首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
2.
Apoptosis的研究   总被引:2,自引:0,他引:2  
Apoptosis的研究徐瑞成(武警医学院,天津300162)王凤梅(天津第三中心医院)Apoptosis源自希腊语,意为秋天树叶凋落。本世纪60年代,人们注意到细胞自发死亡与消失的现象,但对其研究并不象对细胞增殖、坏死(necrosis)那样给予足...  相似文献   

3.
Post exercise lymphocytopenia is well documented and attributed to egress of lymphocytes from the vascular compartment. Recent studies have reported exercise induced DNA damage in leukocytes and have questioned a possible link to apoptosis. Eleven subjects underwent a ramped treadmill test to exhaustion. Venous blood samples were taken before, immediately post exercise, and 24 and 48 hours after exercise. Single cell gel electrophoresis revealed evidence of single strand DNA damage in 10% of lymphocytes immediately after exercise, but not at other times. Fluorescent microscopy showed three patterns of DNA distribution, similar to those seen in apoptosis, at all times after exercise. Three subjects underwent the same exercise protocol, and lymphocytes were prepared for flow cytometry to determine apoptosis using the TUNEL method. Flow cytometry revealed lymphocyte apoptosis in 63% of lymphocytes immediately after exercise and 86.2%, 24 hours after exercise. Lymphocyte apoptosis is documented for the first time after exercise and may in part account for exercise induced lymphocytopenia and reduced immunity.  相似文献   

4.
Idiopathic pulmonary fibrosis (IPF) is a poorly understood progressive disease characterized by the accumulation of scar tissue in the lung interstitium. A hallmark of the disease is areas of injury to type II alveolar epithelial cells with attendant accumulation of fibroblasts in areas called fibroblastic foci. In an effort to better characterize the lung fibroblast phenotype in IPF patients, we isolated fibroblasts from patients with IPF and looked for activation of signaling proteins, which could help explain the exaggerated fibrogenic response in IPF. We found that IPF fibroblasts constitutively expressed increased basal levels of SPARC, plasminogen activator inhibitor-1 (PAI-1), and active β-catenin compared with control cells. Control of basal PAI-1 expression in IPF fibroblasts was regulated by SPARC-mediated activation of Akt, leading to inhibition of glycogen synthase kinase-3β and activation of β-catenin. Additionally, IPF fibroblasts (but not control fibroblasts) were resistant to plasminogen-induced apoptosis and were sensitized to plasminogen-mediated apoptosis by inhibition of SPARC or β-catenin. These findings uncover a newly discovered regulatory pathway in IPF fibroblasts that is characterized by elevated SPARC, giving rise to activated β-catenin, which regulates expression of downstream genes, such as PAI-1, and confers an apoptosis-resistant phenotype. Disruption of this pathway may represent a novel therapeutic target in IPF.  相似文献   

5.
Bistability in apoptosis, or programmed cell death, is crucial for the healthy functioning of multicellular organisms. The aim in this study is to show the presence of bistability in a mitochondria-dependent apoptosis model under nitric oxide effects using chemical reaction network theory. The model equations are a set of coupled ordinary differential equations arising from the assumed mass action kinetics. Whether these equations have a capacity for bistability (cell survival and apoptosis) is determined using a modular approach in which the model is decomposed into modules. Each module contains only a subset of the whole model and is analyzed separately. It is seen that bistability in a module is preserved throughout the whole model after adding the remaining reactions in the pathway on these modules. It is also found that inhibitor effect of some proteins and the appearance of a reacting protein in a later stage as a product is a desired feature but not sufficient for bistability (in the absence of cooperativity effects). On the whole model, two apoptotic and two cell survival states are obtained depending on the initial cell conditions. The results suggest that the antiapoptotic effects of nitric oxide species are responsible for the bistable character of the apoptotic pathway when cooperativity is not assumed in the apoptosome formation.  相似文献   

6.
A derivative of phthalic acid, dibutylphthalate (DBP), which has gametocidal effect at the concentration of approximately 10(-4) M, increased apoptosis in coleoptiles of wheat seedlings. This was associated with activation of chromatin margination and generation of mitochondria-containing vesicles. At the same concentration, DBP activated the release by the coleoptiles of superoxide anion into the environment. Lower (10(-5) M) and higher (10(-3) M) concentrations of DBP virtually had no effect on either process. A probable mechanism of effect of the "external" superoxide anion on apoptosis within the plant cell is discussed.  相似文献   

7.
Misregulated innate immune signaling and cell death form the basis of much human disease pathogenesis. Inhibitor of apoptosis (IAP) protein family members are frequently overexpressed in cancer and contribute to tumor cell survival, chemo-resistance, disease progression, and poor prognosis. Although best known for their ability to regulate caspases, IAPs also influence ubiquitin (Ub)-dependent pathways that modulate innate immune signaling via activation of nuclear factor κB (NF-κB). Recent research into IAP biology has unearthed unexpected roles for this group of proteins. In addition, the advances in our understanding of the molecular mechanisms that IAPs use to regulate cell death and innate immune responses have provided new insights into disease states and suggested novel intervention strategies. Here we review the functions assigned to those IAP proteins that act at the intersection of cell death regulation and inflammatory signaling.Apoptosis represents a fundamental biological process that relies on the activation of caspases. Inhibitor of apoptosis (IAP) proteins represent a group of negative regulators of both caspases and cell death. Although best known for their ability to regulate caspases and cell death, it is now clear that they function as arbiters of diverse biological processes (Gyrd-Hansen and Meier 2010). Most prominently, IAPs control ubiquitin (Ub)-dependent signaling events that regulate activation of nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) pathways that in turn drive expression of genes important for inflammation, immunity, cell migration, and cell survival. IAPs thereby function as E3 Ub ligases, mediating the transfer of Ub from E2s to target substrates. This in turn modulates the signaling process through regulating protein stability as well as via nondegradative means (see below for details). Many of the cellular processes controlled by IAPs are frequently deregulated in cancer and, directly or indirectly, contribute to disease initiation, tumor maintenance, and/or progression, making IAPs obvious targets for anticancer therapy (LaCasse et al. 2008). Accordingly, small pharmacological inhibitors of IAPs, frequently referred to as Smac-mimetics (SM), were developed and are currently undergoing clinical trials for the treatment of cancer (LaCasse et al. 2008). The use of SMs in preclinical tumor models and clinical trials has provided compelling evidence for the therapeutic benefit of IAP inhibition.  相似文献   

8.
A common feature of cancer cells is their ability to evade apoptosis as a result of alterations that block cell death signaling pathways. The extensive research efforts that elucidated these signaling pathways over the past decade have set the stage for the development of therapeutic agents that either kill cancer cells selectively or reset their apoptotic threshold. Over the past two years a number of these agents have been evaluated in preclinical and clinical trials. The results of these studies suggest that it might soon be possible to modulate apoptosis in cancer cells for therapeutic benefit.  相似文献   

9.

Background

Apoptosis is a hallmark of β-cell death in both type 1 and type 2 diabetes mellitus. Understanding how apoptosis contributes to β-cell turnover may lead to strategies to prevent progression of diabetes. A key mediator of apoptosis, mitochondrial function, and cell survival is apoptosis inducing factor (AIF). In the present study, we investigated the role of AIF on β-cell mass and survival using the Harlequin (Hq) mutant mice, which are hypomorphic for AIF.

Methodology/Principal Findings

Immunohistochemical evaluation of pancreata from Hq mutant mice displayed much smaller islets compared to wild-type mice (WT). Analysis of β-cell mass in these mice revealed a greater than 4-fold reduction in β-cell mass together with an 8-fold increase in β-cell apoptosis. Analysis of cell cycle dynamics, using BrdU pulse as a marker for cells in S-phase, did not detect significant differences in the frequency of β-cells in S-phase. In contrast, double staining for phosphorylated Histone H3 and insulin showed a 3-fold increase in β-cells in the G2 phase in Hq mutant mice, but no differences in M-phase compared to WT mice. This suggests that the β-cells from Hq mutant mice are arrested in the G2 phase and are unlikely to complete the cell cycle. β-cells from Hq mutant mice display increased sensitivity to hydrogen peroxide-induced apoptosis, which was confirmed in human islets in which AIF was depleted by siRNA. AIF deficiency had no effect on glucose stimulated insulin secretion, but the impaired effect of hydrogen peroxide on β-cell function was potentiated.

Conclusions/Significance

Our results indicate that AIF is essential for maintaining β-cell mass and for oxidative stress response. A decrease in the oxidative phosphorylation capacity may counteract the development of diabetes, despite its deleterious effects on β-cell survival.  相似文献   

10.
11.
Apoptosis proteins play an essential role in regulating a balance between cell proliferation and death. The successful prediction of subcellular localization of apoptosis proteins directly from primary sequence is much benefited to understand programmed cell death and drug discovery. In this paper, by use of Chou’s pseudo amino acid composition (PseAAC), a total of 317 apoptosis proteins are predicted by support vector machine (SVM). The jackknife cross-validation is applied to test predictive capability of proposed method. The predictive results show that overall prediction accuracy is 91.1% which is higher than previous methods. Furthermore, another dataset containing 98 apoptosis proteins is examined by proposed method. The overall predicted successful rate is 92.9%.  相似文献   

12.
Interferon-beta (IFN-β) is a cytokine with anti-viral, anti-proliferative, and immunomodulatory effects. In this study, we investigated the effects of IFN-β on the induction of autophagy and the relationships among autophagy, growth inhibition, and apoptosis induced by IFN-β in human glioma cells. We found that IFN-β induced autophagosome formation and conversion of microtubule associated protein 1 light chain 3 (LC3) protein, whereas it inhibited cell growth through caspase-dependent cell apoptosis. The Akt/mTOR signaling pathway was involved in autophagy induced by IFN-β. A dose- and time-dependent increase of p-ERK 1/2 expression was also observed in human glioma cells treated with IFN-β. Autophagy induced by IFN-β was suppressed when p-ERK1/2 was impaired by treatment with U0126. We also demonstrated that suppression of autophagy significantly enhanced growth inhibition and cell apoptosis induced by IFN-β, whereas inhibition of caspase-dependent cell apoptosis impaired autophagy induced by IFN-β. Collectively, these findings indicated that autophagy induced by IFN-β was associated with the Akt/mTOR and ERK 1/2 signaling pathways, and inhibition of autophagy could enhance the growth inhibitory effects of IFN-β and increase apoptosis in human glioma cells. Together, these findings support the possibility that autophagy inhibitors may improve IFN-β therapy for gliomas.  相似文献   

13.
Tissue transglutaminase (TGase) has been implicated in both cell survival and apoptosis. Here we investigate the role of TGase in β-amyloid-induced neurotoxicity using retinoic acid (RA)-differentiated, neuronal SH-SY5Y cells. We show that β-amyloid-induced cell death was reduced in RA-differentiated SH-SY5Y cells treated with the TGase inhibitor monodansyl cadaverine. Expression of wild-type TGase enhanced β-amyloid1-42-induced apoptosis, whereas transamidation-defective TGase did not. These effects were specific for β-amyloid-treated cells, as TGase reversed the neurotoxic effects caused by hydrogen peroxide treatment. Enhancement of β-amyloid1-42-induced cell death by TGase was accompanied by marked increases in TGase activity in the membrane fractions and translocation of TGase to the cell surface. Overall, these findings suggest that the ability of TGase to exhibit pro-survival versus pro-apoptotic activity is linked to its cellular localization, with β-amyloid-induced recruitment of TGase to the cell surface accentuating neuronal toxicity and apoptosis.  相似文献   

14.

Objective

To ascertain if levosimendan postconditioning can alleviate lung ischemia–reperfusion injury (LIRI) in rats.

Method

One hundred rats were divided into five groups: Sham (sham), ischemia–reperfusion group (I/R group), ischemic postconditioning (IPO group), levosimendan postconditioning (Levo group) and combination postconditioning group of levosimendan and 5-Hydroxydecanoic acid (Levo+5-HD group). The apoptotic index (AI) of lung tissue cells was determined using the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Expression of active cysteine aspartate specific protease-3 ( active caspase-3), Bcl-2 and Bax in lung tissue was determined by immunohistochemical staining. The morphopathology of lung tissue was observed using light and electron microscopy.

Results

AI values and expression of active caspase-3, Bcl-2 and Bax of lung tissue in I/R and Levo+5-HD groups were significantly higher than those in the sham group ( P<0.05). AI values and expression of active caspase-3 and Bax were significantly lower, whereas that of Bcl-2 was higher significantly in the Levo group, compared with I/R and Levo+5-HD groups (P<0.05). Significant differences were not observed in comparisons between I/R and Levo+5-HD groups as well as IPO and Levo groups.

Conclusion

LIRI can be alleviated by levosimendan, which simulates an IPO protective function. A postulated lung-protective mechanism of action could involve opening of mitochondrial adenosine triphosphate-sensitive potassium channels, relieving Ca2+ overload, upregulation of expression of Bcl-2, and downregulation of expression of active caspase-3 and Bax.  相似文献   

15.
Although mitochondria are usually considered as supporters of life, they are also involved in cellular death. Mitochondrial outer membrane permeabilization (MOMP) is a crucial event during apoptosis because it causes the release of proapoptotic factors from the mitochondrial intermembrane space to the cytosol. MOMP is mainly controlled by the Bcl-2 family of proteins, which consists of both proapoptotic and antiapoptotic members. We discuss the current understanding of how activating and inhibitory interactions within this family lead to the activation and oligomerization of MOMP effectors Bax and Bak, which result in membrane permeabilization. The order of events leading to MOMP is then highlighted step by step, emphasizing recent discoveries regarding the formation of Bax/Bak pores on the outer mitochondrial membrane. Besides the Bcl-2 proteins, the mitochondrial organelle contributes to and possibly regulates MOMP, because mitochondrial resident proteins and membrane lipids are prominently involved in the process.Mitochondria are essential for the life of the cell. They produce most of the ATP via oxidative phosphorylation thanks to the respiratory chain that is embedded in the inner mitochondrial membrane. Consequently, mitochondrial dysfunction is implicated in the development of many human diseases, in particular, neurodegenerative disorders (Lin and Beal 2006). Mitochondria are also prominently involved in cell death, because they play a crucial role in many apoptotic responses. Apoptosis is a self-destruction program that is essential during the development of multicellular organisms. Its dysregulation has also been recognized as a main feature of many pathological conditions, especially cancer (Llambi and Green 2011).The executioners of apoptosis are a family of cysteine proteases termed caspases that cleave a variety of cellular targets, resulting in morphological changes, degradation of genomic DNA, and, ultimately, phagocytic removal of the apoptotic cell (Taylor et al. 2008). Caspases are synthesized as inactive zymogens that become activated after regulated limited proteolysis. Two different pathways of apoptotic signaling that result in the activation of executioner caspases 3 and 7 can be distinguished. In the extrinsic pathway, binding of ligands such as FasL or TNFα to a death receptor on the plasma membrane leads to the activation of initiator caspase 8. Active caspase 8 propagates the signal by directly cleaving and thereby activating caspases 3 and 7, which continue a proteolytic cascade ultimately leading to the removal of the cell.The intrinsic pathway, on the other hand, is initiated upon exposure to a number of stress situations, including DNA damage. A subclass of the Bcl-2 protein family termed BH3-only proteins (see below) becomes activated after an internal stress stimulus and translocates to the outer mitochondrial membrane (OMM), where they orchestrate a process called mitochondrial outer membrane permeabilization (MOMP). As an outcome of this process, pores are formed in the OMM, membrane integrity is lost, and contents of the intermembrane space gain access to the cytosol. One of the molecules that is rapidly released to the cytosol is cytochrome c, which is normally a soluble electron carrier between respiratory complexes III and IV. Together with the proapoptotic cytosolic factor APAF1, cytochrome c assembles into a caspase-activating complex termed the “apoptosome.” This complex subsequently activates caspase 9, which is able to cleave caspases 3 and 7, proceeding with the same downstream cascade as in the extrinsic pathway. Other intermembrane space proteins also contribute to cell death after being released into the cytosol (e.g., SMAC/Diablo, which blocks the caspase inhibitor protein XIAP).Remarkably, the two pathways are not completely independent. Cross talk between the extrinsic and intrinsic pathways exists because of caspase 8-dependent cleavage of the BH3-only protein Bid. Upon cleavage, Bid becomes activated, and the truncated version, tBid, translocates to the surface of mitochondria to induce MOMP. In so-called type II cells, this mitochondrial feedback loop is needed to induce apoptosis through the extrinsic pathway, because of the requirement of XIAP antagonism by SMAC.The loss of OMM integrity caused by MOMP is usually considered the point of no return in the whole process, because cells are committed to die once MOMP is initiated. Therefore, this process represents a major checkpoint of apoptosis and must be tightly controlled to ensure that it is initiated at the right time and place. The main molecular players of MOMP belong to the Bcl-2 protein family. Integration of proapoptotic and antiapoptotic signals by the network of Bcl-2 proteins determines whether or not the OMM is permeabilized. In the following sections, we describe in detail the stimulatory and inhibitory protein–protein interactions within this family, discussing various models of how the MOMP effectors, Bax and Bak, become activated. Furthermore, we focus on the actual event of membrane permeabilization, summarizing the current understanding of how pores are formed in the OMM by Bax and Bak oligomers.  相似文献   

16.
17.
Stoika  R. S.  Fil'chenkov  O. O. 《Neurophysiology》2001,33(5):331-338
Transforming growth factor- (TGF-) is an agent that gave the name to an extensive superfamily of congeneric cytokines playing important roles in numerous physiological and pathological processes. TGF- is involved in a few signal pathways controlling growth, differentiation, and death (apoptosis) of the nerve cells. Yet, it was found that the role of TGF- in each of these processes is dual: it can act either as their stimulator or as an inhibitor. This review describes examples and principal mechanisms of the dual functions of TGF- in its regulatory influences realized in the mammalian nervous system.  相似文献   

18.
To better understand the mechanism of cadmium (Cd)-induced apoptosis of porcine granulosa cells, we examined the nuclear factor-kappa B (NF-κB) p65 subunits intracellular translocation and the expression of some downstream apoptotic-related genes. Apoptosis and reactive oxygen species (ROS) production in porcine granulosa cells exposed to cadmium chloride (CdCl2) were determined by acridine orange/ethidium bromide double staining and 2,7-dichlorodihydro-fluorescein-diacetate oxidation staining, respectively. The results showed that the apoptosis of porcine granulosa cells induced by CdCl2 significantly increased in a time- and dose-dependent manner along with the increasing of ROS production, and 10 μM parthenolide, an inhibitor NF-κB, can accelerate the process of apoptosis. Moreover, immunofluorescence and western blot results showed that CdCl2 could stimulate the translocation of p65 into nucleus in porcine granulosa cells. Furthermore, CdCl2 also significantly stimulate the expression of Bcl-2 proteins in porcine granulosa cells than that in the control. In contrast, we did not find any change of Bax expression in granulosa cells upon exposure of cadmium. Taken together, these results demonstrate that the activation of NF-κB pathway may play a crucial role in cadmium-induced apoptosis of porcine granulosa cells.  相似文献   

19.
Autophagy can lead to cell death in response to stress, but it can also act as a protective mechanism for cell survival. We show that TGF-β1 induces autophagy and protects glomerular mesangial cells from undergoing apoptosis during serum deprivation. Serum withdrawal rapidly induced autophagy within 1 h in mouse mesangial cells (MMC) as determined by increased microtubule-associated protein 1 light chain 3 (LC3) levels and punctate distribution of the autophagic vesicle-associated-form LC3-II. We demonstrate that after 1 h there was a time-dependent decrease in LC3 levels that was accompanied by induction of apoptosis, evidenced by increases in cleaved caspase 3. However, treatment with TGF-β1 resulted in induction of the autophagy protein LC3 while suppressing caspase 3 activation. TGF-β1 failed to rescue MMC from serum deprivation-induced apoptosis upon knockdown of LC3 by siRNA and in MMC from LC3 null (LC3−/−) mice. We show that TGF-β1 induced autophagy through TAK1 and Akt activation, and inhibition of PI3K-Akt pathway by LY294002 or dominant-negative Akt suppressed LC3 levels and enhanced caspase 3 activation. TGF-β1 also up-regulated cyclin D1 and E protein levels while down-regulating p27, thus stimulating cell cycle progression. Bafilomycin A1, but not MG132, blocked TGF-β1 down-regulation of p27, suggesting that p27 levels were regulated through autophagy. Taken together, our data indicate that TGF-β1 rescues MMC from serum deprivation-induced apoptosis via induction of autophagy through activation of the Akt pathway. The autophagic process may constitute an adaptive mechanism to glomerular injury by inhibiting apoptosis and promoting mesangial cell survival.  相似文献   

20.
Highlights? IKK can inhibit TNFα-induced apoptosis independently of NF-κB activation ? Inhibition of BAD constitutes the NF-κB-independent antiapoptotic axis of IKK ? IKK phosphorylates BAD at Ser26 and primes it for inactivation ? BAD inactivation coordinates with NF-κB activation to suppress TNFα-induced apoptosis  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号