首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stable subdivision of Drosophila limbs into Anterior (A) and Posterior (P) compartments is a consequence of asymmetric signaling by Hedgehog (Hh) from P to A cells. The activity of the homeodomain protein Engrailed (En) in P cells has been reported to help to generate this asymmetry by inducing the expression of hedgehog and simultaneously repressing the expression of the essential downstream component of the Hh signaling pathway Cubitus interruptus (Ci). In A cells, Ci has a major role in the repression of hh. Here we have revised the genetic and epigenetic mechanisms involved in the regulation of hh in the P compartment. First, we present evidence that hh expression in P cells is a consequence of the repression of ci by the activity of En. Thus, in the absence of Ci and En activities, cells do express hh. We also present data supporting the maintenance of hh expression in P cells through epigenetic mechanisms, and a permissive role of Notch signaling in this process. Notch and Trithorax (TrxG) group of proteins exert their action through a previously defined hh Polycomb Responsive Element (PRE).  相似文献   

2.
In Drosophila, decapentaplegic, which codes for a secreted signaling molecule, is activated by the Hedgehog signaling pathway at the anteroposterior compartment border of the two dorsal primordia; the wing and the haltere imaginal discs. In the wing disc, Decapentaplegic and Hedgehog signaling targets are implicated in cell proliferation and cell survival. However, most of their known targets in the wing disc are not expressed in the haltere disc due to their repression by the Hox gene Ultrabithorax. The T-box gene optomotor-blind escapes this repression in the haltere disc, and therefore is expressed in both the haltere and wing discs. Optomotor-blind is a major player during wing development and its function has been intensely investigated in this tissue, however, its role in haltere development has not been reported so far. Here we show that Optomotor-blind function in the haltere disc differs from that in the wing disc. Unlike its role in the wing, Optomotor-blind does not prevent apoptosis in the haltere but rather limits growth by repressing several Decapentaplegic and Hedgehog targets involved both in wing proliferation and in modulating the spread of morphogens similar to Ultrabithorax function but without disturbing Ultrabithorax expression.  相似文献   

3.
4.
The Notch signaling pathway plays essential roles in both animal development and human disease. Regulation of Notch receptor levels in membrane compartments has been shown to affect signaling in a variety of contexts. Here we used steady-state and pulse-labeling techniques to follow Notch receptors in sensory organ precursor cells in Drosophila. We find that the endosomal adaptor protein Numb regulates levels of Notch receptor trafficking to Rab7-labeled late endosomes but not early endosomes. Using an assay we developed that labels different pools of Notch receptors as they move through the endocytic system, we show that Numb specifically suppresses a recycled Notch receptor subpopulation and that excess Notch signaling in numb mutants requires the recycling endosome GTPase Rab11 activity. Our data therefore suggest that Numb controls the balance between Notch receptor recycling and receptor targeting to late endosomes to regulate signaling output after asymmetric cell division in Drosophila neural progenitors.  相似文献   

5.
The metalloprotease ADAM10/Kuzbanian catalyzes the ligand-dependent ectodomain shedding of Notch receptors and activates Notch. Here, we show that the human tetraspanins of the evolutionary conserved TspanC8 subfamily (Tspan5, Tspan10, Tspan14, Tspan15, Tspan17, and Tspan33) directly interact with ADAM10, regulate its exit from the endoplasmic reticulum, and that four of them regulate ADAM10 surface expression levels. In an independent RNAi screen in Drosophila, two TspanC8 genes were identified as Notch regulators. Functional analysis of the three Drosophila TspanC8 genes (Tsp3A, Tsp86D, and Tsp26D) indicated that these genes act redundantly to promote Notch signaling. During oogenesis, TspanC8 genes were up-regulated in border cells and regulated Kuzbanian distribution, Notch activity, and cell migration. Furthermore, the human TspanC8 tetraspanins Tspan5 and Tspan14 positively regulated ligand-induced ADAM10-dependent Notch1 signaling. We conclude that TspanC8 tetraspanins have a conserved function in the regulation of ADAM10 trafficking and activity, thereby positively regulating Notch receptor activation.  相似文献   

6.
Hedgehog (Hh) signaling is important for development and homeostasis in vertebrates and invertebrates. Ligand-independent, deregulated Hh signaling caused by loss of negative regulators such as Patched causes excessive cell proliferation, leading to overgrowth in Drosophila and tumors in humans, including basal-cell carcinoma and medulloblastoma. We show that in Drosophila deregulated Hh signaling also promotes cell survival by increasing the resistance to apoptosis. Surprisingly, cells with deregulated Hh activity do not protect themselves from apoptosis; instead, they promote cell survival of neighboring wild-type cells. This non-cell autonomous effect is mediated by Hh-induced Notch signaling, which elevates the protein levels of Drosophila inhibitor of apoptosis protein-1 (Diap-1), conferring resistance to apoptosis. In summary, we demonstrate that deregulated Hh signaling not only promotes proliferation but also cell survival of neighboring cells. This non-cell autonomous control of apoptosis highlights an underappreciated function of deregulated Hh signaling, which may help to generate a supportive micro-environment for tumor development.  相似文献   

7.
Cell interactions mediated by Notch family receptors have been implicated in the specification of tissue boundaries. Tightly localized activation of Notch is crucial for the formation of sharp boundaries. In the Drosophila wing imaginal disc, the Notch receptor is expressed in all cells. However, Notch activity is limited to a narrow stripe of cells along the dorsal–ventral compartment boundary, where it induces the expression of target genes. How a widely expressed protein becomes tightly regulated at the dorsal–ventral boundary in the Drosophila wing is not completely understood. Here, we show that the transmembrane protein Crumbs is involved in a feedback mechanism used by Notch to refine its own activation domain at the Drosophila wing margin. Crumbs reduces the activity of the γ-Secretase complex, which mediates the proteolytic intracellular processing of Notch. These results indicate a novel molecular mechanism of the regulation of Notch signal, and also that defects in Crumbs might be involved in similar abnormal γ-Secretase complex activity observed in Alzheimer's disease.  相似文献   

8.
9.
Hrs mediates downregulation of multiple signalling receptors in Drosophila   总被引:3,自引:0,他引:3  
Jékely G  Rørth P 《EMBO reports》2003,4(12):1163-1168
Endocytosis and subsequent lysosomal degradation of activated signalling receptors can attenuate signalling. Endocytosis may also promote signalling by targeting receptors to specific compartments. A key step regulating the degradation of receptors is their ubiquitination. Hrs/Vps27p, an endosome-associated, ubiquitin-binding protein, affects sorting and degradation of receptors. Drosophila embryos mutant for hrs show elevated receptor tyrosine kinase (RTK) signalling. Hrs has also been proposed to act as a positive mediator of TGF-β signalling. We find that Drosophila epithelial cells devoid of Hrs accumulate multiple signalling receptors in an endosomal compartment with high levels of ubiquitinated proteins: not only RTKs (EGFR and PVR) but also Notch and receptors for Hedgehog and Dpp (TGF-β related). Hrs is not required for Dpp signalling. Instead, loss of Hrs increases Dpp signalling and the level of the type-I receptor Thickveins (Tkv). Finally, most hrs-dependent receptor turnover appears to be ligand independent. Thus, both active and inactive signalling receptors are targeted for degradation in vivo and Hrs is required for their removal.  相似文献   

10.
Cardiac specification models are widely utilized to provide insight into the expression and function of homologous genes and structures in humans. In Drosophila, contractions of the alary muscles control hemolymph inflow and support the cardiac tube, however embryonic development of these muscles remain largely understudied. We found that alary muscles in Drosophila embryos appear as segmental pairs, attaching dorsally at the seven-up (svp) expressing pericardial cells along the cardiac dorsal vessel, and laterally to the body wall. Normal patterning of alary muscles along the dorsal vessel was found to be a function of the Bithorax Complex genes abdominal-A (abd-A) and Ultrabithorax (Ubx) but not of the orphan nuclear receptor gene svp. Ectopic expression of either abd-A or Ubx resulted in an increase in the number of alary muscle pairs from seven to 10, and also produced a general elongation of the dorsal vessel. A single knockout of Ubx resulted in a reduced number of alary muscles. Double knockouts of both Ubx and abd-A prevented alary muscles from developing normally and from attaching to the dorsal vessel. These studies demonstrate an additional facet of muscle development that depends upon the Hox genes, and define for the first time mechanisms that impact development of this important subset of muscles.  相似文献   

11.
In Drosophila, a cascade of maternal, gap, pair-rule and segment polarity genes subdivides the antero/posterior axis of the embryo into repeating segmental stripes. This review summarizes what happens next, i.e. how an intrasegmental pattern is generated and controls the differentiation of specific cell types in the epidermis. Within each segment, cells secreting the signalling molecules Wingless (the homologue of vertebrate Wnt-1) and Hedgehog are found in narrow stripes on both sides of the parasegmental boundary. The Wingless and Hedgehog organizing activities help to establish two more stripes per segment that localize ligands for the Epidermal Growth Factor and the Notch signalling pathways, respectively. These four signals then act at short range and in concert to control epidermal differentiation at the single cell level across the segment. This example from Drosophila provides a paradigm for how organizers generate precise patterns, and ultimately different cell types, in a naïve field of cells.  相似文献   

12.
Marcus Michel 《Fly》2016,10(4):204-209
During animal development, cells with similar function and fate often stay together and sort out from cells with different fates. In Drosophila wing imaginal discs, cells of anterior and posterior fates are separated by a straight compartment boundary. Separation of anterior and posterior cells requires the homeodomain-containing protein Engrailed, which is expressed in posterior cells. Engrailed induces the expression of the short-range signaling molecule Hedgehog in posterior cells and confines Hedgehog signal transduction to anterior cells. Transduction of the Hedgehog signal in anterior cells is required for the separation of anterior and posterior cells. Previous work showed that this separation of cells involves a local increase in mechanical tension at cell junctions along the compartment boundary. However, how mechanical tension was locally increased along the compartment boundary remained unknown. A recent paper now shows that the difference in Hedgehog signal transduction between anterior and posterior cells is necessary and sufficient to increase mechanical tension. The local increase in mechanical tension biases junctional rearrangements during cell intercalations to maintain the straight shape of the compartment boundary. These data highlight how developmental signals can generate patterns of mechanical tension important for tissue organization.  相似文献   

13.

Background

Hox genes are expressed in specific domains along the anterior posterior body axis and define the regional identity. In most animals these genes are organized in a single cluster in the genome and the order of the genes in the cluster is correlated with the anterior to posterior expression of the genes in the embryo. The conserved order of the various Hox gene orthologs in the cluster among most bilaterians implies that such a Hox cluster was present in their last common ancestor. Vertebrates are the only metazoans so far that have been shown to contain duplicated Hox clusters, while all other bilaterians seem to possess only a single cluster.

Results

We here show that at least three Hox genes of the spider Cupiennius salei are present as two copies in this spider. In addition to the previously described duplicated Ultrabithorax gene, we here present sequence and expression data of a second Deformed gene, and of two Sex comb reduced genes. In addition, we describe the sequence and expression of the Cupiennius proboscipedia gene. The spider Cupiennius salei is the first chelicerate for which orthologs of all ten classes of arthropod Hox genes have been described. The posterior expression boundary of all anterior Hox genes is at the tagma border of the prosoma and opisthosoma, while the posterior boundary of the posterior Hox genes is at the posterior end of the embryo.

Conclusion

The presence of at least three duplicated Hox genes points to a major duplication event in the lineage to this spider, perhaps even of the complete Hox cluster as has taken place in the lineage to the vertebrates. The combined data of all Cupiennius Hox genes reveal the existence of two distinct posterior expression boundaries that correspond to morphological tagmata boundaries.  相似文献   

14.
15.
16.
The successful organization of the vertebrate body requires that local information in the embryo be translated into a functional, global pattern. Somite cells form the bulk of the musculoskeletal system. Heterotopic transplants of segmental plate along the axis from quail to chick were performed to test the correlation between autonomous morphological patterning and Hox gene expression in somite subpopulations. The data presented strengthen the correlation of Hox gene expression with axial specification and focus on the significance of Hox genes in specific derivatives of the somites. We have defined two anatomical compartments of the body based on the embryonic origin of the cells making up contributing structures: the dorsal compartment, formed from purely somitic cell populations; and the ventral compartment comprising cells from somites and lateral plate. The boundary between these anatomical compartments is termed the somitic frontier. Somitic tissue transplanted between axial levels retains both original Hox expression and morphological identity in the dorsal compartment. In contrast, migrating lateral somitic cells crossing the somitic frontier do not maintain donor Hox expression but apparently adopt the Hox expression of the lateral plate and participate in the morphology appropriate to the host level. Dorsal and ventral compartments, as defined here, have relevance for experimental manipulations that influence somite cell behavior. The correlation of Hox expression profiles and patterning behavior of cells in these two compartments supports the hypothesis of independent Hox codes in paraxial and lateral plate mesoderm.  相似文献   

17.
18.
19.
During Drosophila oogenesis, the somatic follicle cells form an epithelial layer surrounding the germline cells to form egg chambers. In this process, follicle cell precursors are specified into polar cells, stalk cells, and main-body follicle cells. Proper specification of these three cell types ensures correct egg chamber formation and polarization of the anterior–posterior axis of the germline cells. Multiple signaling cascades coordinate to control the follicle cell fate determination, including Notch, JAK/STAT, and Hedgehog signaling pathways. Here, we show that the Hippo pathway also participates in polar cell specification. Over-activation of yorkie (yki) leads to egg chamber fusion, possibly through attenuation of polar cell specification. Loss-of-function experiments using RNAi knockdown or generation of mutant clones by mitotic recombination demonstrates that reduction of yki expression promotes polar cell formation in a cell-autonomous manner. Consistently, polar cells mutant for hippo (hpo) or warts (wts) are not properly specified, leading to egg chamber fusion. Furthermore, Notch activity is increased in yki mutant cells and reduction of Notch activity suppresses polar cell formation in yki mutant clones. These results demonstrate that yki represses polar cell fate through Notch signaling. Collectively, our data reveal that the Hippo pathway controls polar cell specification. Through repressing Notch activity, Yki serves as a key repressor in specifying polar cells during Drosophila oogenesis.  相似文献   

20.
Notch signaling is one of the most important pathways in development and homeostasis, and is altered in multiple pathologies. Study of Drosophila eye development shows that Notch signaling depends on the HLH protein Extramacrochaetae. Null mutant clones show that extramacrochaetae is required for multiple aspects of eye development that depend on Notch signaling, including morphogenetic furrow progression, differentiation of R4, R7 and cone cell types, and rotation of ommatidial clusters. Detailed analysis of R7 and cone cell specification reveals that extramacrochaetae acts cell autonomously and epistatically to Notch, and is required for normal expression of bHLH genes encoded by the E(spl)-C which are effectors of most Notch signaling. A model is proposed in which Extramacrochaetae acts in parallel to or as a feed-forward regulator of the E(spl)-Complex to promote Notch signaling in particular cellular contexts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号