport of cationic dipeptides shows a pronounced selectivity for the position of charged side chains demonstrating that the binding domain of PEPT1 is asymmetric, both in its inward and outward facing conformation. The simultaneous presence of identically charged substrates on both membrane surfaces generates outward and, unexpectedly, enhanced inward transport currents probably by increasing the turnover rate.  相似文献   

10.
Studies of the mechanism of lipid-induced regulation of the microsomal enzyme UDP-glucuronosyltransferase have been extended by examining the influence of charge within the polar region on the ability of lipids to activate delipidated pure enzyme. The effects of net negative charge, of charge separation in phosphocholine, and of the distribution of charge in the polar region of lipids were studied using the GT2p isoform isolated from pig liver. Prior experiments have shown that lipids with net negative charge inhibit the enzyme (Zakim, D., Cantor, M., and Eibl, H. (1988) J. Biol. Chem. 263, 5164-5169). The current experiments show that the extent of inhibition on a molar basis increases as the net negative charge increases from -1 to -2. The inhibitory effect of negatively charged lipids is on the functional state of the enzyme and is not due to electrostatic repulsion of negatively charged substrates of the enzyme. Although the inhibitory effect of net negative charge is removed when negative charge is balanced by a positive charge due to a quaternary nitrogen, neutrality of the polar region is not a sufficient condition for activation of the enzyme. In addition to a balance of charge between Pi and the quaternary nitrogen, the distance between the negative and positive charges and the orientation of the dipole created by them are critical for activation of GT2p. The negative and positive charges must be separated by the equivalent of three -CH2- groups for optimal activation by a lipid. Shortening this distance by one -CH2- unit leads to a lipid that is ineffective in activating the enzyme. Reversal of the orientation of the dipole in which the negative charge is on the polymethylene side of the lipid-water interface and the positive charge extends into water also produces a lipid that is not effective for activating GT2p. On the other hand, lipids with phosphoserine as the polar region, which has the "normal" P-N distance but carries a net negative charge, do not inhibit GT2p. This result again illustrates the importance of the dipole of phosphocholine for modulating the functional state of GT2p.  相似文献   

11.
Ribosomes are large and highly charged macromolecular complexes consisting of RNA and proteins. Here, we address the electrostatic and nonpolar properties of ribosomal proteins that are important for ribosome assembly and interaction with other cellular components and may influence protein folding on the ribosome. We examined 50 S ribosomal subunits from 10 species and found a clear distinction between the net charge of ribosomal proteins from halophilic and non-halophilic organisms. We found that ∼67% ribosomal proteins from halophiles are negatively charged, whereas only up to ∼15% of ribosomal proteins from non-halophiles share this property. Conversely, hydrophobicity tends to be lower for ribosomal proteins from halophiles than for the corresponding proteins from non-halophiles. Importantly, the surface electrostatic potential of ribosomal proteins from all organisms, especially halophiles, has distinct positive and negative regions across all the examined species. Positively and negatively charged residues of ribosomal proteins tend to be clustered in buried and solvent-exposed regions, respectively. Hence, the majority of ribosomal proteins is characterized by a significant degree of intramolecular charge segregation, regardless of the organism of origin. This key property enables the ribosome to accommodate proteins within its complex scaffold regardless of their overall net charge.  相似文献   

12.
Proteins in general consist not only of globular structural domains (SDs), but also of intrinsically disordered regions (IDRs), i.e. those that do not assume unique three-dimensional structures by themselves. Although IDRs are especially prevalent in eukaryotic proteins, the functions are mostly unknown. To elucidate the functions of IDRs, we first divided eukaryotic proteins into subcellular localizations, identified IDRs by the DICHOT system that accurately divides entire proteins into SDs and IDRs, and examined charge and hydropathy characteristics. On average, mitochondrial proteins have IDRs more positively charged than SDs. Comparison of mitochondrial proteins with orthologous prokaryotic proteins showed that mitochondrial proteins tend to have segments attached at both N and C termini, high fractions of which are IDRs. Segments added to the N-terminus of mitochondrial proteins contain not only signal sequences but also mature proteins and exhibit a positive charge gradient, with the magnitude increasing toward the N-terminus. This finding is consistent with the notion that positively charged residues are added to the N-terminus of proteobacterial proteins so that the extended proteins can be chromosomally encoded and efficiently transported to mitochondria after translation. By contrast, nuclear proteins generally have positively charged SDs and negatively charged IDRs. Among nuclear proteins, DNA-binding proteins have enhanced charge tendencies. We propose that SDs in nuclear proteins tend to be positively charged because of the need to bind to negatively charged nucleotides, while IDRs tend to be negatively charged to interact with other proteins or other regions of the same proteins to avoid premature proteasomal degradation.  相似文献   

13.
The microtubule-binding domain of MAP4, a ubiquitous microtubule-associated protein, contains a Repeat region with tandemly organized repeat sequences. In this study, we focused on the variations of the Repeat region, and searched for MAP4 isoforms with diverse Repeat region organizations. We successfully isolated four types of MAP4 cDNAs, which differed from each other in both the number and the arrangement of the repeat sequences, from a single source (bovine adrenal gland). To examine the functional differences among the isoforms, we prepared the microtubule-binding domain polypeptides of three of the four isoforms, and examined their activities. The isoform fragments showed similar degrees of microtubule assembly promoting activity and microtubule binding affinity. This result suggested that the Repeat region variation is not important for the control of microtubule dynamics, which is believed to be the main function of MAPs. On the other hand, the microtubule bundle-forming activity differed among the isoform fragments. The bundle formation was augmented by increasing the number of repeat sequences in the fragments. Based on these results, we propose the hypothesis that the role of the MAP4 isoforms is to regulate the surface charge of microtubules.  相似文献   

14.
Summary The clear zones seen around microtubules in transverse sections of nutritive tubes vary in size depending on whether a microtubule is bordered by ribosomes or by another microtubule. We consider that such a finding is not consistent with the current view, that the clear zone is maintained by microtubule-associated material. It can, however, be accounted for by an electrostatic repulsion between the surfaces of negatively charged microtubules and between microtubules and ribosomes which are also negatively charged. The experiments presented here, involving on the one hand the addition of cationic substances to microtubules and on the other the alteration in charge of the microtubules, support this hypothesis.  相似文献   

15.
The human HSPC280 protein belongs to a new family of low molecular weight proteins, which is only present in eukaryotes, and is absent in fungi. The solution structure of HSPC280 was determined using multidimensional NMR spectroscopy. The overall structure consists of three α-helices and four antiparallel β-strands and has a winged helix-like fold. However, HEPC280 is not a typical DNA-binding winged helix protein in that it lacks DNA-binding activity. Unlike most winged-helix proteins, HSPC280 has an unusually long 13-residue (P62-V74) wing 1 loop connecting the β3 and β4 strands of the protein. Molecules of HSPC280 have a positively charged surface on one side and a negatively charged surface on the other side of the protein structure. Comparisons with the C-terminal 80-residue domain of proteins in the Abra family reveal a conserved hydrophobic groove in the HSPC280 family, which may allow HSPC280 to interact with other proteins.  相似文献   

16.
Chromokinesin Kid (kinesin-like DNA-binding protein) localizes on spindles and chromosomes and has important roles in generating polar ejection force on microtubules in the metaphase. To understand these functions of Kid at the molecular level, we investigated molecular properties of Kid, its oligomeric state, interaction with microtubules, and physiological activity in vitro. Kid expressed in mammalian cells, as well as Kid expressed in Escherichia coli, was found to be monomeric. However, Kid cross-linked microtubules in an ATP-sensitive manner, suggesting that Kid has a second microtubule-binding site in addition to its motor domain. This was ascertained by binding of Kid fragments lacking the motor domain to microtubules. The interaction of the second microtubule-binding site was weak in a nucleotide-insensitive manner. KmMT of the ATPase activity of Kid was lower than that of the fragments lacking the second microtubule-binding site. Moreover, the velocity of Kid movement in vitro was not affected by the second microtubule-binding site, which is consistent with the weak binding of this site to microtubules. The second microtubule-binding site would be important to enhance the affinity to microtubules for the monomeric motor, Kid. Because the amino acid sequence of this region is highly conserved among species, it seems to have essential roles for the functions of Kid in vivo.  相似文献   

17.
18.
Protein aggregation can have dramatic effects on cellular function and plays a causative role in many human diseases. In all cells, molecular chaperones bind to aggregation-prone proteins and hinder aggregation. The ability of a protein to resist aggregation and remain soluble in aqueous solution is linked to the physical properties of the protein. Numerous physical studies demonstrate that charged atoms favor solubility. We note that many molecular chaperones possess a substantial negative charge that may allow them to impart solubility on aggregation-prone proteins. Hsp90 is one such negatively charged molecular chaperone. The charge on Hsp90 is largely concentrated in two highly acidic regions. To investigate the relationship between chaperone charge and protein solubility, we deleted these charge-rich regions and analyzed the resulting Hsp90 constructs for anti-aggregation activity. We found that deletion of both charge-rich regions dramatically impaired Hsp90 anti-aggregation activity. The anti-aggregation role of the deleted charge-rich regions could be due to net charge or sequence-specific features. To distinguish these possibilities, we attached an acid-rich region with a distinct amino acid sequence to our double-deleted Hsp90 construct. This charge rescue construct displayed effective anti-aggregation activity indicating that the net charge of Hsp90 contributes to its anti-aggregation activity.  相似文献   

19.
The interaction of apomyoglobin and its mutant forms with phospholipid membranes was studied using tryptophan fluorescence and circular dichroism in the far UV region. It is shown that a negatively charged phospholipid membrane can have a dual effect on the structure of protein molecule upon their interaction. On the one hand, the membrane induces denaturation of the protein native structure to its intermediate state, acting as a moderate denaturing agent. On the other hand, it can stabilize the structure of unfolded protein to the same intermediate state, acting as a moderate structuring agent. The kinetics of interaction between apomyoglobin and its mutant forms and the phospholipid membrane depends on the membrane surface charge. Here the interaction rate depends on the concentration of phospholipids vesicles and stability of protein molecule, which increase with a decrease in the latter. The roles of these factors in the folding of membrane proteins and the choice of the targeted delivery pathways for protein drugs are discussed.  相似文献   

20.
Electrostatic forces are involved in a wide variety of molecular interactions that are of biological interest, including, among others, DNA-Protein interactions, protein folding, and the interactions between enzymes and their substrates and inhibitors. In this work, the interaction between papain and an inhibitor, leupeptin, is analyzed from the point of view of their electrostatic interaction. The computations enable one to suggest that negatively charged amino acids located in the region of the active site are responsible for creating an environment that enables efficient binding of the inhibitor. This binding occurs despite the fact that the net global charge of both molecules is positive; an explanation for this apparent contradiction is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号