首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Our understanding of the interaction of leukocytes and the vessel wall during leukocyte capture is limited by an incomplete understanding of the mechanical properties of the endothelial surface layer. It is known that adhesion molecules on leukocytes are distributed non-uniformly relative to surface topography 3, that topography limits adhesive bond formation with other surfaces 9, and that physiological contact forces (≈ 5.0 − 10.0 pN per microvillus) can compress the microvilli to as little as a third of their resting length, increasing the accessibility of molecules to the opposing surface 3, 7. We consider the endothelium as a two-layered structure, the relatively rigid cell body, plus the glycocalyx, a soft protective sugar coating on the luminal surface 6. It has been shown that the glycocalyx can act as a barrier to reduce adhesion of leukocytes to the endothelial surface 4. In this report we begin to address the deformability of endothelial surfaces to understand how the endothelial mechanical stiffness might affect bond formation. Endothelial cells grown in static culture do not express a robust glycocalyx, but cells grown under physiological flow conditions begin to approximate the glycocalyx observed in vivo 2. The modulus of the endothelial cell body has been measured using atomic force microscopy (AFM) to be approximately 5 to 20 kPa 5. The thickness and structure of the glycocalyx have been studied using electron microscopy 8, and the modulus of the glycocalyx has been approximated using indirect methods, but to our knowledge, there have been no published reports of a direct measurement of the glycocalyx modulus in living cells. In this study, we present indentation experiments made with a novel AFM probe on cells that have been cultured in conditions to maximize their glycocalyx expression to make direct measurements of the modulus and thickness of the endothelial glycocalyx.  相似文献   

4.
Interactions between circulating leukocytes and vascular endothelial cells are of fundamental importance in controlling normal recirculation and migration of cells into sites of inflammation. Nitric oxide (NO), which is synthesized by vascular endothelial cells, has been reported to decrease the binding of platelets, monocytes, macrophages, and neutrophils to endothelial cells. Using NO donors and inhibitors of the enzyme NO synthase, we found no evidence that physiologically relevant levels of NO alter adhesion of purified lymphocytes to an endothelial cell line derived from human umbilical vein endothelial cells (SGHEC-7). In addition, NO donors did not alter the cell surface expression of VCAM-1, ICAM-1, or E-selectin on SGHEC-7 cells.  相似文献   

5.
The endothelial glycocalyx is vital for mechanotransduction and endothelial barrier integrity. We previously demonstrated the early changes in glycocalyx organization during the initial 30 min of shear exposure. In the present study, we tested the hypothesis that long-term shear stress induces further remodeling of the glycocalyx resulting in a robust layer, and explored the responses of membrane rafts and the actin cytoskeleton. After exposure to shear stress for 24 h, the glycocalyx components heparan sulfate, chondroitin sulfate, glypican-1 and syndecan-1, were enhanced on the apical surface, with nearly uniform spatial distributions close to baseline levels that differed greatly from the 30 min distributions. Heparan sulfate and glypican-1 still clustered near the cell boundaries after 24 h of shear, but caveolin-1/caveolae and actin were enhanced and concentrated across the apical aspects of the cell. Our findings also suggest the GM1-labelled membrane rafts were associated with caveolae and glypican-1/heparan sulfate and varied in concert with these components. We conclude that remodeling of the glycocalyx to long-term shear stress is associated with the changes in membrane rafts and the actin cytoskeleton. This study reveals a space- and time- dependent reorganization of the glycocalyx that may underlie alterations in mechanotransduction mechanisms over the time course of shear exposure.  相似文献   

6.
7.
Characterizing the mechanisms by which West Nile virus (WNV) causes blood-brain barrier (BBB) disruption, leukocyte infiltration into the brain and neuroinflammation is important to understand the pathogenesis of WNV encephalitis. Here, we examined the role of endothelial cell adhesion molecules (CAMs) in mediating the adhesion and transendothelial migration of leukocytes across human brain microvascular endothelial cells (HBMVE). Infection with WNV (NY99 strain) significantly induced ICAM-1, VCAM-1, and E-selectin in human endothelial cells and infected mice brain, although the levels of their ligands on leukocytes (VLA-4, LFA-1and MAC-1) did not alter. The permeability of the in vitro BBB model increased dramatically following the transmigration of monocytes and lymphocytes across the models infected with WNV, which was reversed in the presence of a cocktail of blocking antibodies against ICAM-1, VCAM-1, and E-selectin. Further, WNV infection of HBMVE significantly increased leukocyte adhesion to the HBMVE monolayer and transmigration across the infected BBB model. The blockade of these CAMs reduced the adhesion and transmigration of leukocytes across the infected BBB model. Further, comparison of infection with highly neuroinvasive NY99 and non-lethal (Eg101) strain of WNV demonstrated similar level of virus replication and fold-increase of CAMs in HBMVE cells suggesting that the non-neuropathogenic response of Eg101 is not because of its inability to infect HBMVE cells. Collectively, these results suggest that increased expression of specific CAMs is a pathological event associated with WNV infection and may contribute to leukocyte infiltration and BBB disruption in vivo. Our data further implicate that strategies to block CAMs to reduce BBB disruption may limit neuroinflammation and virus-CNS entry via ‘Trojan horse’ route, and improve WNV disease outcome.  相似文献   

8.
9.
Worldwide, hypertension is reported to be in approximately a quarter of the population and is the leading biomedical risk factor for mortality worldwide. In the vasculature hypertension is associated with endothelial dysfunction and increased inflammation leading to atherosclerosis and various disease states such as chronic kidney disease2, stroke3 and heart failure4. An initial step in vascular inflammation leading to atherogenesis is the adhesion cascade which involves the rolling, tethering, adherence and subsequent transmigration of leukocytes through the endothelium. Recruitment and accumulation of leukocytes to the endothelium is mediated by an upregulation of adhesion molecules such as vascular cell adhesion molecule-1 (VCAM-1), intracellular cell adhesion molecule-1 (ICAM-1) and E-selectin as well as increases in cytokine and chemokine release and an upregulation of reactive oxygen species5. In vitro methods such as static adhesion assays help to determine mechanisms involved in cell-to-cell adhesion as well as the analysis of cell adhesion molecules. Methods employed in previous in vitro studies have demonstrated that acute increases in pressure on the endothelium can lead to monocyte adhesion, an upregulation of adhesion molecules and inflammatory markers6 however, similar to many in vitro assays, these findings have not been performed in real time under physiological flow conditions, nor with whole blood. Therefore, in vivo assays are increasingly utilised in animal models to demonstrate vascular inflammation and plaque development. Intravital microscopy is now widely used to assess leukocyte adhesion, rolling, migration and transmigration7-9. When combining the effects of pressure on leukocyte to endothelial adhesion the in vivo studies are less extensive. One such study examines the real time effects of flow and shear on arterial growth and remodelling but inflammatory markers were only assessed via immunohistochemistry10. Here we present a model for recording leukocyte adhesion in real time in intact pressurised blood vessels using whole blood perfusion. The methodology is a modification of an ex vivo vessel chamber perfusion model9 which enables real-time analysis of leukocyte -endothelial adhesive interactions in intact vessels. Our modification enables the manipulation of the intraluminal pressure up to 200 mmHg allowing for study not only under physiological flow conditions but also pressure conditions. While pressure myography systems have been previously demonstrated to observe vessel wall and lumen diameter11 as well as vessel contraction this is the first time demonstrating leukocyte-endothelial interactions in real time. Here we demonstrate the technique using carotid arteries harvested from rats and cannulated to a custom-made flow chamber coupled to a fluorescent microscope. The vessel chamber is equipped with a large bottom coverglass allowing a large diameter objective lens with short working distance to image the vessel. Furthermore, selected agonist and/or antagonists can be utilized to further investigate the mechanisms controlling cell adhesion. Advantages of this method over intravital microscopy include no involvement of invasive surgery and therefore a higher throughput can be obtained. This method also enables the use of localised inhibitor treatment to the desired vessel whereas intravital only enables systemic inhibitor treatment.  相似文献   

10.
Annexin 7 deficiency has previously been shown to foster suicidal death of erythrocytes or eryptosis, which is triggered by increase of intracellular Ca2+ concentration ([Ca2+]i) and characterized by cell shrinkage and cell membrane scrambling with subsequent phosphatidylserine exposure at the cell surface. Eryptosis following increase of [Ca2+]i by Ca2+ ionophore ionomycin, osmotic shock or energy depletion was more pronounced in erythrocytes from annexinA7-deficient mice (anxA7−/−) than in erythrocytes from wild type mice (anxA7+/+). As phosphatidylserine exposure is considered to mediate adhesion of erythrocytes to the vascular wall, the present study explored adhesion of erythrocytes from anx7−/− and anx7+/+-mice following increase of [Ca2+]i by Ca2+ ionophore ionomycin (1 µM for 30 min), hyperosmotic shock (addition of 550 mM sucrose for 2 hours) or energy depletion (removal of glucose for 12 hours). Phosphatidylserine exposing erythrocytes were identified by annexin V binding, cell volume estimated from forward scatter in FACS analysis and adhesion to human umbilical vein endothelial cells (HUVEC) utilizing a flow chamber. As a result, ionomycin, sucrose addition and glucose removal all triggered phosphatidylserine-exposure, decreased forward scatter and enhanced adhesion of erythrocytes to human umbilical vein endothelial cells (HUVEC), effects significantly more pronounced in anx7−/− than in anx7+/+-erythrocytes. Following ischemia, morphological renal injury was significantly higher in anx7−/− than in anx7+/+-mice. The present observations demonstrate that enhanced eryptosis of annexin7 deficient cells is paralleled by increased adhesion of erythrocytes to the vascular wall, an effect, which may impact on microcirculation during ischemia.  相似文献   

11.
P-选择素糖蛋白配体1(P—selectin glycoprotein ligand 1,PSGL-1)是20世纪90年代初期发现的一种具同源二聚体结构的跨膜糖蛋白,表达于几乎所有白细胞表面,是迄今为止阐述得最为详尽的选择素配体。PSGL-1是以P-选择素为亲和探针分离得到的,与P-选择素有高度的亲和性。近年来,越来越多的研究证明了PSGL-1同时也是L-选择素和E-选择素的生理配体。通过PSGL-1与选择素分子间的相互作用,白细胞在血管内皮细胞上产生滚动(即起始黏附),进而使白细胞逐步活化并稳定黏附于血管内皮。现从PSGL-1的结构、分布、表达调控、信号转导、生理病理角色、临床应用等方面进行综述。  相似文献   

12.
Red blood cell (RBC) adhesion to vessel wall endothelium is a potent catalyst of vascular occlusion and occurs in oxidative stress states such as hemoglobinopathies and cardiovascular conditions. These are often treated with vitamin E (VitE), a “classic” antioxidant. In this study, we examined the effects of VitE on RBC adhesion to vascular endothelial cells (EC), and on translocation of phosphatidylserine (PS) to RBC surface, known as a potent mediator of RBC/EC adhesion, facilitating thrombus formation. Treatment of RBC with VitE strongly induces (up to sevenfold) PS externalization and enhances (up to 20-fold) their adherence to EC. The VitE hydrophilic analogue—Trolox—does not incorporate into cell membranes. Trolox did not exhibit any of these effects, implying that the VitE effect is due to its known ability to incorporate into cell membranes. The membrane-incorporated VitE significantly reduced the level of reactive oxygen species in H2O2-treated RBC, demonstrating that VitE elevates RBC/EC adhesion despite acting as an anti-oxidant. This study demonstrates for the first time that contrary to the common view of VitE as a beneficial supplement, VitE may introduce a circulatory risk by inducing flow-disturbing RBC adherence to blood vessel wall and the pro-thrombotic PS exposure.  相似文献   

13.
Activated leukocyte cell adhesion molecule (ALCAM) is a type I transmembrane protein member of the immunoglobulin superfamily of cell adhesion molecules. Involved in important pathophysiological processes such as the immune response, cancer metastasis, and neuronal development, ALCAM undergoes both homotypic interactions with other ALCAM molecules and heterotypic interactions with the surface receptor CD6 expressed at the T cell surface. Despite biochemical and biophysical evidence of a dynamic association between ALCAM and the actin cytoskeleton, no detailed information is available about how this association occurs at the molecular level. Here, we exploit a combination of complementary microscopy techniques, including FRET detected by fluorescence lifetime imaging microscopy and single-cell force spectroscopy, and we demonstrate the existence of a preformed ligand-independent supramolecular complex where ALCAM stably interacts with actin by binding to syntenin-1 and ezrin. Interaction with the ligand CD6 further enhances these multiple interactions. Altogether, our results propose a novel biophysical framework to understand the stabilizing role of the ALCAM supramolecular complex engaged to CD6 during dendritic cell-T cell interactions and provide novel information on the molecular players involved in the formation and signaling of the immunological synapse at the dendritic cell side.  相似文献   

14.
Endothelial dysfunction is a hallmark of increased vascular inflammation, dyslipidemia, and the development of atherosclerosis in diabetes. Previous studies have reported lower levels of Mn2+ in the plasma and lymphocytes of diabetic patients and in the heart and aortic tissue of patients with atherosclerosis. This study examines the hypothesis that Mn2+ supplementation can reduce the markers/risk factors of endothelial dysfunction in type 2 diabetes. Human umbilical vein endothelial cells (HUVECs) were cultured with or without Mn2+ supplementation and then exposed to high glucose (HG, 25 mm) to mimic diabetic conditions. Mn2+ supplementation caused a reduction in monocyte adhesion to HUVECs treated with HG or MCP-1. Mn2+ also inhibited ROS levels, MCP-1 secretion, and ICAM-1 up-regulation in HUVECs treated with HG. Silencing studies using siRNA against MnSOD showed that similar results were observed in MnSOD knockdown HUVECs following Mn2+ supplementation, suggesting that the effect of manganese on monocyte adhesion to endothelial cells is mediated by ROS and ICAM-1, but not MnSOD. To validate the relevance of our findings in vivo, Zucker diabetic fatty rats were gavaged daily with water (placebo) or MnCl2 (16 mg/kg of body weight) for 7 weeks. When compared with placebo, Mn2+-supplemented rats showed lower blood levels of ICAM-1 (17%, p < 0.04), cholesterol (25%, p < 0.05), and MCP-1 (28%, p = 0.25). These in vitro and in vivo studies demonstrate that Mn2+ supplementation can down-regulate ICAM-1 expression and ROS independently of MnSOD, leading to a decrease in monocyte adhesion to endothelial cells, and therefore can lower the risk of endothelial dysfunction in diabetes.  相似文献   

15.
Defining how leukocytes adhere to solid surfaces, such as capillary beds, and the subsequent migration through the extracellular matrix, is a central biological issue. We show here that phospholipase D (PLD) and its enzymatic reaction product, phosphatidic acid (PA), regulate cell adhesion of immune cells (macrophages and neutrophils) to collagen and have defined the underlying molecular mechanism in a spatio-temporal manner that coincides with PLD activity timing. A rapid (t½ = 4 min) and transient activation of the PLD1 isoform occurs upon adhesion, and a slower (t½ = 7.5 min) but prolonged (>30 min) activation occurs for PLD2. Importantly, PA directly binds to actin-related protein 3 (Arp3) at EC50 = 22 nm, whereas control phosphatidylcholine did not bind. PA-activated Arp3 hastens actin nucleation with a kinetics of t½ = 3 min at 300 nm (compared with controls of no PA, t½ = 5 min). Thus, PLD and PA are intrinsic components of cell adhesion, which reinforce each other in a positive feedback loop and react from cues from their respective solid substrates. In nascent adhesion, PLD1 is key, whereas a sustained adhesion in mature or established focal points is dependent upon PLD2, PA, and Arp3. A prolonged adhesion could effectively counteract the reversible intrinsic nature of this cellular process and constitute a key player in chronic inflammation.  相似文献   

16.
Entire Helicobacter Pylori Neutrophil Activated Protein (HPNAP) and its truncated forms NH2-terminal region HPNAP1–57 and C-terminal region HPNAP58–144 after cloning into pET29c vector, purification and removal of LPS traces were subjected to human neutrophil activation. Our results revealed that the C-terminal region of HPNAP is indispensable for human neutrophil stimulation and their further adhesion to endothelial cells – a step necessary to H. pylori inflammation – in a ratio equal to that exhibited by the entire protein.
In addition, experiments concerning the implication of Arabino-Galactan-Proteins (AGPs) derived from Chios Mastic Gum (CMG), the natural resin of the plant Pistacia lentiscus var. Chia revealed the inhibition of neutrophil activation and therefore their adhesion to endothelial cells, in vitro .
Both, the involvement of HPNAP C-terminal region in stimulation-adhesion of neutrophils to endothelial cells as well as the inhibition of this process by AGPs have to be further investigated and may be exploited in a future anti-inflammatory therapy for H. pylori patients.  相似文献   

17.
Erythrocyte adhesion to the vascular endothelium is one of the key determinants of microcirculatory blood flow. Adhesion is a complex process determined by the intricate interaction among red blood cells (RBC), plasma factors, and the vascular endothelium. Rats are commonly used as disease models to investigate the pathophysiology of various hematological disease processes occurring in humans and their response to prospective treatments. The aim of our study was to characterize the adhesion of RBC in adult blood from rat and human subjects, in order to test the validity of rat models for adhesion-related disease processes. We demonstrated that adhesion of RBC from rats (rRBC), to endothelial cells (EC) in plasma-free buffer, is stronger than from human subjects (hRBC). In addition, plasma proteins induced elevation of hRBC (eightfold) but depression of rRBC (threefold) adhesion to EC. It is thus suggested to be aware of the difference in RBC/EC interaction for human and rat subjects, when studying models of blood flow.  相似文献   

18.
为了观察旋覆花内酯(1-O-acetylbritannilactone,ABL)乙酰化衍生物ABLO2对脂多糖(lipopolysaccharide,LPS)/干扰素-γ(interferon-γ,IFN-γ)刺激的内皮细胞ECV304活化及其与RAW264.7单核/巨噬细胞相互作用的影响,采用Western印迹检测核因子-Κb(nuclear factor-Κb,NF-Κb)活化以及NF-Κb依赖的黏附分子的表达水平,应用电泳迁移率改变分析(electrophoretic mobility shift assay,EMSA)检查ABLO2预处理及LPS/IFN-γ诱导对NF-Κb与DNA结合活性的影响.结果显示,ABLO2显著抑制LPS/IFN-γ诱导的NF-Κb核转位和DNA结合活性,同时ABLO2降低NF-Κb抑制蛋白(IκB)激酶(IκB kinases,IKK)的活性,抑制IκB的磷酸化及降解;ABLO2还通过减少血管细胞黏附分子-1(vascular cell adhesion molecule-1,VCAM-1)、骨桥蛋白(osteopontin,OPN)、基质金属蛋白酶-9(metalloproteinase-9,MMP-9)、黏蛋白-C(tenascin-C)的表达,进而减弱单核细胞与内皮细胞之间的黏附作用.研究结果表明,ABLO,通过抑制IKK活性及IκB降解而抑制NF-Κb治化,进而起到抑制NF-KB依赖的黏附分子表达及细胞黏附作用.  相似文献   

19.
The consecutive events that occur in a living body following injury are commonly referred to as inflammation (inflammare: to set on fire). In the first century A.D. observations of clinical patients had allowed Cornelius Celsus to formulate his famous “cardinal signs” of inflammation: calor, rubor, tumor and dolor. These still holds true today. The four characteristics of inflammation are redness and swelling with heat and pain. From these early studies it was obvious that blood vessels played an important role in the development of an inflammatory process, which coincided with plasma leakage and accumulation of leucocytes in extravascular tissue.  相似文献   

20.
Selectins are C-type, cell surface lectins that are key players in leukocyte adhesion to the blood vessel wall endothelium. We describe here epitopes for a series of novel monoclonal antibodies (moAbs), UZ4-UZ7, directed against mouse E-selectin. All four antibodies specifically bind to mouse E-selectin, but not to P- or L-selectin, and all inhibit the adhesion of granulocytes, peripheral blood lymphocytes, and promyelocytic HL-60 cells to cytokine-activated mouse endothelium. Three moAbs, UZ5, UZ7, and UZ6, specifically inhibit mouse E-selectin-mediated adhesion by binding to epitopes in domains CR1 or CR2. moAb UZ4 inhibits leukocyte adhesion to both human and murine endothelium activated with IL-1 or other proinflammatory stimuli. UZ4 is the first described moAb that detects an epitope in the lectin domain which is conserved in both murine and human E-selectin (CXKKKL), but is not present in the other members of the selectin family, P- and L-selectin. Interestingly, UZ5, UZ6, and UZ7 more efficiently interfere with lymphocyte than with granulocyte adhesion to cytokine-activated endothelium, while UZ4 completely blocks adhesion of PMN, lymphocytes, and HL-60 and U937 cell lines. The data suggest that E-selectin–ligand engagement differs between lymphocytes and PMN, and that these differences may be accentuated by the CR1 and CR2 domains in the E-selectin cell adhesion molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号