首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Human umbilical cord blood (UCB)-derived mesenchymal stem cells (MSCs) attenuate hyperoxic neonatal lung injury primarily through anti-inflammatory effects. We hypothesized that intratracheal transplantation of human UCB-derived MSCs could attenuate Escherichia coli (E. coli)-induced acute lung injury (ALI) in mice by suppressing the inflammatory response.

Methods

Eight-week-old male ICR mice were randomized to control or ALI groups. ALI was induced by intratracheal E. coli instillation. Three-hours after E. coli instillation, MSCs, fibroblasts or phosphate-buffered saline were intratracheally administered randomly and survival was analyzed for 7 days post-injury. Lung histology including injury scores, myeloperoxidase (MPO) activity, and protein levels of interleukin (IL)-1α, IL-1β, IL-6, tumor necrosis factor (TNF)-α, and macrophage inflammatory protein (MIP)-2 as well as the wet-dry lung ratio and bacterial counts from blood and bronchoalveolar lavage (BAL) were evaluated at 1, 3, and 7 days post-injury. Levels of inflammatory cytokines in the lung were also profiled using protein macroarrays at day 3 post-injury which showed peak inflammation.

Results

MSC transplantation increased survival and attenuated lung injuries in ALI mice, as evidenced by decreased injury scores on day 3 post-injury and reduced lung inflammation including increased MPO activity and protein levels of IL-1α, IL-1β, IL-6, TNF-α, and MIP-2 on day 3 and 7 post-injury. Inflammatory cytokine profiles in the lungs at day 3 post-injury were attenuated by MSC transplantation. MSCs also reduced the elevated lung water content at day 3 post-injury and bacterial counts in blood and BAL on day 7 post-injury.

Conclusions

Intratracheal transplantation of UCB-derived MSCs attenuates E. coli-induced ALI primarily by down-modulating the inflammatory process and enhancing bacterial clearance.  相似文献   

2.
3.
4.
Adhesion molecules such as ICAM-1 are important in the infiltration of leukocytes into the site of inflammation. In this study, we investigated the inhibitory effects of curcumin on ICAM-1 expression and monocyte adhesiveness as well as its underlying action mechanism in the TNF-α-stimulated keratinocytes. Curcumin induced expression of heme oxygenase-1 (HO-1) in the human keratinocyte cell line HaCaT. In addition, curcumin induced Nrf2 activation in dose- and time-dependent manners in the HaCaT cells. Curcumin suppressed TNF-α- induced ICAM-1 expression and subsequent monocyte adhesion, which were reversed by the addition of tin protoporphyrin IX (SnPP), a specific inhibitor of HO-1, or HO-1 knockdown using siRNA. Furthermore, Nrf2 knockdown using siRNA reversed the inhibitory effect of curcumin on the TNF-α-induced ICAM-1 expression and adhesion of monocytes to keratinocytes. These results suggest that curcumin may exert its anti-inflammatory activity by suppressing the TNF-α-induced ICAM-1 expression and subsequent monocyte adhesion via expression of HO-1 in the keratinocytes. [BMB Reports 2013;46(8): 410-415]  相似文献   

5.
The prevalence of non-alcoholic fatty-liver disease (NAFLD) is increasing globally. NAFLD is a spectrum of related liver diseases that progressive from simple steatosis to serious complications like cirrhosis. The major pathophysiological driving of NAFLD includes elevated hepatic adiposity, increased hepatic triglycerides/cholesterol, excessive hepatic inflammation, and hepatocyte ballooning injury is a common histo-pathological denominator. Although heme-oxygenase (HO) is cytoprotective, its effects on hepatocyte ballooning injury have not been reported. We investigated the effects of upregulating HO with hemin or inhibiting it with stannous-mesoporphyrin (SnMP) on hepatocyte ballooning injury, hepatic adiposity and inflammation in Zucker-diabetic-fatty rats (ZDFs), an obese type-2-diabetic model. Hemin administration to ZDFs abated hepatic/plasma triglycerides and cholesterol, and suppressed several pro-inflammatory cytokines and chemokines including, TNF-α, IL-6, IL-1β, macrophage-inflammatory-protein-1α (MIP-1α) and macrophage-chemoattractant-protein-1 (MCP-1), with corresponding reduction of the pro-inflammatory M1-phenotype marker, ED1 and hepatic macrophage infiltration. Correspondingly, hemin concomitantly potentiated the protein expression of several markers of the anti-inflammatory macrophage-M2-phenotype including ED2, IL-10 and CD-206, alongside components of the HO-system including HO-1, HO-activity and cGMP, whereas the HO-inhibitor, SnMP abolished the effects. Furthermore, hemin attenuated liver histo-pathological lesions like hepatocyte ballooning injury and fibrosis, and reduced extracellular-matrix/profibrotic proteins implicated in liver injury such as osteopontin, TGF-β1, fibronectin and collagen-IV. We conclude that hemin restore hepatic morphology by abating hepatic adiposity, suppressing macrophage infiltration, inflammation and fibrosis. The selective enhancement of anti-inflammatory macrophage-M2-phenotype with parallel reduction of pro-inflammatory macrophage-M1-phenotype and related chemokines/cytokines like TNF-α, IL-6, IL-1β, MIP-1α and MCP-1 are among the multifaceted mechanisms by which hemin restore hepatic morphology.  相似文献   

6.
Inflammatory lung injury is one of the main complications associated with cardiopulmonary bypass (CPB). Tumor necrosis factor-α (TNF-α) is one of the key factors mediating the CPB-induced inflammatory reactions. Our previous studies have shown that endotracheal administration of anti-tumor necrosis factor-α antibody (TNF-α Ab) produces some beneficial effects on lung in a rabbit CPB model. In this study, we further examined the effects of pulmonary artery perfusion with TNF-α Ab (27 ng/kg) on lung tissue integrity and pulmonary inflammation during CPB and investigated the mechanism underlying the TNF-α Ab-mediated effects in a rabbit model of CPB. Our results from transmission electron microscopy showed that the perfusion with TNF-α Ab alleviated CPB-induced histopathological changes in lung tissue. The perfusion with TNF-α Ab also prevented CPB-induced pulmonary edema and improved oxygenation index. Parameters indicating pulmonary inflammation, including neutrophil count and plasma TNF-α and malondialdehyde (MDA) levels, were significantly reduced during CPB by pulmonary artery perfusion with TNF-α Ab, suggesting that the perfusion with TNF-α Ab reduces CPB-induced pulmonary inflammation. We further investigated the molecular mechanism underlying the protective effects of TNF-α Ab on lung. Our quantitative RT-PCR analysis revealed that pulmonary artery perfusion with TNF-α Ab significantly decreased TNF-α expression in lung tissue during CPB. The apoptotic index in lung tissue and the expression of proteins that play stimulatory roles in apoptosis pathways including the fas ligand (FasL) and Bax were markedly reduced during CPB by the perfusion with TNF-α Ab. In contrast, the expression of Bcl-2, which plays an inhibitory role in apoptosis pathways, was significantly increased during CPB by the perfusion with TNF-α Ab, indicating that the perfusion with TNF-α Ab significantly reduces CPB-induced apoptosis in lung. Thus, our study suggests that pulmonary artery perfusion with TNF-α Ab might be a promising approach for attenuating CPB-induced inflammatory lung injury.  相似文献   

7.
Heterogeneous surface expression of Thy-1 in fibroblasts modulates inflammation and may thereby modulate injury and repair. As a paradigm, patients with idiopathic pulmonary fibrosis, a disease with pathologic features of chronic inflammation, demonstrate an absence of Thy-1 immunoreactivity within areas of fibrotic activity (fibroblast foci) in contrast to the predominant Thy-1 expressing fibroblasts in the normal lung. Likewise, Thy-1 deficient mice display more severe lung fibrosis in response to an inflammatory injury than wildtype littermates. We investigated the role of Thy-1 in the response of fibroblasts to the pro-inflammatory cytokine TNF-α. Our study demonstrates distinct profiles of TNF-α-activated gene expression in Thy-1 positive (Thy-1+) and negative (Thy-1−) subsets of mouse embryonic fibroblasts (MEF). TNF-α induced a robust activation of MMP-9, ICAM-1, and the IL-8 promoter driven reporter in Thy-1− MEFs, in contrast to only a modest increase in Thy-1+ counterparts. Consistently, ectopic expression of Thy-1 in Thy-1− MEFs significantly attenuated TNF-α-activated gene expression. Mechanistically, TNF-α activated Src family kinase (SFK) only in Thy-1− MEFs. Blockade of SFK activation abrogated TNF-α-activated gene expression in Thy-1− MEFs, whereas restoration of SFK activation rescued the TNF-α response in Thy-1+ MEFs. Our findings suggest that Thy-1 down-regulates TNF-α-activated gene expression via interfering with SFK- and NF-κB-mediated transactivation. The current study provides a novel mechanistic insight to the distinct roles of fibroblast Thy-1 subsets in inflammation.  相似文献   

8.
Acute lung injury (ALI) is an inflammatory disorder associated with reduced alveolar-capillary barrier function and increased pulmonary vascular permeability. Vasodilator-stimulated phosphoprotein (VASP) is widely associated with all types of modulations of cytoskeleton rearrangement-dependent cellular morphology and function, such as adhesion, shrinkage, and permeability. The present studies were conducted to investigate the effects and mechanisms by which tumor necrosis factor-alpha (TNF-α) increases the tight junction permeability in lung tissue associated with acute lung inflammation. After incubating A549 cells for 24 hours with different concentrations (0–100 ng/mL) of TNF-α, 0.1 to 8 ng/mL TNF-α exhibited no significant effect on cell viability compared with the 0 ng/mL TNF-α group (control group). However, 10 ng/mL and 100 ng/mL TNF-α dramatically inhibited the viability of A549 cells compared with the control group (*p<0.05). Monolayer cell permeability assay results indicated that A549 cells incubated with 10 ng/mL TNF-α for 24 hours displayed significantly increased cell permeability (*p<0.05). Moreover, the inhibition of VASP expression increased the cell permeability (*p<0.05). Pretreating A549 cells with cobalt chloride (to mimic a hypoxia environment) increased protein expression level of hypoxia inducible factor-1α (HIF-1α) (*p<0.05), whereas protein expression level of VASP decreased significantly (*p<0.05). In LPS-induced ALI mice, the concentrations of TNF-α in lung tissues and serum significantly increased at one hour, and the value reached a peak at four hours. Moreover, the Evans Blue absorption value of the mouse lung tissues reached a peak at four hours. The HIF-1α protein expression level in mouse lung tissues increased significantly at four hours and eight hours (**p<0.001), whereas the VASP protein expression level decreased significantly (**p<0.01). Taken together, our data demonstrate that HIF-1α acts downstream of TNF-α to inhibit VASP expression and to modulate the acute pulmonary inflammation process, and these molecules play an important role in the impairment of the alveolar-capillary barrier.  相似文献   

9.
Growing evidences indicate that Ly-GDI, an inhibitory protein of Rho GTPases, plays an essential role in regulating actin cytoskeletal alteration which is indispensible for the process such as phagocytosis. However, the role of Ly-GDI in inflammation remains largely unknown. In the current study, we found that Ly-GDI expression was significantly decreased in the IgG immune complex-injured lungs. To determine if Ly-GDI might regulate the lung inflammatory response, we constructed adenovirus vectors that could mediate ectopic expression of Ly-GDI (Adeno-Ly-GDI). In vivo mouse lung expression of Ly-GDI resulted in a significant attenuation of IgG immune complex-induced lung injury, which was due to the decreased pulmonary permeability and lung inflammatory cells, especially neutrophil accumulation. Upon IgG immune complex deposition, mice with Ly-GDI over-expression in the lungs produced significant less inflammatory mediators (TNF-α, IL-6, MCP-1, and MIP-1α) in bronchoalveolar lavage fluid when compared control mice receiving airway injection of Adeno-GFP. Mechanically, IgG immune complex-induced NF-κB activity was markedly suppressed by Ly-GDI in both alveolar macrophages and lungs as measured by luciferase assay and electrophoretic mobility shift assay. These findings suggest that Ly-GDI is a critical regulator of inflammatory injury after deposition of IgG immune complexes and that it negatively regulates the lung NF-κB activity.  相似文献   

10.
11.
12.
Tropisetron can decrease inflammatory cell responses and alleviate organ damage caused by trauma-hemorrhage, but the mechanism of these effects remains unknown. The p38 mitogen-activated protein kinase/hemeoxygenase-1 (p38 MAPK/HO-1) pathway exerts anti-inflammatory effects on different tissues. The aim of this study was to investigate whether p38 MAPK/HO-1 plays any role in the tropisetron-mediated attenuation of hepatic injury after trauma-hemorrhage. Male Sprague-Dawley rats underwent trauma-hemorrhage (mean blood pressure maintained at approximately 35–40 mmHg for 90 min), followed by fluid resuscitation. During resuscitation, several treatment regimens were administered: four doses of tropisetron alone (0.1, 0.3, 1, 3 mg/kg body weight), or a single dose of tropisetron (1 mg/kg body weight) with and without a p38 MAPK inhibitor (SB-203580, 2 mg/kg body weight) or HO antagonist (chromium-mesoporphyrin, 2.5 mg/kg body weight). Various parameters were measured, and the animals were sacrificed at 24 h post-resuscitation. The results showed that trauma-hemorrhage increased the following parameters: plasma concentrations of aspartate (AST) and alanine aminotransferases (ALT), hepatic myeloperoxidase (MPO) activity, and levels of cytokine-induced neutrophil chemoattractant-1 and -3 (CINC-1 and CINC-3), intercellular adhesion molecule-1 (ICAM-1), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and macrophage inflammatory protein-1α (MIP-1α). These parameters were significantly improved in the tropisetron-treated rats subjected to trauma-hemorrhage. Tropisetron treatment also increased hepatic p38 MAPK and HO-1 expression compared with vehicle-treated trauma-hemorrhaged rats. Co-administration of SB-203580 or chromium-mesoporphyrin with tropisetron abolished the tropisetron-induced beneficial effects on the above parameters and hepatic injury. These results suggest that the protective effect of tropisetron administration on alleviation of hepatic injury after trauma-hemorrhage is likely mediated through p38 MAPK-dependent HO-1 expression.  相似文献   

13.

Introduction

Acute kidney injury (AKI) and acute lung injury (ALI) are serious complications of sepsis. AKI is often viewed as a late complication of sepsis. Notably, the onset of AKI relative to ALI is unclear as routine measures of kidney function (BUN and creatinine) are insensitive and increase late. In this study, we hypothesized that AKI and ALI would occur simultaneously due to a shared pathophysiology (i.e., TNF-α mediated systemic inflammatory response syndrome [SIRS]), but that sensitive markers of kidney function would be required to identify AKI.

Methods

Sepsis was induced in adult male C57B/6 mice with 5 different one time doses of intraperitoneal (IP) endotoxin (LPS) (0.00001, 0.0001, 0.001, 0.01, or 0.25 mg) or cecal ligation and puncture (CLP). SIRS was assessed by serum proinflammatory cytokines (TNF-α, IL-1β, CXCL1, IL-6), ALI was assessed by lung inflammation (lung myeloperoxidase [MPO] activity), and AKI was assessed by serum creatinine, BUN, and glomerular filtration rate (GFR) (by FITC-labeled inulin clearance) at 4 hours. 20 µgs of TNF-α antibody (Ab) or vehicle were injected IP 2 hours before or 2 hours after IP LPS.

Results

Serum cytokines increased with all 5 doses of LPS; AKI and ALI were detected within 4 hours of IP LPS or CLP, using sensitive markers of GFR and lung inflammation, respectively. Notably, creatinine did not increase with any dose; BUN increased with 0.01 and 0.25 mg. Remarkably, GFR was reduced 50% in the 0.001 mg LPS dose, demonstrating that dramatic loss of kidney function can occur in sepsis without a change in BUN or creatinine. Prophylactic TNF-α Ab reduced serum cytokines, lung MPO activity, and BUN; however, post-sepsis administration had no effect.

Conclusions

ALI and AKI occur together early in the course of sepsis and TNF-α plays a role in the early pathogenesis of both.  相似文献   

14.
The endothelium contributes to the control of the tissue inflammatory response following stress and in particular after exposure to ionizing radiation. We previously showed that the TG-interacting factor 1 (TGIF1) plays a role in radiation-induced normal tissue injury. In this study we hypothesized that this protein could play a role in inflammation. The role of TGIF1 in the stress-induced proinflammatory phenotype was investigated in human endothelial cells. In HUVECs ionizing radiation induces TGIF1 expression as well as a proinflammatory phenotype associated with up-regulation of IL-6, IL-8, CXCL1, MIP-2, and MCP-1. TGIF1 overexpression enhances the radiation-induced proinflammatory phenotype whereas TGIF1 silencing limits both the TNF-α- and radiation-induced overexpression of proinflammatory cytokines. Interestingly, in vivo, in radiation-induced intestinal inflammation in mice, TGIF1 genetic deficiency is associated with a reduced radiation-induced overexpression of proinflammatory molecules. In HUVECs, TNF-α- and radiation-induced NF-κB pathway activation is not influenced by TGIF1 expression, whereas TGIF1 knockdown inhibits both TNF-α- and radiation-induced p38 MAPK pathway activation. This study demonstrates that TGIF1 plays a role in TNF-α- and radiation-induced inflammation and suggests that it could be a target in limiting this event in the vascular compartment.  相似文献   

15.
16.
This study was conducted to investigate the effect of intratracheal and intravenous administration of microparticles (MPs) on developing acute respiratory distress syndrome (ARDS). The blood MPs from lipopolysaccharide-treated rats were collected and examined by transmission electron microscopy (TEM). Cellular source of the MPs was identified by fluorescent-labeled antibodies after the circulating MPs were delivered to naïve rats. Levels of myeloperoxidase (MPO), tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-10 productions in bronchoalveolar lavage fluid (BALF) and plasma were determined 24 h after the rats received intratracheal and intravenous administration of the MPs. Histopathologic examination of lungs was performed by light microscope. A TEM image of MPs showed spherical particles at a variable diameter from 0.1 to 0.5 µm. Endothelial- and leukocyte-derived vesicles were abundant in the investigated samples. Treatment with MPs may lead to significant increases in MPO, TNF-α, IL-1β, and IL-10 productions in BALF and plasma of the rats (all P < 0.001). Morphological observation indicated that alveolar structures were destroyed with a large amount of neutrophil infiltration in the lungs of the MP-treated rats. Perivascular and/or intra-alveolar hemorrhage were serious and hyaline membrane formed in the alveoli. Intratracheal and intravenous approaches to delivery of the circulating MPs to naïve recipient rats may induce ARDS. This presents an inducer of the onset of ARDS and provides potential therapeutic targets for attenuating lung injury.  相似文献   

17.
Studies have reported that exposure to diesel exhaust particles (DEPs) induces lung inflammation and increases oxidative stress, and both effects are susceptible to changes via regular aerobic exercise in rehabilitation programs. However, the effects of exercise on lungs exposed to DEP after the cessation of exercise are not clear. Therefore, the aim of this study was to evaluate the effects of high-intensity swimming on lung inflammation and oxidative stress in mice exposed to DEP concomitantly and after exercise cessation. Male Swiss mice were divided into 4 groups: Control (n = 12), Swimming (30 min/day) (n = 8), DEP (3 mg/mL—10 μL/mouse) (n = 9) and DEP+Swimming (n = 8). The high-intensity swimming was characterized by an increase in blood lactate levels greater than 1 mmoL/L between 10th and 30th minutes of exercise. Twenty-four hours after the final exposure to DEP, the anesthetized mice were euthanized, and we counted the number of total and differential inflammatory cells in the bronchoalveolar fluid (BALF), measured the lung homogenate levels of IL-1β, TNF-α, IL-6, INF-ϫ, IL-10, and IL-1ra using ELISA, and measured the levels of glutathione, non-protein thiols (GSH-t and NPSH) and the antioxidant enzymes catalase and glutathione peroxidase (GPx) in the lung. Swimming sessions decreased the number of total cells (p<0.001), neutrophils and lymphocytes (p<0.001; p<0.05) in the BALF, as well as lung levels of IL-1β (p = 0.002), TNF-α (p = 0.003), IL-6 (p = 0.0001) and IFN-ϫ (p = 0.0001). However, the levels of IL-10 (p = 0.01) and IL-1ra (p = 0.0002) increased in the swimming groups compared with the control groups, as did the CAT lung levels (p = 0.0001). Simultaneously, swimming resulted in an increase in the GSH-t and NPSH lung levels in the DEP group (p = 0.0001 and p<0.002). We concluded that in this experimental model, the high-intensity swimming sessions decreased the lung inflammation and oxidative stress status during DEP-induced lung inflammation in mice.  相似文献   

18.

Introduction

Factors explaining the greater susceptibility of preterm infants to severe lower respiratory infections with respiratory syncytial virus (RSV) remain poorly understood. Fetal/newborn lambs are increasingly appreciated as a model to study key elements of RSV infection in newborn infants due to similarities in lung alveolar development, immune response, and susceptibility to RSV. Previously, our laboratory demonstrated that preterm lambs had elevated viral antigen and developed more severe lesions compared to full-term lambs at seven days post-infection. Here, we compared the pathogenesis and immunological response to RSV infection in lungs of preterm and full-term lambs.

Methods

Lambs were delivered preterm by Caesarian section or full-term by natural birth, then inoculated with bovine RSV (bRSV) via the intratracheal route. Seven days post-infection, lungs were collected for evaluation of cytokine production, histopathology and cellular infiltration.

Results

Compared to full-term lambs, lungs of preterm lambs had a heightened pro-inflammatory response after infection, with significantly increased MCP-1, MIP-1α, IFN-γ, TNF-α and PD-L1 mRNA. RSV infection in the preterm lung was characterized by increased epithelial thickening and periodic acid-Schiff staining, indicative of glycogen retention. Nitric oxide levels were decreased in lungs of infected preterm lambs compared to full-term lambs, indicating alternative macrophage activation. Although infection induced significant neutrophil recruitment into the lungs of preterm lambs, neutrophils produced less myeloperoxidase than those of full-term lambs, suggesting decreased functional activation.

Conclusions

Taken together, our data suggest that increased RSV load and inadequate immune response may contribute to the enhanced disease severity observed in the lungs of preterm lambs.  相似文献   

19.
Abnormal inflammation and accelerated decline in lung function occur in patients with chronic obstructive pulmonary disease (COPD). Klotho, an anti-aging protein, has an anti-inflammatory function. However, the role of Klotho has never been investigated in COPD. The aim of this study is to investigate the possible role of Klotho by alveolar macrophages in airway inflammation in COPD. Klotho levels were assessed in the lung samples and peripheral blood mononuclear cells of non-smokers, smokers, and patients with COPD. The regulation of Klotho expression by cigarette smoke extract (CSE) was studied in vitro, and small interfering RNA (siRNA) and recombinant Klotho were employed to investigate the role of Klotho on CSE-induced inflammation. Klotho expression was reduced in alveolar macrophages in the lungs and peripheral blood mononuclear cells of COPD patients. CSE decreased Klotho expression and release from MH-S cells. Knockdown of endogenous Klotho augmented the expression of the inflammatory mediators, such as MMP-9, IL-6, and TNF-α, by MH-S cells. Exogenous Klotho inhibited the expression of CSE-induced inflammatory mediators. Furthermore, we showed that Klotho interacts with IκBα of the NF-κB pathway. Dexamethasone treatment increased the expression and release level of Klotho in MH-S cells. Our findings suggest that Klotho plays a role in sustained inflammation of the lungs, which in turn may have therapeutic implications in COPD.  相似文献   

20.
The efficacy of radiation therapy for lung cancer is limited by radiation-induced lung toxicity (RILT). Although tumor necrosis factor-alpha (TNF-α) signaling plays a critical role in RILT, the molecular regulators of radiation-induced TNF-α production remain unknown. We investigated the role of a major TNF-α regulator, Tristetraprolin (TTP), in radiation-induced TNF-α production by macrophages. For in vitro studies we irradiated (4 Gy) either a mouse lung macrophage cell line, MH-S or macrophages isolated from TTP knockout mice, and studied the effects of radiation on TTP and TNF-α levels. To study the in vivo relevance, mouse lungs were irradiated with a single dose (15 Gy) and assessed at varying times for TTP alterations. Irradiation of MH-S cells caused TTP to undergo an inhibitory phosphorylation at Ser-178 and proteasome-mediated degradation, which resulted in increased TNF-α mRNA stabilization and secretion. Similarly, MH-S cells treated with TTP siRNA or macrophages isolated from ttp (−/−) mice had higher basal levels of TNF-α, which was increased minimally after irradiation. Conversely, cells overexpressing TTP mutants defective in undergoing phosphorylation released significantly lower levels of TNF-α. Inhibition of p38, a known kinase for TTP, by either siRNA or a small molecule inhibitor abrogated radiation-induced TNF-α release by MH-S cells. Lung irradiation induced TTPSer178 phosphorylation and protein degradation and a simultaneous increase in TNF-α production in C57BL/6 mice starting 24 h post-radiation. In conclusion, irradiation of lung macrophages causes TTP inactivation via p38-mediated phosphorylation and proteasome-mediated degradation, leading to TNF-α production. These findings suggest that agents capable of blocking TTP phosphorylation or stabilizing TTP after irradiation could decrease RILT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号