首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The scavenger receptor CD36 plays important roles in malaria, including the sequestration of parasite-infected erythrocytes in microvascular capillaries, control of parasitemia through phagocytic clearance by macrophages, and immunity. Although the role of CD36 in the parasite sequestration and clearance has been extensively studied, how and to what extent CD36 contributes to malaria immunity remains poorly understood. In this study, to determine the role of CD36 in malaria immunity, we assessed the internalization of CD36-adherent and CD36-nonadherent Plasmodium falciparum-infected red blood cells (IRBCs) and production of pro-inflammatory cytokines by DCs, and the ability of DCs to activate NK, and T cells. Human DCs treated with anti-CD36 antibody and CD36 deficient murine DCs internalized lower levels of CD36-adherent IRBCs and produced significantly decreased levels of pro-inflammatory cytokines compared to untreated human DCs and wild type mouse DCs, respectively. Consistent with these results, wild type murine DCs internalized lower levels of CD36-nonadherent IRBCs and produced decreased levels of pro-inflammatory cytokines than wild type DCs treated with CD36-adherent IRBCs. Further, the cytokine production by NK and T cells activated by IRBC-internalized DCs was significantly dependent on CD36. Thus, our results demonstrate that CD36 contributes significantly to the uptake of IRBCs and pro-inflammatory cytokine responses by DCs, and the ability of DCs to activate NK and T cells to produce IFN-γ. Given that DCs respond to malaria parasites very early during infection and influence development of immunity, and that CD36 contributes substantially to the cytokine production by DCs, NK and T cells, our results suggest that CD36 plays an important role in immunity to malaria. Furthermore, since the contribution of CD36 is particularly evident at low doses of infected erythrocytes, the results imply that the effect of CD36 on malaria immunity is imprinted early during infection when parasite load is low.  相似文献   

2.
The adhesion of infected red blood cells (IRBCs) to the cell lining of microvasculature is thought to play a central role in the pathogenesis of severe malaria. Individual IRBC can bind to more than one host receptor and parasites with multiple binding phenotypes may cause severe disease more frequently. However, as most clinical isolates are multiclonal, previous studies were hampered by the difficulty to distinguish whether a multiadherent phenotype was due to one or more parasite population(s). We have developed a tool, based on cytoadhesion assay and GeneScan genotyping technology, which enabled us to assess on fresh isolates the capacity of adherence of individual P. falciparum genotypes to human receptors expressed on CHO transfected cells. The cytoadhesion to ICAM-1 and CD36 of IRBCs from uncomplicated and severe malaria attacks was evaluated using this methodology. In this preliminary series conducted in non immune travelers, IRBCs from severe malaria appeared to adhere more frequently and/or strongly to ICAM-1 and CD36 in comparison with uncomplicated cases. In addition, a majority genotype able to strongly adhere to CD36 was found more frequently in isolates from severe malaria cases. Further investigations are needed to confirm the clinical relevance of these data.  相似文献   

3.
Human malignant melanoma cell lines were found to increase shedding of soluble intercellular adhesion molecule-1 (sICAM-1) into the culture medium when the cells were treated with hyperthermia at 41–43°C for 3–6 hr in vitro. The content of ICAM-1 in the cell lysate was also found to be increased after hyperthermia. The increased rate of ICAM-1 concentration in the cells was at maximum when they were incubated at 41°C for 3 hr. Also, the melanoma cell lines heat-treated at 41°C showed more intense immuno-fluorescence in the ICAM-1 expression on the cell surface. It remains to be investigated further whether the effects of hyperthermia on the ICAM-1 expression in melanoma cells is to augment membrane ICAM-1 expression, which in turn leads to shedding of soluble ICAM-1 or only to acceleration of shedding of sICAM-1 by unknown mechanisms.  相似文献   

4.
Dalgliesh R. J. and Stewart N. P. 1979. Observations on the morphology and infectivity for cattle of Babesia bovis parasites in unfed Boophilus microplus larvae after incubation at various temperatures. International Journal for Parasitology9: 115–120. The temperature of incubation of unfed Boophilus microplus larvae infected with Babesia bovis influenced the morphology and infectivity of the Babesia within the tick. Incubation at 37°C for 1–3 days stimulated the development of parasites morphologically similar to those usually observed in fed larvae harvested from cattle; similar forms appeared more slowly in larvae incubated at 31°C or 25°C. Extracts prepared from larvae after incubation at 37°C for 3–5 days or 30°C for 8 days were consistently infective for cattle. Prior storage of larvae at 14°C for up to 28 days enhanced the development of infectivity at 37°C; infectivity could still be produced after 65 days storage at 14°C but not after 76 days. Larvae released on a host transmitted B. bovis sooner if they had been incubated at 37°C for 4 days. It was concluded that the development of B. bovis to an infective stage in B. microplus is temperature dependent and does not require the stimulus of feeding by the host.  相似文献   

5.
6.
Yu Fukasawa 《Mycoscience》2018,59(3):259-262
Hyphal growth rates were tested on malt extract agar plates at eight different temperatures (5–40?°C) using 36 isolates of 17 basidiomycete species obtained from Pinus densiflora deadwood in Japan. All isolates of four brown rot species showed optimum growth at 30?°C, whereas the optimum growth temperature of white rot species varied from 20?°C to 30?°C. Analysis using a dataset from four cooler sites showed that brown rot fungi grew more rapidly than white rot fungi at higher temperatures (25?°C, 30?°C, and 35?°C). These results suggest that the hyphal growth of brown rot fungi might be physiologically adapted to higher temperatures than those of white rot fungi among the fungal species inhabiting deadwood of P. densiflora in Japan.  相似文献   

7.
Mechanisms of beta sheet formation by the human prion protein are not clear yet. In this work, we clarified the role of the region containing C‐half of the second helix and N‐half of the third helix of that protein in the process of alpha helix to beta sheet transition. Solid phase automatic synthesis of the original peptide (CC36: Cys179–Cys214) failed because of the beta hairpin formation in the region 206‐MERVVEQMC‐214 with a high beta strand potential. Using Met206Arg and Val210Arg substitutions, we increased the probability of alpha helix formation by that sequence. After that modification, the complete CC36 peptide with disulfide bond has been synthesized. Modified peptide has been studied by circular dichroism (CD) and fluorescence spectrography. According to the CD spectra analysis, the CC36 peptide contains 37% of residues in beta sheet and just 15% in helix. Thermal analysis under the control of CD shows that the secondary structure content of the peptide is stable from 5°C to 80°C. Dissociation of oligomers of the CC36 peptide finishes at 37°C according to the fluorescence analysis. The CC36 peptide is able to bind Mn2+ cations, which causes small temperature‐associated structural shifts at concentrations of 2 – 10·10?6 M. Predicted beta hairpin of the CC36 peptide (two beta strands are: 184‐IKQHTVT‐190 and 197‐TETDVKM‐205) should be the part of a longer beta hairpin from the scrapie form of the prion protein (PrPSc). Analogs of the CC36 peptide may be considered as antigens for the future development of a vaccine against PrPSc. Proteins 2016; 84:1462–1479. © 2016 Wiley Periodicals, Inc.  相似文献   

8.
Chick embryo fibroblasts were treated with the monofunctional alkylating agent methylmethane sulfonate at various concentrations for 1 h at 42°C, rinsed and then incubated post-treatment at various temperatures at which the kinetics of alkali-labile bond disappearance was followed. Growth experiments showed that these cells grew similarly at temperatures of either 37°C or 42°C. Repair as assessed by removal of alkali-labile bond was also similar for postincubation in the temperature range 37–42°C for damage due to methylmethane sulfonate treatment at concentrations less than 1.5 mM. When the postincubation temperature was raised higher than 42.5–43°C, this type of repair was stopped. The normal internal body temperature of adult chickens is about 41.6°C. Hence the present finding indicates that chick cells are much more severely restricted in DNA repair at temperatures above normal than are mammalian cells, which can function in this respect for several deg. C above 37°C.  相似文献   

9.
The effect of transformation on hexose and amino acid transport has been studied using whole cells and membrane vesicles of chicken embryo fibroblasts infected with the temperature-sensitive mutant of the Rous sarcoma virus, TS-68. In whole cells, TS-68-infected chicken embryo fibroblasts cultured at the permissive temperature (37°C) had a 2-fold higher rate of 2-deoxy-d-glucose uptake than the same cells cultured at the non-permissive temperature (41°C). However, both the non-transformed and transformed cells had comparable rates of α-aminoisobutyric acid transport. Membrane vesicles, isolated from TS-68-infected chicken embryo fibroblasts cultured at 41°C or 37°C, displayed carrier-mediated, intravesicular uptake of d-glucose and α-aminoisobutyric acid. Membrane vesicles from TS-68-infected chicken embryo fibroblasts cultured at 37°C had an approx. 50% greater initial rate of stereospecific hexose uptake than the membrane vesicles from fibroblasts cultured at 41°C. The two types of membrane vesicle had similar uptake rates of α-aminoisobutyric acid. The results of hexose and amino acid uptake by the membrane vesicles correlated well with those observed with the whole cells. Km values for stereospecific d-glucose uptake by the membrane vesicles from TS-68-infected chicken embryo fibroblasts cultured at 41 and 37°C were similar, but the V value was greater for the membrane vesicles from TS-68-infected cells cultured at 37°C. Cytochalasin B competitively inhibited stereospecific hexose uptake in both types of membrane vesicle. These findings suggest that the membrane vesicles retained many of the features of hexose and amino acid transport observed in whole cells, and that the increased rate of hexose transport seen in the virallytransformed chicken embryo fibroblasts was due to an increase in the number or availability of hexose carriers.  相似文献   

10.
11.
A pBR322-T.leu hybrid plasmid was constructed which contains a 3.75 Md HindIII-fragment derived from Thermus thermophilus HB27 chromosomal DNA. In the Escherichia coli host, this plasmid coded for the β-IPM dehy drogenase (product of leuB) activity, the optimal temperature of which was 80°C, suggesting that information on the thermostability of the enzyme lies in its structural gene. 10-day propagation of E. coli [pBR322-T.leu] at 37°C decreased the temperature optimum from 80°C to 75°C. This change, which was found to depend on the plasmid but not on the host cells, might be due to selection of some mutation at the non-restrictive temperature of 37°C. Our results suggest that the 3.75 Md HindIII-fragment of pBR322-T.leu carries a promoter of the thermophile, which could function in E. coli.  相似文献   

12.
Environmental conditions play a major role in shaping reptilian embryonic development, but studies addressing the impact of interactions between chronic and acute environmental stressors on embryonic systems are lacking. In the present study, we investigated thermal dependence of cholinergic and adrenergic cardiovascular tone in embryonic American alligators (Alligator mississippiensis) and assessed possible phenotypic plasticity in a chronic hypoxic incubation treatment. We compared changes in heart rate (f H) and mean arterial blood pressure (P M) for chronically hypoxic and normoxic-incubated embryos after cholinergic and adrenergic blockade following three different acute temperature treatments: (1) 30 °C (control incubation temperature), (2) acute, progressive decrease 30–24 °C then held at 24 °C, and (3) acute, progressive increase 30–36 °C then held at 36 °C. f H progressively fell in response to decreasing temperature and rose in response to increasing temperature. P M did not significantly change with decreasing temperature, but was lowered significantly with increasing acute temperature in the normoxic group at 90 % of development only. Propranolol administration (β adrenergic antagonist) produced a significant f H decrease at 24, 30, and 36 °C that was similar at all temperatures for all groups. For normoxic-incubated embryos at 90 % of development, atropine administration (cholinergic antagonist) significantly increased f H in both 24 and 36 °C treatments, but not in the 30 °C control treatment. This atropine response at 24 and 36 °C demonstrated acute thermally dependent cholinergic tone on f H late in development for normoxic-incubated, but not chronically hypoxic-incubated embryos. Collectively, data indicated that cardiovascular control mechanisms in embryonic alligators may be activated by thermal extremes, and the maturation of control mechanisms was delayed by chronic hypoxia.  相似文献   

13.
The strains of Caenorhabditis elegans displaying low (LT) and high (HT1, HT2, and HT3) thermotolerance were obtained from the wild-type N2 strain by artificial selection for thermostability of locomotion and by natural selection in laboratory for thermotolerance of fertility under tolerable environmental temperature elevation. All these strains are new genetic variants that emerged during the experiment. The worms of strains HT2 and HT3 displayed an elevated upper temperature limit for reproduction (from 26 to 27.5°C), thermostability of locomotion at 36°C, and survival at 37°C as compared with the strain N2. The results have demonstrated that adaptation of C. elegans to high tmeperatures is an appropriate laboratory model for studying the mechanisms involved in the evolution of thermotolerance of poikilothermic Metazoa.  相似文献   

14.
The 53-amino-acid trypsin inhibitor 1 from Nicotiana alata (T1) belongs to the potato type II family also known as the PinII family of proteinase inhibitors, one of the major families of canonical proteinase inhibitors. T1 contains four disulfide bonds, two of which (C4-C41 and C8-C37) stabilize the reactive-site loop. To investigate the influence of these two disulfide bonds on the structure and function of potato II inhibitors, we constructed two variants of T1, C4A/C41A-T1 and C8A/C37A-T1, in which these two disulfide bonds were individually removed and replaced by alanine residues. Trypsin inhibition assays show that wild-type T1 has a Ki of < 5 nM, C4A/C41A-T1 has a weaker Ki of ∼ 350 nM, and the potency of the C8A/C37A variant is further decreased to a Ki of ∼ 1.8 μM. To assess the influence of the disulfide bonds on the structure of T1, we determined the structure and dynamics of both disulfide variants by NMR spectroscopy. The structure of C4A/C41A-T1 and the amplitude of intrinsic flexibility in the reactive-site loop resemble that of the wild-type protein closely, despite the lack of the C4-C41 disulfide bond, whereas the timescale of motions is markedly decreased. The rescue of the structure despite loss of a disulfide bond is due to a previously unrecognized network of interactions, which stabilizes the structure of the reactive-site loop in the region of the missing disulfide bond, while allowing intrinsic motions on a fast (picosecond-nanosecond) timescale. In contrast, no comparable interactions are present around the C8-C37 disulfide bond. Consequently, the reactive-site loop becomes disordered and highly flexible in the structure of C8A/C37A-T1, making it unable to bind to trypsin. Thus, the reactive-site loop of T1 is stabilized differently by the C8-C37 and C4-C41 disulfide bonds. The C8-C37 disulfide bond is essential for the inhibitory activity of T1, whereas the C4-C41 disulfide bond is not as critical for maintaining the three-dimensional structure and function of the molecule but is responsible for maintaining flexibility of the reactive-site loop on a microsecond-nanosecond timescale.  相似文献   

15.
Salmonella enterica serovar Typhimurium (STM) is a major cause of gastroenteritis and transmitted by consumption of contaminated food. STM is associated to food originating from animals (pork, chicken, eggs) or plants (vegetables, fruits, nuts, and herbs). Infection of warm-blooded mammalian hosts by STM and the underlying complex regulatory network of virulence gene expression depend on various environmental conditions encountered in hosts. However, less is known about the proteome and possible regulatory networks for gene expression of STM outside the preferred host. Nutritional limitations and changes in temperature are the most obvious stresses outside the native host. Thus, we analyzed the proteome profile of STM grown in rich medium (LB medium) or minimal medium (PCN medium) at temperatures ranging from 8 °C to 37 °C. LB medium mimics the nutritional rich environment inside the host, whereas minimal PCN medium represents nutritional limitations outside the host, found during growth of fresh produce (field conditions). Further, the range of temperatures analyzed reflects conditions within natural hosts (37 °C), room temperature (20 °C), during growth under agricultural conditions (16 °C and 12 °C), and during food storage (8 °C). Implications of altered nutrient availability and growth temperature on STM proteomes were analyzed by HPLC/MS-MS and label-free quantification. Our study provides first insights into the complex adaptation of STM to various environmental temperatures, which allows STM not only to infect mammalian hosts but also to enter new infection routes that have been poorly studied so far. With the present dataset, global virulence factors, their impact on infection routes, and potential anti-infective strategies can now be investigated in detail. Especially, we were able to demonstrate functional flagella at 12 °C growth temperature for STM with an altered motility behavior.  相似文献   

16.
Summary Rat and tupaia 41° C temperature variant cell clones were derived from parental embryonic cells, cloned and established in tissue cultures. Both variant cell clones grew permanently at 41° C. The morphology of these cell clones was altered in comparison to the original fibroblast cell clones. The cell biological characterization of the rat and tupaia 41° C temperature variant cell clones showed that both cell clones were stable. After abolishing the selection pressure (incubation at 41° C) for more than 10 further cell passages by incubation at 37°C and then raising the temperature again to 41° C, neither of the cell clones lost their newly acquired property of prowing at 41° C. This fact demonstrates that the newly acquired property is certain to be genetically manifest in both cell clones. The modal number of chromosomes of the rat 41° C temperature variant cell clone was increased, and the case of the tupaia variant cell clone, bimodality was observed. The plating efficiency of both cell clones did not rise significantly in comparison to the parental cells. Neither of the 41° C temperature variant cell clones grew in semi-solid medium. This work was partially supported by the Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 136.  相似文献   

17.
Cells incubated at 41–46 °C show a gradual increase in the initial rate of 3-O-methylglucose uptake when subsequently assayed at 37 °C. Cellular ATP levels remain constant throughout this temperature range, but at temperatures higher than 46 °C, ATP levels decline as does the extent of transport stimulation. Cells incubated at 45 °C for 5 min continue to show a gradual increase in transport activity throughout a subsequent 25-min incubation period at 37 °C. The increase in transport activity is characterized by an increase in the proportion of the rapid phase of 3-O-methylglucose uptake, with little or no change in the half-time of either the rapid phase or the slow phase. Transport stimulation at high temperatures is blocked by inhibitors of oxidative phosphorylation. Cells depleted of intracellular exchangeable Ca2+ by treatment with the ionophore A23187 in the presence of ethylene glycol bis(β-aminoethyl ether)-N,N′-tetraacetic acid show nearly the same degree of stimulation at high temperatures as untreated cells, suggesting that exchangeable Ca2+ ions do not play an obligatory role in the mechanism of transport stimulation. It is suggested that structural changes occur at 41–46 °C in the membrane proteins controlling glucose transport activity.  相似文献   

18.
The lexA41 (formerly tsl-1) mutant was isolated as an ultraviolet light-resistant, temperature-sensitive derivative of its ultraviolet light-sensitive lexA3(Ind) parent. Cells exhibit a so-called “split-phenotype”, a phenomenon in which only a subset of the SOS responses can be detected physiologically following inducing treatments. lexA41 has been cloned and sequenced; the mutant gene retains the (tflexA3) mutation (Gly to Asp at position 85) and has a second mutation, lexA41 (Ala to Thr at position 131). We show that LexA41 protein is not cleaved by the RecA protein-catalyzed pathway in vivo, but the mutant protein is degraded by the Lon protease at both 32 ° C and 42 ° C. β-Galactosidase activities of lac fusions to 13 different SOS promoters were measured at 30 ° C and 42 ° C to determine levels of expression and were found to vary considerably. The temperature-sensitive phenotype is a result of increased expression of sulA, which encodes a division inhibitor, at 42 ° C. Excision repair genes, including uvn A, uvrB and uvr D, are constitutively expressed at 30 ° C accounting for the ultraviolet light resistance of the lexA41 mutant, but the SOS mutagenesis operon, umuD,C, is not adequately derepressed, thereby explaining the failure to induce mutagenesis in this background. This differential expression of SOS genes gives a plausible explanation of the split-phenotype associated with lexA41.  相似文献   

19.
The effects of temperature on enzymatic saccharification of cellulose and simulataneous saccharification and fermentation (SSF) were investigated with 100 g·l−1 Solka Floc, 5g·l−1Trichoderma reesei cellulase, and Zymomonas mobilis ATCC 29191. The following results were obtained: 1) Ethanol fermentation under glucose dificient conditions can proceed for more than 100 h at 30°C but gradually ceases after 50 h of operation at 40°C. 2) Equivalent glucose yield based on cellulose for SSF operated at its optimum temperature (37°C) is higher than that for enzymatic saccharification of cellulose at the same temperature by 32%. However, the same equivalent glucose yields were obtained for both processes if they were operated at their respective optimum temperature. 3) SSF with temperature cycling increased the ethanol productivity but gave similar ethanol yield to SSF at 37°C. 4) SSF with temperature profiling gave an ethanol yield of 0.32 g·g−1 and cellulose use of 0.86 g·g−1 which were increased by 39% and 34% over SSF with temperature cycling and at 37°C.  相似文献   

20.
Traditional temperature-sensitive systems use either heat shock (40–42 °C) or cold shock (15–23 °C) to induce gene expression at temperatures that are not the optimal temperature for host cell growth (37 °C). This impacts the overall productivity and yield by disturbing cell growth and cellular metabolism. Here, we have developed a new system which controls gene expression in Escherichia coli at more permissive temperatures. The temperature-sensitive cI857-P L system and the classic lacI-P lacO system were connected in series to control the gene of interest. When the culture temperature was lowered, the thermolabile cI857 repressor was activated and blocked the expression of lacI from P L. Subsequently, the decrease of LacI derepressed the expression of gene of interest from P lacO . Using a green fluorescent protein marker, we demonstrated that (1) gene expression was tightly regulated at 42 °C and strongly induced by lowering temperature to 25–37 °C; (2) different levels of gene expression can be induced by varying culture temperature; and (3) gene expression after induction was sustained until the end of the log phase. We then applied this system in the biosynthesis of acetoin and demonstrated that high yield and production could be achieved using temperature induction. The ability to express proteins at optimal growth temperatures without chemical inducers is advantageous for large-scale and industrial fermentations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号