首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

In Africa, relapsing fevers are neglected arthropod-borne infections caused by closely related Borrelia species. They cause mild to deadly undifferentiated fever particularly severe in pregnant women. Lack of a tool to genotype these Borrelia organisms limits knowledge regarding their reservoirs and their epidemiology.

Methodology/Principal Findings

Genome sequence analysis of Borrelia crocidurae, Borrelia duttonii and Borrelia recurrentis yielded 5 intergenic spacers scattered between 10 chromosomal genes that were incorporated into a multispacer sequence typing (MST) approach. Sequencing these spacers directly from human blood specimens previously found to be infected by B. recurrentis (30 specimens), B. duttonii (17 specimens) and B. crocidurae (13 specimens) resolved these 60 strains and the 3 type strains into 13 species-specific spacer types in the presence of negative controls. B. crocidurae comprised of 8 spacer types, B. duttonii of 3 spacer types and B. recurrentis of 2 spacer types.

Conclusions/Significance

Phylogenetic analyses of MST data suggested that B. duttonii, B. crocidurae and B. recurrentis are variants of a unique ancestral Borrelia species. MST proved to be a suitable approach for identifying and genotyping relapsing fever borreliae in Africa. It could be applied to both vectors and clinical specimens.  相似文献   

2.

Background

In Africa, relapsing fever borreliae are neglected vector-borne pathogens that cause mild to deadly septicemia and miscarriage. Screening vectors for the presence of borreliae currently requires technically demanding, time- and resource-consuming molecular methods. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) has recently emerged as a tool for the rapid identification of vectors and the identification of cultured borreliae. We investigated whether MALDI-TOF-MS could detect relapsing fever borreliae directly in ticks.

Methodology/Principal Findings

As a first step, a Borrelia MALDI-TOF-MS database was created to house the newly determined Mean Spectrum Projections for four Lyme disease group and ten relapsing fever group reference borreliae. MALDI-TOF-MS yielded a unique protein profile for each of the 14 tested Borrelia species, with 100% reproducibility over 12 repeats. In a second proof-of-concept step, the Borrelia database and a custom software program that subtracts the uninfected O. sonrai profile were used to detect Borrelia crocidurae in 20 Ornithodoros sonrai ticks, including eight ticks that tested positive for B. crocidurae by PCR-sequencing. A B. crocidurae-specific pattern consisting of 3405, 5071, 5898, 7041, 8580 and 9757-m/z peaks was found in all B. crocidurae-infected ticks and not found in any of the un-infected ticks. In a final blind validation step, MALDI-TOF-MS exhibited 88.9% sensitivity and 93.75% specificity for the detection of B. crocidurae in 50 O. sonrai ticks, including 18 that tested positive for B. crocidurae by PCR-sequencing. MALDI-TOF-MS took 45 minutes to be completed.

Conclusions/Significance

After the development of an appropriate database, MALDI-TOF-MS can be used to identify tick species and the presence of relapsing fever borreliae in a single assay. This work paves the way for the use of MALDI-TOF-MS for the dual identification of vectors and vectorized pathogens.  相似文献   

3.

Background

Relapsing fever is the most frequent bacterial disease in Africa. Four main vector / pathogen complexes are classically recognized, with the louse Pediculus humanus acting as vector for B. recurrentis and the soft ticks Ornithodoros sonrai, O. erraticus and O. moubata acting as vectors for Borrelia crocidurae, B. hispanica and B. duttonii, respectively. Our aim was to investigate the epidemiology of the disease in West, North and Central Africa.

Methods And Findings

From 2002 to 2012, we conducted field surveys in 17 African countries and in Spain. We investigated the occurrence of Ornithodoros ticks in rodent burrows in 282 study sites. We collected 1,629 small mammals that may act as reservoir for Borrelia infections. Using molecular methods we studied genetic diversity among Ornithodoros ticks and Borrelia infections in ticks and small mammals. Of 9,870 burrows investigated, 1,196 (12.1%) were inhabited by Ornithodoros ticks. In West Africa, the southern and eastern limits of the vectors and Borrelia infections in ticks and small mammals were 13°N and 01°E, respectively. Molecular studies revealed the occurrence of nine different Ornithodoros species, including five species new for science, with six of them harboring Borrelia infections. Only B. crocidurae was found in West Africa and three Borrelia species were identified in North Africa: B. crocidurae, B. hispanica, and B. merionesi.

Conclusions

Borrelia Spirochetes responsible for relapsing fever in humans are highly prevalent both in Ornithodoros ticks and small mammals in North and West Africa but Ornithodoros ticks seem absent south of 13°N and small mammals are not infected in these regions. The number of Ornithodoros species acting as vector of relapsing fever is much higher than previously known.  相似文献   

4.

Background

Tick-borne relapsing fever spirochetes are maintained in endemic foci that involve a diversity of small mammals and argasid ticks in the genus Ornithodoros. Most epidemiological studies of tick-borne relapsing fever in West Africa caused by Borrelia crocidurae have been conducted in Senegal. The risk for humans to acquire relapsing fever in Mali is uncertain, as only a few human cases have been identified. Given the high incidence of malaria in Mali, and the potential to confuse the clinical diagnosis of these two diseases, we initiated studies to determine if there were endemic foci of relapsing fever spirochetes that could pose a risk for human infection.

Methodology/Principal Findings

We investigated 20 villages across southern Mali for the presence of relapsing fever spirochetes. Small mammals were captured, thin blood smears were examined microscopically for spirochetes, and serum samples were tested for antibodies to relapsing fever spirochetes. Ornithodoros sonrai ticks were collected and examined for spirochetal infection. In total, 11.0% of the 663 rodents and 14.3% of the 63 shrews tested were seropositive and 2.2% of the animals had active spirochete infections when captured. In the Bandiagara region, the prevalence of infection was higher with 35% of the animals seropositive and 10% infected. Here also Ornithodoros sonrai were abundant and 17.3% of 278 individual ticks tested were infected with Borrelia crocidurae. Fifteen isolates of B. crocidurae were established and characterized by multi-locus sequence typing.

Conclusions/Significance

The potential for human tick-borne relapsing fever exists in many areas of southern Mali.  相似文献   

5.

Background

Relapsing fever spirochetes are global yet neglected pathogens causing recurrent febrile episodes, chills, nausea, vomiting, and pregnancy complications. Given these nonspecific clinical manifestations, improving diagnostic assays for relapsing fever spirochetes will allow for identification of endemic foci and expedite proper treatment. Previously, an antigen designated the Borrelia immunogenic protein A (BipA) was identified in the North American species Borrelia hermsii. Thus far, BipA appears unique to relapsing fever spirochetes. The antigen remains unidentified outside of these pathogens, while interspecies amino acid identity for BipA in relapsing fever spirochetes is only 24–36%. The current study investigated the immunogenicity of BipA in Borrelia turicatae, a species distributed in the southern United States and Latin America.

Methodology/Principal Findings

bipA was amplified from six isolates of Borrelia turicatae, and sequence analysis demonstrated that the gene is conserved among isolates. A tick transmission system was developed for B. turicatae in mice and a canine, two likely vertebrate hosts, which enabled the evaluation of serological responses against recombinant BipA (rBipA). These studies indicated that BipA is antigenic in both animal systems after infection by tick bite, yet serum antibodies failed to bind to B. hermsii rBipA at a detectable level. Moreover, mice continued to generate an antibody response against BipA one year after the initial infection, further demonstrating the protein''s potential toward identifying endemic foci for B. turicatae.

Conclusions/Significance

These initial studies support the hypothesis that BipA is a spirochete antigen unique to a relapsing fever Borrelia species, and could be used to improve efforts for identifying B. turicatae endemic regions.  相似文献   

6.

Background

The presence in Morocco of Argasid ticks of the Ornithodoros erraticus complex, the vector of tick-borne relapsing fever (TBRF) in North Africa, has been known since 1919, but the disease is rarely diagnosed and few epidemiological data are available.

Methodology/Principal Findings

Between 2006 and 2011, we investigated the presence of Ornithodoros ticks in rodent burrows in 34 sites distributed across Morocco. We also collected small mammals in 10 sites and we investigated TBRF in febrile patients in Kenitra district. The prevalence of Borrelia infections was assessed by nested PCR amplification in ticks and the brain tissue of small mammals, and by evaluation of thick blood films in patients. A high proportion of burrows were infested with ticks of the O. erraticus complex in all regions of Morocco, with a mean of 39.5% for the whole country. Borrelia infections were found in 39/382 (10.2%) of the ticks and 12/140 (8.6%) of the rodents and insectivores studied by PCR amplification, and 102 patients tested positive by thick blood film. Five small mammalian species were found infected: Dipodillus campestris, Meriones shawi, Gerbillus hoogstrali, Gerbillus occiduus and Atelerix algirus. Three Borrelia species were identified in ticks and/or rodents: B. hispanica, B. crocidurae and B. merionesi.

Conclusions/Significance

Tick populations belonging to O. erraticus complex are widely distributed in Morocco and a high proportion of ticks and small mammals are infected by Borrelia species. Although rarely diagnosed, TBRF may be a common cause of morbidity in all regions of Morocco.  相似文献   

7.
The genus Borrelia is the cause of the two human diseases: Lyme disease (LD) and relapsing fever (RF). Both LD and RF Borrelia species are obligate parasites and are dependent on nutrients provided by their hosts. The first step of nutrient uptake across the outer membrane of these Gram-negative bacteria is accomplished by water-filled channels, so-called porins. The knowledge of the porin composition in the outer membranes of the different pathogenic Borrelia species is limited. Only one porin has been described in relapsing fever spirochetes to date, whereas four porins are known to be present in Lyme disease agents. From these, the Borrelia burgdorferi outer membrane channel P66 is known to act as an adhesin and was well studied as a porin. To investigate if P66 porins are expressed and similarly capable of pore formation in other Borrelia causing Lyme disease or relapsing fever three LD species (B. burgdorferi, B. afzelii, B. garinii) and three RF species (B. duttonii, B. recurrentis and B. hermsii) were investigated for outer membrane proteins homologous to P66. A search in current published RF genomes, comprising the ones of B. duttonii, B. recurrentis and B. hermsii, indicated that they all contained P66 homologues. The P66 homologues of the six Borrelia species were purified to homogeneity and their pore-forming abilities as well as the biophysical properties of the pores were analyzed using the black lipid bilayer assay.  相似文献   

8.
Ticks were collected from 8 houses in Mvumi Mission village, near Dodoma, Tanzania. All ticks were examined for Borrelia infestation by flagellin gene-based nested polymerase chain reaction. All houses were highly infested with ticks, and all ticks collected were of the Ornithodoros porcinus species. Fifty-one out of 120 ticks were infected with spirochetes, and a flagellin gene sequence comparison showed that most of the spirochetes belonged to Borrelia duttonii, which is the causative agent of tick-borne relapsing fever in East Africa. The rest of the spirochetes were quite different from B. duttonii and instead resembled the New World tick-borne relapsing fever borreliae. Phylogenetic analysis using 16S ribosomal RNA gene sequences also supported the interpretation that the spirochete was a Borrelia species distinct from previously described members of the genus.  相似文献   

9.
Tick‐borne relapsing fever (TBRF) is caused by Borrelia spirochetes transmitted to humans by Argasid soft ticks of the genus Ornithodoros. We investigated the presence of Ornithodoros ticks in rodent burrows in nine sites of the Gharb region of northwestern Morocco where we recently documented a high incidence of TBRF in humans. We assessed the Borrelia infection rate by nested PCR and sequencing. All sites investigated were colonized by ticks of the Ornithodoros marocanus complex and a high proportion of burrows (38.4%) were found to be infested. Borrelia infections were observed in 6.8% of the ticks tested. Two Borrelia species were identified by sequencing: B. hispanica and B. crocidurae. The discovery in northwestern Morocco of Ornithodoros ticks infected by B. crocidurae represents a 350 km range extension of this Sahelo‐Saharan spirochete in North Africa. The spread of B. crocidurae may be related to the increasing aridity of northwestern Morocco in relation to climate change.  相似文献   

10.

Background

With the global distribution, morbidity, and mortality associated with tick and louse-borne relapsing fever spirochetes, it is important to understand the dynamics of vector colonization by the bacteria and transmission to the host. Tick-borne relapsing fever spirochetes are blood-borne pathogens transmitted through the saliva of soft ticks, yet little is known about the transmission capability of these pathogens during the relatively short bloodmeal. This study was therefore initiated to understand the transmission dynamics of the relapsing fever spirochete Borrelia turicatae from the vector Ornithodoros turicata, and the subsequent dissemination of the bacteria upon entry into murine blood.

Methodology/Principal Findings

To determine the minimum number of ticks required to transmit spirochetes, one to three infected O. turicata were allowed to feed to repletion on individual mice. Murine infection and dissemination of the spirochetes was evaluated by dark field microscopy of blood, quantitative PCR, and immunoblotting against B. turicatae protein lysates and a recombinant antigen, the Borrelia immunogenic protein A. Transmission frequencies were also determined by interrupting the bloodmeal 15 seconds after tick attachment. Scanning electron microscopy (SEM) was performed on infected salivary glands to detect spirochetes within acini lumen and excretory ducts. Furthermore, spirochete colonization and dissemination from the bite site was investigated by feeding infected O. turicata on the ears of mice, removing the attachment site after engorment, and evaluating murine infection.

Conclusion/Significance

Our findings demonstrated that three ticks provided a sufficient infectious dose to infect nearly all animals, and B. turicatae was transmitted within seconds of tick attachment. Spirochetes were also detected in acini lumen of salivary glands by SEM. Upon host entry, B. turicatae did not require colonization of the bite site to establish murine infection. These results suggest that once B. turicatae colonizes the salivary glands the spirochetes are preadapted for rapid entry into the mammal.  相似文献   

11.
Relapsing fever is a worldwide, endemic disease caused by several spirochetal species belonging to the genus Borrelia. During the recurring fever peaks, borreliae proliferate remarkably quickly compared to the slow dissemination of Lyme disease Borrelia and therefore require efficient nutrient uptake from the blood of their hosts. This study describes the identification and characterization of the first relapsing fever porin, which is present in the outer membranes of B. duttonii, B. hermsii, B. recurrentis, and B. turicatae. The pore-forming protein was purified by hydroxyapatite chromatography and designated Oms38, for outer membrane-spanning protein of 38 kDa. Biophysical characterization of Oms38 was done by using the black lipid bilayer method, demonstrating that Oms38 forms small, water-filled channels of 80 pS in 1 M KCl that did not exhibit voltage-dependent closure. The Oms38 channel is slightly selective for anions and shows a ratio of permeability for cations over anions of 0.41 in KCl. Analysis of the deduced amino acid sequences demonstrated that Oms38 contains an N-terminal signal sequence which is processed under in vivo conditions. Oms38 is highly conserved within the four studied relapsing fever species, sharing an overall amino acid identity of 58% and with a strong indication for the presence of amphipathic β-sheets.  相似文献   

12.
Louse-borne relapsing fever (LBRF) borreliosis is caused by Borrelia recurrentis, and it is a deadly although treatable disease that is endemic in the Horn of Africa but has epidemic potential. Research on LBRF has been severely hampered because successful infection with B. recurrentis has been achieved only in primates (i.e., not in other laboratory or domestic animals). Here, we present the first non-primate animal model of LBRF, using SCID (-B, -T cells) and SCID BEIGE (-B, -T, -NK cells) immunocompromised mice. These animals were infected with B. recurrentis A11 or A17, or with B. duttonii 1120K3 as controls. B. recurrentis caused a relatively mild but persistent infection in SCID and SCID BEIGE mice, but did not proliferate in NUDE (-T) and BALB/c (wild-type) mice. B. duttonii was infectious but not lethal in all animals. These findings demonstrate that the immune response can limit relapsing fever even in the absence of humoral defense mechanisms. To study the significance of phagocytic cells in this context, we induced systemic depletion of such cells in the experimental mice by injecting them with clodronate liposomes, which resulted in uncontrolled B. duttonii growth and a one-hundred-fold increase in B. recurrentis titers in blood. This observation highlights the role of macrophages and other phagocytes in controlling relapsing fever infection. B. recurrentis evolved from B. duttonii to become a primate-specific pathogen that has lost the ability to infect immunocompetent rodents, probably through genetic degeneration. Here, we describe a novel animal model of B. recurrentis based on B- and T-cell-deficient mice, which we believe will be very valuable in future research on LBRF. Our study also reveals the importance of B-cells and phagocytes in controlling relapsing fever infection.  相似文献   

13.
14.

Aim

Here we investigated the role of complement activation in phagocytosis and the release of cytokines and chemokines in response to two clinical isolates: Borrelia afzelii K78, which is resistant to complement-mediated lysis, and Borrelia garinii LU59, which is complement-sensitive.

Methods

Borrelia spirochetes were incubated in hirudin plasma, or hirudin-anticoagulated whole blood. Complement activation was measured as the generation of C3a and sC5b-9. Binding of the complement components C3, factor H, C4, and C4BP to the bacterial surfaces was analyzed. The importance of complement activation on phagocytosis, and on the release of cytokines and chemokines, was investigated using inhibitors acting at different levels of the complement cascade.

Results

1) Borrelia garinii LU59 induced significantly higher complement activation than did Borrelia afzelii K78. 2) Borrelia afzelii K78 recruited higher amounts of factor H resulting in significantly lower C3 binding. 3) Both Borrelia strains were efficiently phagocytized by granulocytes and monocytes, with substantial inhibition by complement blockade at the levels of C3 and C5. 4) The release of the pro-inflammatory cytokines and chemokines IL-1β, IL-6, TNF, CCL20, and CXCL8, together with the anti-inflammatory IL-10, were increased the most (by>10-fold after exposure to Borrelia). 5) Both strains induced a similar release of cytokines and chemokines, which in contrast to the phagocytosis, was almost totally unaffected by complement blockade.

Conclusions

Our results show that complement activation plays an important role in the process of phagocytosis but not in the subsequent cytokine release in response to live Borrelia spirochetes.  相似文献   

15.
In an effort to understand how a tick-borne pathogen adapts to the body louse, we sequenced and compared the genomes of the recurrent fever agents Borrelia recurrentis and B. duttonii. The 1,242,163–1,574,910-bp fragmented genomes of B. recurrentis and B. duttonii contain a unique 23-kb linear plasmid. This linear plasmid exhibits a large polyT track within the promoter region of an intact variable large protein gene and a telomere resolvase that is unique to Borrelia. The genome content is characterized by several repeat families, including antigenic lipoproteins. B. recurrentis exhibited a 20.4% genome size reduction and appeared to be a strain of B. duttonii, with a decaying genome, possibly due to the accumulation of genomic errors induced by the loss of recA and mutS. Accompanying this were increases in the number of impaired genes and a reduction in coding capacity, including surface-exposed lipoproteins and putative virulence factors. Analysis of the reconstructed ancestral sequence compared to B. duttonii and B. recurrentis was consistent with the accelerated evolution observed in B. recurrentis. Vector specialization of louse-borne pathogens responsible for major epidemics was associated with rapid genome reduction. The correlation between gene loss and increased virulence of B. recurrentis parallels that of Rickettsia prowazekii, with both species being genomic subsets of less-virulent strains.  相似文献   

16.
The spirochete Borrelia recurrentis is the causal agent of louse-borne relapsing fever and is transmitted to humans by the infected body louse Pediculus humanus. We have recently demonstrated that the B. recurrentis surface receptor, HcpA, specifically binds factor H, the regulator of the alternative pathway of complement activation, thereby inhibiting complement mediated bacteriolysis. Here, we show that B. recurrentis spirochetes express another potential outer membrane lipoprotein, termed CihC, and acquire C4b-binding protein (C4bp) and human C1 esterase inhibitor (C1-Inh), the major inhibitors of the classical and lectin pathway of complement activation. A highly homologous receptor for C4bp was also found in the African tick-borne relapsing fever spirochete B. duttonii. Upon its binding to B. recurrentis or recombinant CihC, C4bp retains its functional potential, i.e. facilitating the factor I-mediated degradation of C4b. The additional finding that ectopic expression of CihC in serum sensitive B. burgdorferi significantly increased spirochetal resistance against human complement suggests this receptor to substantially contribute, together with other known strategies, to immune evasion of B. recurrentis.  相似文献   

17.
Bats can harbor zoonotic pathogens causing emerging infectious diseases, but their status as hosts for bacteria is limited. We aimed to investigate the distribution, prevalence and genetic diversity of Borrelia in bats and bat ticks in Hubei Province, China, which will give us a better understanding of the risk of Borrelia infection posed by bats and their ticks. During 2018–2020, 403 bats were captured from caves in Hubei Province, China, 2 bats were PCR-positive for Borrelia. Sequence analysis of rrs, flaB and glpQ genes of positive samples showed 99.55%-100% similarity to Candidatus Borrelia fainii, a novel human-pathogenic relapsing fever Borrelia species recently reported in Zambia, Africa and Eastern China, which was clustered together with relapsing fever Borrelia species traditionally reported only in the New World. Multilocus sequence typing (MLST) and pairwise genetic distances further confirmed the Borrelia species in the bats from Central China as Candidatus Borrelia fainii. No Borrelia DNA was detected in ticks collected from bats. The detection of this human-pathogenic relapsing fever Borrelia in bats suggests a wide distribution of this novel relapsing fever Borrelia species in China, which may pose a threat to public health in China.  相似文献   

18.
Borrelia miyamotoi, a spirochete found in the hard tick Ixodes ricinus, is thought to cause relapsing fever. The disease caused by this bacterium can manifest with high fever, fatigue and other symptoms. It may also lead to central nervous system involvement with symptoms similar to meningoencephalitis. DNA from ticks from the greater Augsburg region in Germany was subjected to qPCR for Borrelia spp., followed by nested PCR and subsequent sequencing for species identification of the qPCR positive samples. From 112 ticks, 20 were found to be positive for Borrelia. The DNA sequenced showed 50% Borrelia afzelli, 15% Borrelia garinii, 5% Borrelia valaisiana and one sequence was identified as Borrelia miyamotoi. The positive identification of Borrelia miyamotoi is unlikely to be due to contamination. In conclusion, Borrelia miyamotoi has been found in a tick in the Augsburg region for the first time. This follows on from previous reports of a low incidence of this bacterium in southern Germany around Lake Constance and in the Munich region. This infectious agent should be taken into account when patients present with recurring fever or neurological symptoms which cannot be otherwise explained. Tick-borne relapsing fever should now be considered as a cause of such symptoms and medical professionals should contemplate differential Borrelia testing when presented with corresponding symptoms.  相似文献   

19.
Borrelia duttonii strain 406 K, a causative agent of relapsing fever, could not be cultivated in vitro in currently available media for borreliae. We have developed an in vitro cultivation system by using SflEp cell cultures. The average increases of the number of borreliae, when inoculated with 1.0 × 105 organisms per ml from infected mice, were 23-fold and 150-fold in the primary culture and the 3rd subculture, respectively. Even a single borrelia could propagate in this cultivation system. This system will be useful for immunological and physiological studies on uncultivable Borrelia strains.  相似文献   

20.
Fifty Borrelia isolates from ticks and rodents from several geographic regions of the southern United States were analyzed by genomic macrorestriction analysis. Significant genetic diversity was observed among them. These isolates segregated into 4 major clusters and 10 subclusters, which are correlated with the genospecies distribution. Nineteen pulsed-field gel electrophoresis (PFGE) types were recognized among the isolates. The genospecies Borrelia andersonii and Borrelia bissettii consisted of 5 and 2 subclusters, respectively. Two subclusters comprised the Borrelia burgdorferi sensu stricto (s. s.) strains. These results indicated that PFGE is a suitable molecular typing method for B. burgdorferi at both the genospecies and strain levels. Seventeen representative isolates from different PFGE groups were analyzed by restriction fragment length polymorphism (RFLP) and sequence analysis of flaB. Twenty-three AluI, 3 CelII, and 11 DdeI RFLP patterns were found among strains from the B. burgdorferi sensu lato (s. l.) complex and the relapsing fever borreliae complex. Three genospecies in the B. burgdorferi s. l. complex and 1 species in the relapsing fever borreliae complex were recognized. Phylogenetic analysis based on nucleotide sequences of flaB indicated that all the Borrelia strains analyzed here could be divided into 2 parts, i.e., B. burgdorferi s. l. complex and the relapsing fever borreliae complex. The flaB appears to be a useful target gene to screen and identify strains from both B. burgdorferi s. l. and relapsing fever borreliae complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号