首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Key message

Here we link for the first time a poplar gene with putative function in ABA signaling to the regulation of drought responses, providing a target for drought tolerance improvement in poplars.

Abstract

Populus species are valued for their fast growth and are cultivated widely. Many of the commonly used species and hybrids are, however, regarded as drought sensitive, which poses a problem for large-scale cultivation particularly in light of climate change-induced drought spells in areas of poplar growth. While many hundreds of drought-induced genes have been identified in Populus species, very little is known about the genes and the signaling process that leads to a drought response in these species. Based on sequence similarity, the poplar G059200 gene is a potential ortholog of AtPP2CA, an inhibitor of drought and abscisic acid (ABA) responses in Arabidopsis thaliana. To test if G059200 has a similar function, we generated transgenic A. thaliana plants overexpressing this gene. These transgenic lines exhibited reduced responses to exogenous ABA and reduced tolerance to osmotic stress. Finally, drought tolerance of plants was also significantly reduced. Taken together, these data provide evidences that G059200 acts as a negative regulator of ABA responses. The ability to negatively regulate drought stress responses suggests that G059200 may be targeted for drought tolerance breeding, for example, by identification of individuals harboring natural or induced loss-of-function alleles, or by RNA interference technology, to generate poplar plants with reduced activity of G059200.  相似文献   

2.
3.
4.

Background

Small secreted proteins (SSPs) are employed by plant pathogenic fungi as essential strategic tools for their successful colonization. SSPs are often species-specific and so far only a few widely phylogenetically distributed SSPs have been identified.

Results

A novel fungal SSP family consisting of 107 members was identified in the poplar tree fungal pathogen Marssonina brunnea, which accounts for over 17% of its secretome. We named these proteins IGY proteins (IGYPs) based on the conserved three amino acids at the N-terminus. In spite of overall low sequence similarity among IGYPs; they showed conserved N- and C-terminal motifs and a unified gene structure. By RT-PCR-seq, we analyzed the IGYP gene models and validated their expressions as active genes during infection. IGYP homologues were also found in 25 other Dikarya fungal species, all of which shared conserved motifs and the same gene structure. Furthermore, 18 IGYPs from 11 fungi also shared similar genomic contexts. Real-time RT-PCR showed that 8 MbIGYPs were highly expressed in the biotrophic stage. Interestingly, transient assay of 12 MbIGYPs showed that the MbIGYP13 protein induced cell death in resistant poplar clones.

Conclusions

In total, 154 IGYPs in 26 fungi of the Dikarya subkingdom were discovered. Gene structure and genomic context analyses indicated that IGYPs originated from a common ancestor. In M. brunnea, the expansion of highly divergent MbIGYPs possibly is associated with plant-pathogen arms race.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1151) contains supplementary material, which is available to authorized users.  相似文献   

5.

Background

Gallstones (GS) is the major manifestation of gallbladder disease, and is the most common risk factor for gallbladder cancer (GBC). Previous studies investigating the association between ApoB-100 gene polymorphisms and the risks of GS and GBC have yielded conflicting results. Therefore, we performed a meta-analysis to clarify the effects of ApoB-100 gene polymorphisms on the risks of GS and GBC.

Methods

A computerized literature search was conducted to identify the relevant studies from PubMed and Embase. Fixed or random effects model was selected based on heterogeneity test. Publication bias was estimated using Begg’s funnel plots and Egger’s regression test.

Results

A total of 10, 3, and 3 studies were included in the analyses of the association between ApoB-100 XbaI, EcoRI, or insertion/deletion (ID) polymorphisms and the GS risks, respectively, while 3 studies were included in the analysis for the association between XbaI polymorphism and GBC risk. The combined results showed a significant association in Chinese (X+ vs. X−, OR = 2.37, 95%CI 1.52–3.70; X+X+/X+X- vs. X+X+, OR = 2.47, 95%CI 1.55–3.92), but not in Indians or Caucasians. Null association was observed between EcoRI or ID polymorphisms and GS risks. With regard to the association between XbaI polymorphism and GBC risk, a significant association was detected when GBC patients were compared with healthy persons and when GBC patients were compared with GS patients. A significant association was still detected when GBC patients (with GS) were compared with the GS patients (X+X+ vs. X-X−, OR = 0.33, 95%CI 0.12–0.90).

Conclusion

The results of this meta-analysis suggest that the ApoB-100 X+ allele might be associated with increased risk of GS in Chinese but not in other populations, while the ApoB-100 X+X+ genotype might be associated with reduced risk of GBC. Further studies with larger sample sizes are needed to confirm these results.  相似文献   

6.

Background

Calcium-binding proteins that contain EF-hand motifs have been reported to play important roles in transduction of signals associated with biotic and abiotic stresses. To functionally characterize gens of EF-hand family in response to abiotic stress, an MtCaMP1 gene belonging to EF-hand family from legume model plant Medicago truncatula was isolated and its function in response to drought and salt stress was investigated by expressing MtCaMP1 in Arabidopsis.

Methodology/Principal Findings

Transgenic Arabidopsis seedlings expressing MtCaMP1exhibited higher survival rate than wild-type seedlings under drought and salt stress, suggesting that expression of MtCaMP1 confers tolerance of Arabidopsis to drought and salt stress. The transgenic plants accumulated greater amounts of Pro due to up-regulation of P5CS1 and down-regulation of ProDH than wild-type plants under drought stress. There was a less accumulation of Na+ in the transgenic plants than in WT plants due to reduced up-regulation of AtHKT1 and enhanced regulation of AtNHX1 in the transgenic plants compared to WT plants under salt stress. There was a reduced accumulation of H2O2 and malondialdehyde in the transgenic plants than in WT plants under both drought and salt stress.

Conclusions/Significance

The expression of MtCaMP1 in Arabidopsis enhanced tolerance of the transgenic plants to drought and salt stress by effective osmo-regulation due to greater accumulation of Pro and by minimizing toxic Na+ accumulation, respectively. The enhanced accumulation of Pro and reduced accumulation of Na+ under drought and salt stress would protect plants from water default and Na+ toxicity, and alleviate the associated oxidative stress. These findings demonstrate that MtCaMP1 encodes a stress-responsive EF-hand protein that plays a regulatory role in response of plants to drought and salt stress.  相似文献   

7.
8.

Background and Aims

Extreme water stress episodes induce tree mortality, but the physiological mechanisms causing tree death are still poorly understood. This study tests the hypothesis that a potted tree''s ability to survive extreme monotonic water stress is determined by the cavitation resistance of its xylem tissue.

Methods

Two species were selected with contrasting cavitation resistance (beech and poplar), and potted juvenile trees were exposed to a range of water stresses, causing up to 100 % plant death.

Key Results

The lethal dose of water stress, defined as the xylem pressure inducing 50 % mortality, differed sharply across species (1·75 and 4·5 MPa in poplar and beech, respectively). However, the relationships between tree mortality and the degree of cavitation in the stems were similar, with mortality occurring suddenly when >90 % cavitation had occurred.

Conclusions

Overall, the results suggest that cavitation resistance is a causal factor of tree mortality under extreme drought conditions.  相似文献   

9.

Background

Protein phosphatases (PPs) play critical roles in various cellular processes through the reversible protein phosphorylation that dictates many signal transduction pathways among organisms. Recently, PPs in Arabidopsis and rice have been identified, while the whole complement of PPs in maize is yet to be reported.

Results

In this study, we have identified 159 PP-encoding genes in the maize genome. Phylogenetic analyses categorized the ZmPP gene family into 3 classes (PP2C, PTP, and PP2A) with considerable conservation among classes. Similar intron/exon structural patterns were observed in the same classes. Moreover, detailed gene structures and duplicative events were then researched. The expression profiles of ZmPPs under different developmental stages and abiotic stresses (including salt, drought, and cold) were analyzed using microarray and RNA-seq data. A total of 152 members were detected in 18 different tissues representing distinct stages of maize plant developments. Under salt stress, one gene was significantly up-expressed in seed root (SR) and one gene was down-expressed in primary root (PR) and crown root (CR), respectively. As for drought stress condition, 13 genes were found to be differentially expressed in leaf, out of which 10 were up-regulated and 3 exhibited down-regulation. Additionally, 13 up-regulated and 3 down-regulated genes were found in cold-tolerant line ETH-DH7. Furthermore, real-time PCR was used to confirm the expression patterns of ZmPPs.

Conclusions

Our results provide new insights into the phylogenetic relationships and characteristic functions of maize PPs and will be useful in studies aimed at revealing the global regulatory network in maize abiotic stress responses, thereby contributing to the maize molecular breeding with enhanced quality traits.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-773) contains supplementary material, which is available to authorized users.  相似文献   

10.

Background

Reactive oxygen species (ROS), including superoxide anion radical, induce chronic risk of oxidative damage to many cellular macromolecules resulting in damage to cells. Superoxide dismutases (SODs) catalyze the dismutation of superoxide to oxygen and hydrogen peroxide and are a primary defense against ROS. Vibrio parahaemolyticus, a marine bacterium that causes acute gastroenteritis following consumption of raw or undercooked seafood, can survive ROS generated by intestinal inflammatory cells. However, there is little information concerning SODs in V. parahaemolyticus. This study aims to clarify the role of V. parahaemolyticus SODs against ROS.

Methods

V. parahaemolyticus SOD gene promoter activities were measured by a GFP reporter assay. Mutants of V. parahaemolyticus SOD genes were constructed and their SOD activity and resistance to oxidative stresses were measured.

Results

Bioinformatic analysis showed that V. parahaemolyticus SODs were distinguished by their metal cofactors, FeSOD (VP2118), MnSOD (VP2860), and CuZnSOD (VPA1514). VP2118 gene promoter activity was significantly higher than the other SOD genes. In a VP2118 gene deletion mutant, SOD activity was significantly decreased and could be recovered by VP2118 gene complementation. The absence of VP2118 resulted in significantly lowered resistance to ROS generated by hydrogen peroxide, hypoxanthine–xanthine oxidase, or Paraquat. Furthermore, both the N- and C-terminal SOD domains of VP2118 were necessary for ROS resistance.

Conclusion

VP2118 is the primary V. parahaemolyticus SOD and is vital for anti-oxidative stress responses.

General significance

The V. parahaemolyticus FeSOD VP2118 may enhance ROS resistance and could promote its survival in the intestinal tract to facilitate host tissue infection.  相似文献   

11.
12.

Objectives

The aims of the present study were to determine oxidative stress and to explore possible reasons of reactive oxygen species (ROS) increase in human lens epithelial (HLE) B3 cells exposed to low intensity 1.8 GHz radiofrequency fields (RF).

Methods

The HLE B3 cells were divided into RF exposure and RF sham-exposure groups. The RF exposure intensity was at specific absorption rate (SAR) of 2, 3, or 4 W/kg. The ROS levels were measured by a fluorescent probe 2′7′-dichlorofluorescin diacetate (DCFH-DA) assay in the HLE B3 cells exposed to 1.8 GHz RF for 0.5, 1, and 1.5 h. Lipid peroxidation and cellular viability were detected by an MDA test and Cell Counting Kit-8 (CCK-8) assays, respectively, in the HLE B3 cells exposed to 1.8 GHz RF for 6, 12, and 24 h, respectively. The mRNA expression of SOD1, SOD2, CAT, and GPx1 genes and the expression of SOD1, SOD2, CAT, and GPx1 proteins was measured by qRT-PCR and Western blot assays in the HLE B3 cells exposed to 1.8 GHz RF for 1 h.

Results

The ROS and MDA levels significantly increased (P<0.05) in the RF exposure group and that the cellular viability, mRNA expression of four genes, and expression of four proteins significantly decreased (P<0.05) compared with the RF sham-exposure group.

Conclusions

Oxidative stress is present in HLE B3 cells exposed to 1.8 GHz low-intensity RF and that the increased production of ROS may be related to down-regulation of four antioxidant enzyme genes induced by RF exposure.  相似文献   

13.

Introduction

Early degeneration of the intervertebral disc (IVD) involves a change in cellular differentiation from notochordal cells (NCs) in the nucleus pulposus (NP) to chondrocyte-like cells (CLCs). The purpose of this study was to investigate the gene expression profiles involved in this process using NP tissue from non-chondrodystrophic and chondrodystrophic dogs, a species with naturally occurring IVD degeneration.

Methods

Dual channel DNA microarrays were used to compare 1) healthy NP tissue containing only NCs (NC-rich), 2) NP tissue with a mixed population of NCs and CLCs (Mixed), and 3) NP tissue containing solely CLCs (CLC-rich) in both non-chondrodystrophic and chondrodystrophic dogs. Based on previous reports and the findings of the microarray analyses, canonical Wnt signaling was further evaluated using qPCR of relevant Wnt target genes. We hypothesized that caveolin-1, a regulator of Wnt signaling that showed significant changes in gene expression in the microarray analyses, played a significant role in early IVD degeneration. Caveolin-1 expression was investigated in IVD tissue sections and in cultured NCs. To investigate the significance of Caveolin-1 in IVD health and degeneration, the NP of 3-month-old Caveolin-1 knock-out mice was histopathologically evaluated and compared with the NP of wild-type mice of the same age.

Results

Early IVD degeneration involved significant changes in numerous pathways, including Wnt/β-catenin signaling. With regard to Wnt/β-catenin signaling, axin2 gene expression was significantly higher in chondrodystrophic dogs compared with non-chondrodystrophic dogs. IVD degeneration involved significant down-regulation of axin2 gene expression. IVD degeneration involved significant down-regulation in Caveolin-1 gene and protein expression. NCs showed abundant caveolin-1 expression in vivo and in vitro, whereas CLCs did not. The NP of wild-type mice was rich in viable NCs, whereas the NP of Caveolin-1 knock-out mice contained chondroid-like matrix with mainly apoptotic, small, rounded cells.

Conclusions

Early IVD degeneration involves down-regulation of canonical Wnt signaling and Caveolin-1 expression, which appears to be essential to the physiology and preservation of NCs. Therefore, Caveolin-1 may be regarded an exciting target for developing strategies for IVD regeneration.  相似文献   

14.
15.

Background and Aims

Root hydrotropism is a response to water-potential gradients that makes roots bend towards areas of higher water potential. The gene MIZU-KUSSEI1 (MIZ1) that is essential for hydrotropism in Arabidopsis roots has previously been identified. However, the role of root hydrotropism in plant growth and survival under natural conditions has not yet been proven. This study assessed how hydrotropic response contributes to drought avoidance in nature.

Methods

An experimental system was established for the study of Arabidopsis hydrotropism in soil. Characteristics of hydrotropism were analysed by comparing the responses of the miz1 mutant, transgenic plants overexpressing MIZ1 (MIZ1OE) and wild-type plants.

Key Results

Wild-type plants developed root systems in regions with higher water potential, whereas the roots of miz1 mutant plants did not show a similar response. This pattern of root distribution induced by hydrotropism was more pronounced in MIZ1OE plants than in wild-type plants. In addition, shoot biomass and the number of plants that survived under drought conditions were much greater in MIZ1OE plants.

Conclusions

These results show that hydrotropism plays an important role in root system development in soil and contributes to drought avoidance, which results in a greater yield and plant survival under water-limited conditions. The results also show that MIZ1 overexpression can be used for improving plant productivity in arid areas.  相似文献   

16.

Background

Extracellular superoxide dismutase (SOD3), which dismutates superoxide anion to hydrogen peroxide, has been shown to reduce the free radical stress derived apoptosis in tissue injuries. Since both superoxide anion and hydrogen peroxide have a marked impact on signal transduction pathways and could potentially explain a number of apoptosis and survival -related phenomena in different pathological conditions, we clarified the impact of SOD3 on Akt and Erk1/2 cell survival pathways in rat hind limb injury model.

Methodology and Principal Findings

Based on our data, the hind limb ischemic rats treated with virally delivered sod3 have milder injury and less apoptosis than control animals that could be due to parallel activation of pro-proliferative and anti-apoptotic Erk1/2 and Akt pathways. The common downstream factor of both signaling pathways, the apoptosis related forkhead box protein O3a (FoxO3a), was phosphorylated and translocated to the cytoplasm in sod3 treated tissues and cell line. Additionally, we obtained increased mRNA production of elk-1, ets-1, and microRNA 21 (miR-21), whereas synthesis of bim mRNA was decreased in sod3 overexpressing tissues. We further showed that overexpression of sod3 modulated redox related gene expression by downregulating nox2 and inos when compared to injured control animals.

Conclusions and Significance

The study shows the complexity of SOD3-derived effects on tissue injury recovery that are not limited to the reduction of superoxide anion caused cellular stress but highlights the impact of SOD3 related signal transduction on tissue functions and suggests an important role for SOD3 in attenuating cell stress effects in different pathological conditions.  相似文献   

17.

Background

Manganese superoxide dismutase (MnSOD) inhibits oxidative damage and cancer therapy effectiveness. A polymorphism in its encoding gene (SOD2: Val16Ala rs4880) may confer poorer breast cancer survival, but data are inconsistent. We examined the association of SOD2 genotype and breast cancer recurrence (BCR) among patients treated with cyclophosphamide-based chemotherapy (Cyclo). We compared our findings with published studies using meta-analyses.

Methods

We conducted a population-based case-control study of BCR among women in Jutland, Denmark. Subjects were diagnosed with non-metastatic breast cancer from 1990–2001, received adjuvant Cyclo, and were registered in the Danish Breast Cancer Cooperative Group. We identified 118 patients with BCR and 213 matched breast cancer controls. We genotyped SOD2 and used conditional logistic regression to compute the odds ratio (OR) and associated 95% confidence intervals (95% CI) of BCR. We used random-effects meta-analytic models to evaluate the association of SOD2 polymorphisms and BCR.

Results

The frequency of the SOD2-Ala allele was 70% in cases versus 71% in controls; 40% versus 44% were heterozygotes, and 30% versus 25% were homozygotes, respectively. Heterozygote and homozygote carriers of the Ala allele had no increased rate of BCR (OR = 1.1, 95%CI = 0.65, 2.0, and OR = 0.87, 95%CI = 0.47, 1.6, respectively). Five studies informed the meta-analytic models; summary estimates associating BCR for homozygote, or any inheritance of the variant Ala allele were 1.18 (95%CI = 0.74, 1.88), and 1.18, (95%CI = 0.91, 1.54), respectively.

Conclusion

Our findings do not suggest that MnSOD enzymatic activity, as measured by SOD2 genotype, affects rates of BCR among patients treated with Cyclo.  相似文献   

18.
Shin JY  Gupta MK  Jung YH  Uhm SJ  Lee HT 《PloS one》2011,6(7):e22481

Background

Testis-derived male germ-line stem (GS) cells, the in vitro counterpart of spermatogonial stem cells (SSC), can acquire multipotency under appropriate culture conditions to become multipotent adult germ-line stem (maGS) cells, which upon testicular transplantation, produce teratoma instead of initiating spermatogenesis. Consequently, a molecular marker that can distinguish GS cells from maGS cells would be of potential value in both clinical and experimental research settings.

Methods and Findings

Using mouse as a model system, here we show that, similar to sperm, expression of imprinted and paternally expressed miRNAs (miR-296-3p, miR-296-5p, miR-483) were consistently higher (P<0.001), while those of imprinted and maternally expressed miRNA (miR-127, miR-127-5p) were consistently lower (P<0.001) in GS cells than in control embryonic stem (ES) cells. DNA methylation analyses of imprinting control regions (ICR), that control the expression of all imprinted miRNAs in respective gene clusters (Gnas-Nespas DMR, Igf2-H19 ICR and Dlk1-Dio3 IG-DMR), confirmed that imprinted miRNAs were androgenetic in GS cells. On the other hand, DNA methylation of imprinted miRNA genes in maGS cells resembled those of ES cells but the expression pattern of the imprinted miRNAs was intermediate between those of GS and ES cells. The expression of imprinted miRNAs in GS and maGS cells were also altered during their in vitro differentiation and varied both with the differentiation stage and the miRNA.

Conclusions

Our data suggest that GS cells have androgenetic DNA methylation and expression of imprinted miRNAs which changes to ES cell-like pattern upon their conversion to maGS cells. Differential genomic imprinting of imprinted miRNAs may thus, serve as epigenetic miRNA signature or molecular marker to distinguish GS cells from maGS cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号