首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Seventeen day chicken embryonic osteoblasts treated over a 30-day period with 1,25(OH)2 D3 showed a 2–10-fold decrease in collagen, osteopontin and osteocalcin protein accumulation, alkaline phosphatase enzyme activity, and mineral deposition. Comparable inhibition in the steady state mRNA levels for α1(I) and α2(I) collagen, osteocalcin, and osteopontin were observed, and the inhibitory action of the hormone was shown to be specific for only the late release populations of cells from sequential enzyme digestions of the chick calvaria. In order to determine whether the continuous hormone treatment blocked osteoblast differentiation, the cells were acutely treated for 24 h with 1,25(OH)2 D3 at culture periods when the cells proliferate (day 5), a culture period when the cells cease further cell division and are increasing in the expression of their differentiated functions (day 17), and a culture period when the cells are encapsulated within a mineralized extracellular matrix (day 30). Inhibition of the expression of collagen, osteocalcin, and osteopontin were observed at days 17 and 30, while no effect could be detected for the 5-day cultures. To further define whether the inhibitory effect was specific for cells expressing their differentiated phenotype, 1,25(OH)2 D3 treatment was initiated at day 17 and continued to day 30 after the cells have established their collagenous matrix. In these experiments further collagenous matrix deposition, mineral deposition, alkaline phosphatase activity, and osteocalcin synthesis were also inhibited after the hormone treatment was initiated. These results, in summary, show that 1,25(OH)2 D3 in primary avian osteoblast cultures derived from 17-day embryonic calvaria inhibits the expression of several genes associated with differentiated osteoblast function and inhibit extracellular matrix mineral deposition.  相似文献   

3.
4.
5.
Mesenchymal stem cells (MSCs) play a crucial role in regulating normal skeletal homeostasis and, in case of injury, in bone healing and reestablishment of skeletal integrity. Recent scientific literature is focused on the development of bone regeneration models where MSCs are combined with biomimetic three-dimensional scaffolds able to direct MSC osteogenesis. In this work the osteogenic potential of human MSCs isolated from adipose tissue (hADSCs) has been evaluated in vitro in combination with collagen/Mg doped hydroxyapatite scaffolds. Results demonstrate the high osteogenic potential of hADSCs when cultured in specific differentiation induction medium, as revealed by the Alizarin Red S staining and gene expression profile analysis. In combination with collagen/hydroxyapatite scaffold, hADSCs differentiate into mature osteoblasts even in the absence of specific inducing factors; nevertheless, the supplement of the factors markedly accelerates the osteogenic process, as confirmed by the expression of specific markers of pre-osteoblast and mature osteoblast stages, such as osterix, osteopontin (also known as bone sialoprotein I), osteocalcin and specific markers of extracellular matrix maturation and mineralization stages, such as ALPL and osteonectin. Hence, the present work demonstrates that the scaffold per se is able to induce hADSCs differentiation, while the addition of osteo-inductive factors produces a significant acceleration of the osteogenic process. This observation makes the use of our model potentially interesting in the field of regenerative medicine for the treatment of bone defects.  相似文献   

6.
Bone extracellular matrix (ECM) is a 3D network, composed of collagen type I and a number of other macromolecules, including glycosaminoglycans (GAGs), which stimulate signaling pathways that regulate osteoblast growth and differentiation. To model the ECM of bone for tissue regenerative approaches, dense collagen/chitosan (Coll/CTS) hybrid hydrogels were developed using different proportions of CTS to mimic GAG components of the ECM. MC3T3-E1 mouse calvaria preosteoblasts were seeded within plastically compressed Coll/CTS hydrogels with solid content approaching that of native bone osteoid. Dense, cellular Coll/CTS hybrids were maintained for up to 8 weeks under either basal or osteogenic conditions. Higher CTS content significantly increased gel resistance to collagenase degradation. The incorporation of CTS to collagen gels decreased the apparent tensile modulus from 1.82 to 0.33 MPa. In contrast, the compressive modulus of Coll/CTS hybrids increased in direct proportion to CTS content exhibiting an increase from 23.50 to 55.25 kPa. CTS incorporation also led to an increase in scaffold resistance to cell-induced contraction. MC3T3-E1 viability, proliferation, and matrix remodeling capability (via matrix metalloproteinase expression) were maintained. Alkaline phosphatase activity was increased up to two-fold, and quantification of phosphate mineral deposition was significantly increased with CTS incorporation. Thus, dense Coll/CTS scaffolds provide osteoid-like models for the study of osteoblast differentiation and bone tissue engineering.  相似文献   

7.
Collagen fiber assembly affects many physiological processes and is tightly controlled by collagen-binding proteins. However, to what extent membrane-bound versus cell-secreted collagen-binding proteins affect collagen fibrillogenesis is not well understood. In our previous studies, we had demonstrated that the membrane-anchored extracellular domain (ECD) of the collagen receptor discoidin domain receptor 2 (DDR2) inhibits fibrillogenesis of collagen endogenously secreted by the cells. These results led to a novel functional role of the DDR2 ECD. However, since soluble forms of DDR1 and DDR2 containing its ECD are known to naturally exist in the extracellular matrix, in this work we investigated if these soluble DDR ECDs may have a functional role in modulating collagen fibrillogenesis. For this purpose, we created mouse osteoblast cell lines stably secreting DDR1 or DDR2 ECD as soluble proteins. Transmission electron microscopy, fluorescence microscopy, and hydroxyproline assays were used to demonstrate that DDR ECD expression reduced the rate and quantity of collagen deposition and induced significant changes in fiber morphology and matrix mineralization. Collectively, our studies advance our understanding of DDR receptors as powerful regulators of collagen deposition in the ECM and elucidate their multifaceted role in ECM remodeling.  相似文献   

8.
Differentiated osteoblasts are polarized in regions of bone deposition, demonstrate extensive cell interaction and communication, and are responsible for bone formation and quality. Type XII collagen is a fibril-associated collagen with interrupted triple helices and has been implicated in the osteoblast response to mechanical forces. Type XII collagen is expressed by osteoblasts and localizes to areas of bone formation. A transgenic mouse null for type XII collagen exhibits skeletal abnormalities including shorter, more slender long bones with decreased mechanical strength as well as altered vertebrae structure compared with wild-type mice. Col12a(-/-) osteoblasts have decreased bone matrix deposition with delayed maturation indicated by decreased bone matrix protein expression. Compared with controls, Col12a(-/-) osteoblasts are disorganized and less polarized with disrupted cell-cell interactions, decreased connexin43 expression, and impaired gap junction function. The data demonstrate important regulatory roles for type XII collagen in osteoblast differentiation and bone matrix formation.  相似文献   

9.
Biomimetic collagen/hydroxyapatite scaffolds have been prepared by microwave assisted co-titration of phosphorous acid-containing collagen solution and calcium hydroxide-containing solution. The resultant scaffolds have been characterised with respect to their mechanical properties, composition and microstructures. It was observed that the in situ precipitation process could combine collagen fibril formation and hydroxyapatite (HAp) formation in one process step. Collagen fibrils guided hydroxyapatite precipitation to form bone-mimic collagen/hydroxyapatite composite containing both intrafibrillar and interfibrillar hydroxyapatites. The mineral phase was determined as low crystalline calcium-deficient hydroxyapatite with calcium to phosphorus ratio (Ca/P) of 1.4. The obtained 1% (collagen/HAp = 75/25) scaffold has a porosity of 72% and a mean pore size of 69.4 ~tm. The incorporation of hydroxyapatite into collagen matrix improved the mechanical modulus of the scaffold significantly. This could be attributed to hydroxyapatite crystallites in collagen fibrils which restricted the deformation of the collagen fibril network, and the load transfer of the collagen to the higher modulus mineral component of the composite.  相似文献   

10.
Summary The latent form of transforming growth factor-beta (TGF-β) is a component of the extracellular matrix of bone. The active form, when locally injected in vivo, stimulates both inflammation and ectopic bone formation. The present study was undertaken to determine if TGF-β also stimulated mineralization by isolated rat calvarial osteoblasts cultured in collagen gels. Gels were used because they should mimic in vivo conditions better than classical monolayer culture. Compared to cells in monolayers, osteoblasts cultured in collagen gels exhibited slower growth, but higher alkaline phosphatase activity and mineral deposition. Cultured cells also synthesized the osteoblast-specific marker, osteocalcin. The increase in osteocalcin in cell layers was parallel to the increase in mineral deposition. In the presence of TGF-β, neither cell growth nor alkaline phosphatase activity increased. Instead, a small decrease occurred in both parameters when compared to untreated cultures. Accumulation of collagen, the major component of the extracellular matrix where mineralization occurs, was similar in untreated and TGF-β1-treated cultures. However, 8 pM TGF-β1 dramatically suppressed mineral deposition in both types of cultures. Despite TGF-β1 stimulating a fourfold increase in lactic acid, the consequent increase in culture medium acidity did not account for the inhibitory effects of TGF-β1 on mineralization. These results demonstrate that collagen gel culture is an improved technique over conventional monolayer culture for demonstrating differentiated osteoblast function and sensitivity to TGF-β1. TGF-β1, at a concentration that has little effect on cell growth, alkaline phosphatase activity, or collagen accumulation, is a potent inhibitor of mineralization. The mechanism by which TGF-β1 inhibits mineralization remains to be determined.  相似文献   

11.
12.
Rat calvaria osteoblasts derived from 21-day-old fetal rat pups undergo a temporal expression of markers of the osteoblast phenotype during a 5 week culture period. Alkaline phosphatase and osteocalcin are sequentially expressed in relation to collagen accumulation and mineralization. This pattern of expression of these osteoblast parameters in cultured rat osteoblasts (ROB) is analogous to that seen in vivo in developing fetal rat calvaria tissue (Yoon et. al: Biochem. Biophis. Res. Commun. 148:1129, 1987) and is similar to that observed in cultures of subcultivated 16-day-old embryonic chick calvaria-derived osteoblasts (COB) (Gerstenfeld, et.al: Dev. Biol. 122:46, 1987). While the cellular organization of subcultivated COB and primary ROB cultures are somewhat different, the temporal expression of the parameters remains. Both the rat and chick culture systems support formation of matrix mineralization even in the absence of beta-glycerol-phosphate. A systematic examination of factors which constitute conditions supporting complete expression of the osteoblast phenotype in ROB cultures indicate requirements for specific serum lots, ascorbic acid and the ordered deposition of mineral in the extracellular matrix. The present studies suggest that formation of a collagenous matrix, dependent on ascorbic acid, is requisite for expression of the osteoblast phenotype. In ROB cultures, expression of osteocalcin synthesis occurs subsequent to initiation of alkaline phosphatase activity and accompanies the formation of mineralized nodules. Thus, extracellular matrix mineralization (deposition of hydroxyapatite) is required for complete development of the osteoblast phenotype, as reflected by a 200-fold increase in osteocalcin synthesis. These data show the temporal expression of the various osteoblast parameters during the formation and mineralization of an extracellular matrix can provide markers reflective of various stages of osteoblast differentiation/maturation in vitro.  相似文献   

13.
14.
Transgenic mice overexpressing fibroblast growth factor 23 (FGF23) in osteoblasts have a rachitic bone phenotype. These mice display hypomineralized bones, increased expression of osteoblast markers, but osteoclast numbers are unaltered or slightly reduced. Paradoxically, they show increased serum levels of the bone resorption marker CTX, a type I collagen degradation fragment. Here we analyzed a matrix metalloproteinase- (MMP-) like secreted protease, Adamts1, that has previously been associated with osteoblastic type I collagen breakdown in vitro. Bones from FGF23 transgenic (tg) mice displayed increased Adamts1 protein upon both immunohistological staining and Western blotting. We further found Adamts1 protein together with excessively degraded type I collagen in the non-mineralized bone fraction of FGF23 tg mice. A similar degradation pattern of type I collagen was noticed upon forced expression of Adamts1 in osteoblastic cells in vitro. Importantly, these Adamts1-expressing osteoblastic cells exhibited increased release of CTX fragments when cultured on demineralized bone discs. Together, these results demonstrate for the first time that Adamts1 can be highly induced in bone tissue and that this MMP-like protease can increase osteoblastic release of CTX fragments from non-mineralized bone. Thus, Adamts1 potentially contributes to the increased serum levels of CTX in rickets/osteomalacia.  相似文献   

15.
Woven bone is a type of tissue that forms mainly during fracture healing or fetal bone development. Its microstructure can be modeled as a composite with a matrix of mineral (hydroxyapatite) and inclusions of collagen fibrils with a more or less random orientation. In the present study, its elastic properties were estimated as a function of composition (degree of mineralization) and fibril orientation. A self-consistent homogenization scheme considering randomness of inclusions’ orientation was used for this purpose. Lacuno-canalicular porosity in the form of periodically distributed void inclusions was also considered. Assuming collagen fibrils to be uniformly oriented in all directions led to an isotropic tissue with a Young’s modulus \(E = 1.90\) GPa, which is of the same order of magnitude as that of woven bone in fracture calluses. By contrast, assuming fibrils to have a preferential orientation resulted in a Young’s modulus in the preferential direction of 9–16 GPa depending on the mineral content of the tissue. These results are consistent with experimental evidence for woven bone in foetuses, where collagen fibrils are aligned to a certain extent.  相似文献   

16.
17.
Menin, the product of the multiple endocrine neoplasia type 1 (Men1) tumor suppressor gene, mediates the cell proliferation and differentiation actions of transforming growth factor-β (TGF-β) ligand family members. In vitro, menin modulates osteoblastogenesis and osteoblast differentiation promoted and sustained by bone morphogenetic protein-2 (BMP-2) and TGF-β, respectively. To examine the in vivo function of menin in bone, we conditionally inactivated Men1 in mature osteoblasts by crossing osteocalcin (OC)-Cre mice with floxed Men1 (Men1f/f) mice to generate mice lacking menin in differentiating osteoblasts (OC-Cre;Men1f/f mice). These mice displayed significant reduction in bone mineral density, trabecular bone volume, and cortical bone thickness compared with control littermates. Osteoblast and osteoclast number as well as mineral apposition rate were significantly reduced, whereas osteocyte number was increased. Primary calvarial osteoblasts proliferated more quickly but had deficient mineral apposition and alkaline phosphatase activity. Although the mRNA expression of osteoblast marker and cyclin-dependent kinase inhibitor genes were all reduced, that of cyclin-dependent kinase, osteocyte marker, and pro-apoptotic genes were increased in isolated Men1 knock-out osteoblasts compared with controls. In contrast to the knock-out mice, transgenic mice overexpressing a human menin cDNA in osteoblasts driven by the 2.3-kb Col1a1 promoter, showed a gain of bone mass relative to control littermates. Osteoblast number and mineral apposition rate were significantly increased in the Col1a1-Menin-Tg mice. Therefore, osteoblast menin plays a key role in bone development, remodeling, and maintenance.  相似文献   

18.
Fibroblast growth factors (FGF) are osteoblast mitogens, but their effects on bone formation are not clearly understood. Most in vitro studies examining the effects of FGFs on osteoblasts have been performed only during the initial proliferative stage of osteoblast culture. In these studies, we examined the consequential effect of acidic FGF in cultures of rat fetal diploid osteoblasts that undergo a developmental differentiation program producing a mineralized bone-like matrix. During the initial growth period (days 1–10), addition of acidic FGF (100 μg/ml) to actively proliferating cells increased (P < 0.05) 3H-thymidine uptake (2,515 ± 137, mean ± SEM vs. 5,884 ± 818 cpm/104 cells). During the second stage of maturation (days 10–15), osteoblasts form multilayered nodules of cells and accumulate matrix, followed by mineralization (stage 3, days 16–29). Addition of acidic FGF to the osteoblast cultures from days 7 to 15 completely blocked nodule formation. Furthermore, addition of acidic FGF after nodule formation (days 14–29) inhibited matrix mineralization, which was associated with a marked increase in collagenase gene expression, and resulted in a progressive change in the morphology of the nodules, with only a few remnants of nonmineralized nodules present by day 29. Histochemical and biochemical analyses revealed a decrease in alkaline phosphatase and mineral content, confirming the acidic FGF-induced inhibition of nodule and matrix formation. To identify mechanisms contributing to these changes, we examined expression of cell growth and bone phenotypic markers. Addition of acidic FGF during the proliferative phase (days 7–8) enhanced histone H4, osteopontin, type 1 collagen, and TGF-β mRNA levels, which are coupled to proliferating osteoblasts, and blocked the normal developmental increase in alkaline phosphatase and osteocalcin gene expression and calcium accumulation. Addition of acidic FGF to the cultures during matrix maturation (days 14–15) reactivated H4, osteopontin, type I collagen, and TGF-β gene expression, and decreased alkaline phosphatase and osteocalcin gene expression. In an in vivo experiment, rats were treated with up to 60 μg/kg/day acidic FGF intravenously for 30 days. Proliferation of osteoblasts and deposition of bone occurred in the marrow space of the diaphysis of the femur in a dose-related fashion. The metaphyseal areas were unaffected by treatment. In conclusion, our data suggest that acidic FGF is a potent mitogen for early stage osteoblasts which leads to modifications in the formation of the extracellular matrix; increases in TGF-β and collagenase are functionally implicated in abrogating competency for nodule formation. Persistence of proliferation prevented expression of alkaline phosphatase and osteocalcin, also contributing to the block in the progression of the osteoblast developmental sequence. © 1996 Wiley-Liss, Inc.  相似文献   

19.
Bone and dentin are mineralized extracellular matrices produced by osteoblasts and odontoblasts, respectively, and their major organic portion is type I collagen. Dentinogenesis Imperfecta (DGI) is one of the most common clinically- and genetically-based disturbances of dentin formation, causing irreversible dentin defects. Among several types of DGI, patients with DGI type II exhibit opalescent dentin with partial or complete pulp obliteration. It has been previously reported that the non-sense mutation (c.133C>T) in Dentin Sialophosphoprotein (DSPP) was identified in DGI type II patients at glutamine residue 45, resulting in the premature stop codon (p.Q45X). DSPP is known to be synthesized as a single gene product and further processed at Gly462-Asp463, resulting in the production of Dentin Sialoprotein (DSP) and Dentin Phosphoprotein (DPP). We hypothesized that the shorter form (Q45X) of N-terminal Dentin Sialoprotein (N-DSP) may cause over-production of type I collagen protein as obliterated pulp is occupied by dentin. To test this hypothesis, we generated mouse recombinant Glutathione-S-Transferase (GST)-N-DSP fusion protein, and the effect of GST-N-DSP was investigated in calvarial bone explant culture and MC3T3-E1 osteoblastic culture systems. Here we show that a significant increase in calvarial bone formation is observed by GST-N-DSP. GST-N-DSP accelerates MC3T3-E1 osteoblast cell growth and proliferation and subsequent osteoblast differentiation by inducing the expression of certain osteogenic markers such as type I collagen, Runx2, Osterix and ATF4. Interestingly, GST-N-DSP significantly enhances dentinogenesis marker gene expression including Dspp and Dmp1 gene expression in non-odontogenic MC3T3-E1 cells. To rule out any artificial effect of GST-tag, we also used the synthetic peptide of N-DSP and confirmed the results of N-DSP peptide were essentially similar to those of GST-N-DSP. Taken together, our data suggest that N-DSP promotes bone formation by accelerating osteoblast cell proliferation and subsequent osteoblast differentiation accompanied by marked up-regulation of the dentin matrix markers, such as Dspp and Dmp1 genes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号