首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
SNAT4 is a system A type amino acid transporter that primarily expresses in liver and mediates the transport of L-alanine. To determine the critical amino acid residue(s) involved in substrate transport function of SNAT4, we used hydrosulfate cross-linking MTS reagents - MMTS and MTSEA. These two reagents caused inhibition of L-alanine transport by wild-type SNAT4. There are 5 cysteine residues in SNAT4 and among them; residues Cys-232 and Cys-345 are located in the transmembrane domains. Mutation of Cys-232, but not Cys-345, inhibited transport function of SNAT4 and also rendered SNAT4 less sensitive to the cross-linking by MMTS and MTSEA. The results suggested that TMD located Cys-232 is an aqueous accessible residue, likely to be located close to the core of substrate binding site. Mutation of Cys-232 to serine similarly attenuated the transport of L-alanine substrate. Biotinylation analysis showed that C232A mutant of SNAT4 was equally capable as wild-type SNAT4 of expressing on the cell surface. Moreover, single site mutant, C232A was also found to be more resistant to MTS inhibition than double mutant C18A,C345A, further confirming the aqueous accessibility of Cys-232 residue. We also showed that mutation of Cys-232 to alanine reduced the maximal velocity (Vmax), but had minimal effect on binding affinity (Km). Together, these data suggest that residue Cys-232 at 4th transmembrane domain of SNAT4 has a major influence on substrate transport capacity, but not on substrate binding affinity.  相似文献   

2.
The rat renal Na/P i cotransporter type IIa (rat NaPi IIa) is a 637 amino acid protein containing 12 cysteine residues. We examined the effect of different cysteine modifying methanethiosulfonate (MTS)-reagents and the disulfide bond reducing agent tris(2-carboxyethyl)phosphine (TCEP) on the transport activity of wild-type and 12 single cysteine substitution mutants of rat NaPi IIa expressed in Xenopus laevis oocytes. The transport activity of the wild-type protein was resistant to three membrane impermeant MTS-reagents (MTSEA, MTSET and MTSES). In contrast, membrane permeant methyl methanethiosulfonate (MMTS) and TCEP inhibited the transport activity of both the wild-type, as well as all the single mutant proteins. This indicated the existence of more than one functionally important cysteine residue, not accessible extracellularly, and at least 2 disulfide bridges. To identify the disulfide bridges, three double mutants lacking 2 of the 3 cysteine residues predicted to be extracellular in different combinations were examined. This led to the identification of one disulfide bridge between C306 and C334; reconsideration of the topological model predictions suggested a second disulfide bridge between C225 and C520. Evaluation of a fourth double mutant indicated that at least one of two disulfide bridges (C306 and C334; C225 and C520) has to be formed to allow the surface expression of a functional cotransporter. A revised secondary structure is proposed which includes two partially repeated motifs that are connected by disulfide bridges formed between cysteine pairs C306-C334 and C225-C520. Received: 13 December 1999/Revised: 31 March 2000  相似文献   

3.
We observed that 14 biologically metallated mutants of copper/zinc superoxide dismutase (SOD1) associated with familial amyotrophic lateral sclerosis all exhibited aberrantly accelerated mobility during partially denaturing PAGE and increased sensitivity to proteolytic digestion compared with wild type SOD1. Decreased metal binding site occupancy and exposure to the disulfide-reducing agents dithiothreitol, Tris(2-carboxyethyl)phosphine (TCEP), or reduced glutathione increased the fraction of anomalously migrating mutant SOD1 proteins. Furthermore, the incubation of mutant SOD1s with TCEP increased the accessibility to iodoacetamide of cysteine residues that normally participate in the formation of the intrasubunit disulfide bond (Cys-57 to Cys-146) or are buried within the core of the beta-barrel (Cys-6). SOD1 enzymes in spinal cord lysates from G85R and G93A mutant but not wild type SOD1 transgenic mice also exhibited abnormal vulnerability to TCEP, which exposed normally inaccessible cysteine residues to modification by maleimide conjugated to polyethylene glycol. These results implicate SOD1 destabilization under cellular disulfide-reducing conditions at physiological pH and temperature as a shared property that may be relevant to amyotrophic lateral sclerosis mutant neurotoxicity.  相似文献   

4.
Mutations in the gene of the G protein-coupled vasopressin V2 receptor (V2 receptor) cause X-linked nephrogenic diabetes insipidus (NDI). Most of the missense mutations on the extracellular face of the receptor introduce additional cysteine residues. Several groups have proposed that these residues might disrupt the conserved disulfide bond of the V2 receptor. To test this hypothesis, we first calculated a structure model of the extracellular receptor domains. The model suggests that the additional cysteine residues may form a second disulfide bond with the free, nonconserved extracellular cysteine residue Cys-195 rather than impairing the conserved bond. To address this question experimentally, we used the NDI-causing mutant receptors G185C and R202C. Their Cys-195 residues were replaced by alanine to eliminate the hypothetical second disulfide bonds. This second site mutation led to functional rescue of both NDI-causing mutant receptors, strongly suggesting that the second disulfide bonds are indeed formed. Furthermore we show that residue Cys-195, which is sensitive to "additional cysteine" mutations, is not conserved among the V2 receptors of other species and that the presence of an uneven number of extracellular cysteine residues, as in the human V2 receptor, is rare among class I G protein-coupled receptors.  相似文献   

5.
The mature fusion (F) glycoprotein of the paramyxovirus family consists of two disulfide-linked subunits, the N-terminal F2 and the C-terminal F1 subunits, and contains 10 cysteine residues which are highly conserved at specific positions. The high level of conservation strongly suggests that they are indeed disulfide linked and play important roles in the folding and functioning of the molecule. However, it has not even been clarified which cysteine residues link the F2 and F1 subunits. This report describes our assignment of the disulfide bridges in purified Sendai virus F glycoprotein by fragmentation of the polypeptide and isolation of cystine-containing peptides and determination of their N-terminal sequences. The data demonstrate that all of the 10 cysteine residues participate in disulfide bridges and that Cys-70, the only cysteine in F2, and Cys-199, the most upstream cysteine in F1, form the interchain bond. Of the remaining eight cysteine residues clustered near the transmembrane domain of F1, the specific bridges identified are Cys-338 to Cys-347 and Cys-362 to Cys-370. Although no exact pairings between the subsequent four residues were defined, it seems likely that the most downstream, Cys-424, is linked to Cys-394, Cys-399, or Cys-401. Thus, we conclude that the cysteine-rich domain indeed contributes to the formation of a bunched structure containing at least two tandem cystine loops.  相似文献   

6.
The angiotensin II (AngII) receptor family is comprised of two subtypes, type 1 (AT(1)) and type 2 (AT(2)). Although sharing low homology (only 34%), mutagenesis has identified some key residues that are conserved between both subtypes, including four extracellular cysteines. Previous AT(1) mutagenesis demonstrated that the cysteines form two disulfide bonds, one linking the first and second extracellular loops and another connecting the amino terminus to the third extracellular loop. The importance of these AT(1) disulfides in ligand binding is supported by the effect of dithiothreitol (DTT). DTT breaks disulfide bonds, thereby strongly inhibiting ligand binding in AT(1) receptors. Despite retaining the same cysteines, AT(2) receptor ligand binding is paradoxically enhanced by DTT. Thus, we constructed a series of AT(2) cysteine mutations, either individually or paired, to establish the role of the cysteines and the source of DTT's effects. The AT(2) cysteine mutants surprisingly confirmed that the cysteines form disulfide bonds in the same manner as in the AT(1) subtype. However, breaking the AT(2) disulfide bridges yielded two responses. As in AT(1) receptors, mutations disrupting the disulfide bond between the first and second extracellular loops reduced AT(2) binding by 4-fold. In contrast, mutations breaking the disulfide bridge between the amino terminus and the third extracellular loop increased AT(2) binding, mimicking DTT's effect on this subtype. Further analysis of AT(1)/AT(2) chimeric exchange mutants of these domains suggested that the AT(2) amino terminus and third extracellular loop may possess latent binding epitopes that are only uncovered after DTT exposure.  相似文献   

7.
Formation of intramolecular disulfide bonds is a key step in the early maturation of newly synthesized Mr 46,000 mannose 6-phosphate receptors to acquire ligand-binding activity (Hille, A., Waheed, A., and von Figura, K. (1990) J. Cell Biol. 110, 963-972). The luminal domain of the receptor, which carries the ligand-binding site, contains 6 cysteine residues. We have analyzed the function of individual cysteine residues for the ligand-binding conformation by exchanging cysteine for glycine. In each case, the replacement of cysteine resulted in a complete loss of binding activity, indicating that all 6 luminal cysteine residues are required for the ligand-binding conformation. The cysteine mutants displayed a greatly reduced immunoreactivity, decreased stability, and a blocked or delayed transport to the trans Golgi. The glycosylation pattern allowed the distinguishing of three phenotypes, each of which was represented by one pair of cysteine mutants. Based on the assumption that replacement of either of the 2 cysteine residues forming a disulfide bond results in an identical phenotype, we postulate that disulfide bonds are formed between Cys-32 and Cys-78 and between Cys-132 and Cys-167, as well as between Cys-145 and Cys-179. This assumption was supported by the observation that the simultaneous exchange of the 2 cysteine residues of a putative pair resulted in the same phenotypes as the single exchange of either of the 2 cysteine residues.  相似文献   

8.
We recently showed that inter-keratin disulfide bonding plays an important role in the assembly, organization, and dynamics of keratin intermediate filaments in skin keratinocytes. In particular, cysteine 367 located in the central α-helical rod domain of keratin 14 is necessary for the formation of a stable perinuclear network of keratin filaments (with type II partner keratin 5) in skin keratinocytes analyzed by static and live cell imaging. Here, we show that two additional cysteine residues located in the non-helical head domain of K14, Cys-4 and Cys-40, also participate in inter-keratin disulfide bonding and tandemly play a key role complementary to that of Cys-367 in the assembly, organization, and dynamics of keratin filaments in skin keratinocytes in primary culture. Analysis of K14 variants with single or multiple substitutions of cysteine residues points to a spatial and temporal hierarchy in how Cys-4/Cys-40 and Cys-367 regulate keratin assembly in vitro and filament dynamics in live keratinocytes in culture. Our findings substantiate the importance and complexity of a novel determinant, namely inter-keratin disulfide bonding, for the regulation of several aspects of keratin filaments in surface epithelia.  相似文献   

9.
A common polymorphism in the human gene for catechol-O-methyltransferase results in replacement of Val-108 by Met in the soluble form of the protein (s-COMT) and has been linked to breast cancer and neuropsychiatric disorders. The 108M and 108V variants are reported to differ in their thermal stability, with 108M COMT losing catalytic activity more rapidly. Because human s-COMT contains seven cysteine residues and includes CXXC and CXXS motifs that are associated with thiol-disulfide redox reactions, we examined the effects of reducing and oxidizing conditions on the enzyme. In the absence of a reductant 108M s-COMT lost activity more rapidly than 108V, whereas in the presence of 4 mm dithiothreitol (DTT) we found no significant differences in the stability of the two variants at 37 degrees C. DTT also restored most of the activity that was lost upon incubation at 37 degrees C in the absence of DTT. Mass spectrometry showed that cysteines 188 and 191 formed an intramolecular disulfide bond when s-COMT was incubated with oxidized glutathione, whereas cysteines 69, 95, 157, and 173 formed protein-glutathione adducts. Replacing Cys-95 by serine protected 108M s-COMT against inactivation in the absence of a reductant; C33S and Cys-188 mutations had little effect, and C69S was destabilizing. The sequences surrounding the reactive cysteine residues of human s-COMT and other proteins that form glutathione adducts at identified sites all include Pro and/or Gly and most include a hydrogen-bonding residue, suggesting that glutathiolation at conserved sites plays a physiologically important role.  相似文献   

10.
Storjohann L  Holst B  Schwartz TW 《Biochemistry》2008,47(35):9198-9207
A highly conserved feature across all families of 7TM receptors is a disulfide bridge between a Cys residue located at the extracellular end of transmembrane segment III (TM-III) and one in extracellular loop 2 (ECL-2). The zinc sensor GPR39 contains four Cys residues in the extracellular domains. By using mutagenesis, treatment with the reducing agent TCEP, and a labeling procedure for free sulfhydryl groups, we identify the pairing of these Cys residues in two disulfide bridges: the prototypical bridge between Cys (108) in TM-III and Cys (210) in ECL-2 and a second disulfide bridge connecting Cys (11) in the N-terminal domain with Cys (191) in ECL-2. Disruption of the conserved disulfide bond by mutagenesis greatly reduced the level of cell surface expression and eliminated agonist-induced increases in inositol phosphate production but surprisingly enhanced constitutive signaling. Disruption of the nonconserved disulfide bridge by mutagenesis led to an increase in the Zn (2+) potency. This phenotype, with an approximate 10-fold increase in agonist potency and a slight increase in E max, was mimicked by treatment of the wild-type receptor with TCEP at low concentrations, which had no effect on the receptor already lacking the second disulfide bridge and already displaying a high Zn (2+) potency. We conclude that the second disulfide bridge, which according to the beta2-adrenergic structure will form a covalent link across the entrance to the main ligand binding pocket, serves to dampen GPR39 activation. We suggest that formation of extra disulfide bridges may be an important general mechanism for regulating the activity of 7TM receptors.  相似文献   

11.
TRPA1 (transient receptor potential ankyrin 1) is an ion channel expressed in the termini of sensory neurons and is activated in response to a broad array of noxious exogenous and endogenous thiol-reactive compounds, making it a crucial player in chemical nociception. A number of conserved cysteine residues on the N-terminal domain of the channel have been identified as critical for sensing these electrophilic pungent chemicals, and our recent EM structure with modeled domains predicts that these cysteines form a ligand-binding pocket, allowing for the possibility of disulfide bonding between the cysteine residues. Here, we present a comprehensive mass spectrometry investigation of the in vivo disulfide bonding conformation and in vitro reactivity of 30 of the 31 cysteine residues in the TRPA1 ion channel. Four disulfide bonds were detected in the in vivo TRPA1 structure: Cys-666-Cys-622, Cys-666-Cys-463, Cys-622-Cys-609, and Cys-666-Cys-193. All of the cysteines detected were reactive to N-methylmaleimide (NMM) in vitro, with varying degrees of labeling efficiency. Comparison of the ratio of the labeling efficiency at 300 μM versus 2 mM NMM identified a number of cysteine residues that were outliers from the mean labeling ratio, suggesting that protein conformation changes rendered these cysteines either more or less protected from labeling at the higher NMM concentrations. These results indicate that the activation mechanism of TRPA1 may involve N-terminal conformation changes and disulfide bonding between critical cysteine residues.  相似文献   

12.
Hu J  Zhang Z  Shen WJ  Nomoto A  Azhar S 《Biochemistry》2011,50(50):10860-10875
The scavenger receptor, class B, type I (SR-BI) binds high-density lipoprotein (HDL) and mediates selective delivery of cholesteryl esters (CEs) to the liver and steroidogenic cells of the adrenal glands and gonads. Although it is clear that the large extracellular domain (ECD) of SR-BI binds HDL, the role of ECD in the selective HDL-CE transport remains poorly understood. In this study, we used a combination of mutational and chemical approaches to systematically evaluate the contribution of cysteine residues, especially six cysteine residues of ECD, in SR-BI-mediated selective HDL-CE uptake, intracellular trafficking, and SR-BI dimerization. Pretreatment of SR-BI-overexpressing COS-7 cells with a disulfide (S-S) bond reducing agent, β-mercaptoethanol (100 mM) or dithiothreitol (DTT) (10 mM), modestly but significantly impaired SR-BI-mediated selective HDL-CE uptake. Treatment of SR-BI-overexpressing COS-7 cells with the optimal doses of membrane permeant alkyl methanethiosulfonate (MTS) reagents, positively charged MTSEA or neutral MMTS, that specifically react with the free sulfhydryl group of cysteine reduced the rate of SR-BI-mediated selective HDL-CE uptake, indicating that certain intracellular free cysteine residues may also be critically involved in the selective cholesterol transport process. In contrast, use of membrane impermeant MTS reagent, positively charged MTSET and negatively charged MTSES, showed no such effect. Next, the importance of eight cysteine residues in SR-BI expression, cell surface expression, dimer formation, and selective HDL-derived CE transport was evaluated. These cysteine residues were replaced either singly or in pairs with serine, and the mutant SR-BIs were expressed in either COS-7 or CHO cells. Four mutations, C280S, C321S, C323S, and C334S, of the ECD, either singly or in various pair combinations, resulted in significant decreases in SR-BI (HDL) binding activity, selective CE uptake, and trafficking to the cell surface. Surprisingly, we found that mutation of the two remaining cysteine residues, C251 and C384 of the ECD, had no effect on either SR-BI expression or function. Other cysteine mutations and substitutions were also without effect. Western blot data indicated that single and double mutations at C280, C321, C323, and C334 residues strongly favor dimer formation. However, they are rendered nonfunctional presumably because of mutation-induced formation of aberrant disulfide linkages resulting in inhibition of optimal HDL binding and, thus, selective HDL-CE uptake. These results provide novel insights into the functional role of four cysteine residues, C280, C321, C323, and C334, of the SR-BI ECD in SR-BI expression and trafficking to the cell surface, its dimerization, and associated selective CE transport function.  相似文献   

13.
FTIR difference spectroscopy has been used to study the role of cysteine residues in the photoactivation of rhodopsin. A positive band near 2550 cm-1 with a low frequency shoulder is detected during rhodopsin photobleaching, which is assigned on the basis of its frequency and isotope shift to the S-H stretching mode of one or more cysteine residues. Time-resolved studies at low temperature show that the intensity of this band correlates with the formation and decay kinetics of the Meta II intermediate. Modification of rhodopsin with the reagent NEM, which selectively reacts with the SH groups of Cys-140 and Cys-316 on the cytoplasmic surface of rhodopsin, has no effect on the appearance of this band. Four other cysteine residues are also unlikely to contribute to this band because they are either thio-palmitylated (Cys-322 and Cys-323) or form a disulfide bond (Cys-110 and Cys-187). On this basis, it is likely that at least one of the four remaining cysteine residues in rhodopsin is structurally active during rhodopsin photoactivation. The possibility is also considered that this band arises from a transient cleavage of the disulfide bond between cysteine residues 110 and 187.  相似文献   

14.
Herpes simplex virus type 1 (HSV-1) glycoprotein B (gB) resides in the virus envelope in an oligomeric form and plays an essential role in virus entry into susceptible host cells. The oligomerizing domain is a movable element consisting of amino acids 626 to 653 in the gB external domain. This domain contains a single cysteine residue at position 633 (Cys-633) that is predicted to form an intramolecular disulfide bridge with Cys-596. In this study, we examined gB oligomerization, processing, and incorporation into mature virus during infection by two mutant viruses in which either the gB Cys-633 [KgB(C633S)] or both Cys-633 and Cys-596 [KgB(C596S/C633S)] residues were mutated to serine. The result of immunofluorescence studies and analyses of released virus particles showed that the mutant gB molecules were not transported to the cell surface or incorporated into mature virus envelopes and thus infectious virus was not produced. Immunoprecipitation studies revealed that the mutant gB molecules were in an oligomeric configuration and that these mutants produced hetero-oligomers with a truncated form of gB consisting of residues 1 to 43 and 595 to 904, the latter containing the oligomerization domain. Pulse-chase experiments in combination with endoglycosidase H treatment determined that the mutant molecules were improperly processed, having been retained in the endoplasmic reticulum (ER). Coimmunoprecipitation experiments revealed that the cysteine mutations resulted in gB misfolding and retention by the molecular chaperones calnexin, calreticulin, and Grp78 in the ER. The altered conformation of the gB mutant glycoproteins was directly detected by a reduction in monoclonal antibody recognition of two previously defined distinct antigenic sites located within residues 381 to 441 and 595 to 737. The misfolded molecules were not transported to the cell surface as hetero-oligomers with wild-type gB, suggesting that the conformational change could not be corrected by intermolecular interactions with the wild-type molecule. Together, these experiments confirmed that a disulfide bridge involving Cys-633 and Cys-596 is not essential for oligomerization but rather is required for proper folding and maintenance of a gB domain essential to complete posttranslational modification, transport, and incorporation into mature virus particles.  相似文献   

15.
The proton-coupled amino acid transporter 1 (PAT1, SLC36A1) mediates the uptake of small neutral amino acids at the apical membrane of intestinal epithelial cells after protein digestion. The transporter is currently under intense investigation, because it is a possible vehicle for oral drug delivery. Structural features of the protein such as the number of transmembrane domains, the substrate binding site, or essential amino acids are still unknown. In the present study we use mutagenesis experiments and biochemical approaches to determine the role of the three putative extracellular cysteine residues on transport function and their possible involvement in the formation of a disulfide bridge. As treatment with the reducing reagent dithiothreitol impaired transport function of hPAT1 wild type protein, substitution of putative extracellular cysteine residues Cys-180, Cys-329, and Cys-473 by alanine or serine was performed. Replacement of the two highly conserved cysteine residues Cys-180 and Cys-329 abolished the transport function of hPAT1 in Xenopus laevis oocytes. Studies of wild type and mutant transporters expressed in human retinal pigment epithelial (HRPE) cells suggested that the binding of the substrate was inhibited in these mutants. Substitution of the third putative extracellular nonconserved cysteine residue Cys-473 did not affect transport function. All mutants were expressed at the plasma membrane. Biotinylation of free sulfhydryl groups using maleimide-PEG11-biotin and SDS-PAGE analysis under reducing and nonreducing conditions provided direct evidence for the existence of an essential disulfide bond between Cys-180 and Cys-329. This disulfide bridge is very likely involved in forming or stabilizing the substrate binding site.The solute carrier (SLC)2 superfamily represents the second largest group of membrane proteins after the G-protein-coupled receptor (GPCR) superfamily in the human genome. Comprising 384 members, the 46 SLC families include transporters for inorganic ions, amino acids, neurotransmitters, sugars, purines, fatty acids, and other substances (1). Ten SLC families contain 47 known transporters for amino acids and 48 related orphan transporters. Phylogenetic analysis revealed four main clusters (α, β, γ, and δ). Together with members of the SLC32 and SLC38 families, the proton-coupled amino acid transporter 1 (PAT1) was placed into group β. PAT1 is a member of the SLC36 family (SLC36A1). It was originally identified as the lysosomal amino acid transporter (LYAAT1) in rat brain (2). Subsequently, mouse and human homologs were cloned from mouse intestine (3) and from Caco-2 cells (4), respectively. PAT1 is identical to the H+/amino acid cotransporter that has been functionally described in Caco-2 cells (5). It is localized mainly to the apical membrane of intestine epithelial cells and is also found in lysosomes in brain neurons (4) facilitating the transport of amino acids from luminal protein digestion or lysosomal proteolysis, respectively. The transport of substrates via PAT1 is driven by an inwardly directed H+ gradient. Recently we could identify the conserved His-55 as being responsible for binding and translocation of the proton (6).Prototypic substrates for PAT1 are small neutral amino acids (e.g. l-proline, glycine, β-alanine) and amino acid derivatives (e.g. γ-aminobutyric acid (GABA), α-(methylamino)-isobutyric acid) (35, 710). Recently, PAT1 gained much interest because it transports pharmaceutically relevant compounds such as d-cycloserine, l-azetidine-2-carboxylic acid, 3-amino-1-propanesulfonic acid, 3,4-dehydro-l-proline, vigabatrin, and other GABA analogs (8, 10, 11) rendering it an interesting target for the pharmaceutical industry. PAT1 seems to be one of the most important drug transporters in the intestine allowing oral availability of GABA-related and other drugs and prodrugs. Furthermore, a recent report shows involvement of this transporter family, namely the PAT2 subtype, in the autosomal dominant inherited disorder iminoglycinuria (12).Unfortunately, up to now the exact three-dimensional structure of PAT1, the transmembrane domain topology, and the substrate binding site are unknown. More structural information of PAT1 would allow a better understanding of the molecular mechanisms of its function and drug interaction, which is so far being investigated only in classic transport studies. Mutational analysis of putative extracellular regions is a suitable tool to get the first clue into transmembrane organization and relevant amino acid residues (6). This approach should also elucidate the spatial organization of the extracellular loops. The present study was performed to identify functionally important extracellular cysteine residues and their involvement in disulfide bridges. The relevance of disulfide bonds for membrane protein function is mainly based on the stabilization of a proper three-dimensional structure. The correct conformation in turn is essential for trafficking, surface expression, stability, and transport function. So far, intramolecular disulfide bonds have been identified for only very few SLCs, e.g. the serotonin transporter SERT and the dopamine transporter DAT (1315). Native disulfide bonds are probably required for transporter function of the Na+/glucose cotransporter SGLT1 (16, 17). For the type IIa sodium/phosphate cotransporter, it was shown that cleavage of disulfide bonds results in conformational changes that lead to internalization and subsequent lysosomal degradation of the transport protein (18). A similar stabilizing effect of an intramolecular disulfide bridge was also reported for the human ATP-binding cassette (ABC) transporter ABCG2 (19).Linkage via cysteine residues can also be necessary for transporter oligomerization. For the rat serotonin transporter SERT (20) and for the human ABC transporter ABCG2 (21), intermolecular disulfide bridges could be identified. For the hexose transporter GLUT1, an intramolecular disulfide bond promotes tetramerization of the transporter (22, 23). On the other hand, removal of cysteine residues can also lead to an impaired trafficking and mislocalization of the transporter protein without a disulfide bridge being involved (13, 24, 25). In those cases, the cysteine residues themselves are assumed to play an important role for the trafficking and targeting of the transporter to the cell surface. Similarly, for several transporters, cysteine residues located in a transmembrane domain play a key role in substrate recognition. Single cysteines have been found to be essential for substrate binding of the rat organic cation transporters rOCT1 and rOCT2 (26) and the multidrug and toxin extrusion transporter MATE1 (27). The relevance of conserved cysteines for the integrity of a membrane protein has therefore to be investigated very thoroughly. Several earlier studies reported loss of function in cysteine mutants without testing membrane localization.After assessing a negative influence of the reducing reagent DTT on hPAT1 function, we performed systematic mutagenesis in this study. The three putative extracellular cysteine residues Cys-180, Cys-329, and Cys-473 were individually exchanged to either alanine or serine residues. The resulting mutants were analyzed for substrate binding and transport in human retinal pigment epithelial (HRPE) cells and electrogenic transport in Xenopus laevis oocytes. Biochemical approaches provided direct evidence for an essential disulfide bond between Cys-180 and Cys-329. A triple mutant was constructed and examined to exclude other juxtamembrane cysteine residues as potential partners for disulfide bridges. The data suggest that this disulfide bridge is involved in forming or stabilizing the putative substrate-binding pocket. In addition, our results strongly support the eleven transmembrane domain topology model of hPAT1. This is consistent with our recently published data on glycosylation of hPAT1 (28).  相似文献   

16.
Calcium homeostasis modulator 1 (CALHM1) is a membrane protein with four transmembrane helices that form an octameric ion channel with voltage-dependent activation. There are four conserved cysteine (Cys) residues in the extracellular domain that form two intramolecular disulfide bonds. We investigated the roles of C42-C127 and C44-C161 in human CALHM1 channel biogenesis and the ionic current (I CALHM1). Replacing Cys with Ser or Ala abolished the membrane trafficking as well as I CALHM1. Immunoblotting analysis revealed dithiothreitol-sensitive multimeric CALHM1, which was markedly reduced in C44S and C161S, but preserved in C42S and C127S. The mixed expression of C42S and wild-type did not show a dominant-negative effect. While the heteromeric assembly of CALHM1 and CALHM3 formed active ion channels, the co-expression of C42S and CALHM3 did not produce functional channels. Despite the critical structural role of the extracellular cysteine residues, a treatment with the membrane-impermeable reducing agent tris(2-carboxyethyl) phosphine (TCEP, 2 mM) did not affect I CALHM1 for up to 30 min. Interestingly, incubation with TCEP (2 mM) for 2-6 h reduced both I CALHM1 and the surface expression of CALHM1 in a time-dependent manner. We propose that the intramolecular disulfide bonds are essential for folding, oligomerization, trafficking and maintenance of CALHM1 in the plasma membrane, but dispensable for the voltage-dependent activation once expressed on the plasma membrane.  相似文献   

17.
The metzincin metalloproteinase pregnancy-associated plasma protein A (PAPP-A, pappalysin-1) promotes cell growth by the cleavage of insulin-like growth factor-binding proteins-4 and -5, causing the release of bound insulin-like growth factors. The proteolytic activity of PAPP-A is inhibited by the proform of eosinophil major basic protein (pro-MBP), which forms a covalent 2:2 proteinase-inhibitor complex based on disulfide bonds. To understand the process of complex formation, we determined the status of cysteine residues in both of the uncomplexed molecules. A comparison of the disulfide structure of the reactants with the known disulfide structure of the PAPP-A.pro-MBP complex reveals that six cysteine residues of the pro-MBP subunit (Cys-51, Cys-89, Cys-104, Cys-107, Cys-128, and Cys-169) and two cysteine residues of the PAPP-A subunit (Cys-381 and Cys-652) change their status from the uncomplexed to the complexed states. Upon complex formation, three disulfide bonds of pro-MBP, which connect the acidic propiece with the basic, mature portion, are disrupted. In the PAPP-A.pro-MBP complex, two of these form the basis of both two interchain disulfide bonds between the PAPP-A and the pro-MBP subunits and two disulfide bonds responsible for pro-MBP dimerization, respectively. Based on the status of the reactants, we investigated the role of individual cysteine residues upon complex formation by mutagenesis of specific cysteine residues of both subunits. Our findings allow us to depict a hypothetical model of how the PAPPA.pro-MBP complex is formed. In addition, we have demonstrated that complex formation is greatly enhanced by the addition of micromolar concentrations of reductants. It is therefore possible that the activity in vivo of PAPP-A is controlled by the redox potential, and it is further tempting to speculate that such mechanism operates under pathological conditions of altered redox potential.  相似文献   

18.
Hwang SR  Steineckert B  Hook VY 《Biochemistry》2000,39(30):8944-8952
The primary sequence of the serpin endopin 2 predicts a reactive site loop (RSL) region that possesses high homology to bovine elastase inhibitor, suggesting inhibition of elastase. Moreover, endopin 2 possesses two cysteine residues that implicate roles for reduced Cys residue(s) for inhibitory activity. To test these predicted properties, mutagenesis and chemical modification of recombinant endopin 2 were performed to examine the influence of dithiothreitol (DTT), a reducing agent, on endopin 2 activity. Endopin 2 inhibited elastase in a DTT-dependent manner, with enhanced inhibition in the presence of DTT. The stoichiometry of inhibition in the presence of DTT occurred at a molar ratio of endopin 2 to elastase of 8/1, resulting in complete inhibition of elastase. However, a higher molar ratio (25/1) was required in the absence of DTT. DTT enhanced the formation of SDS-stable complexes of endopin 2 and elastase, a characteristic property of serpins. Site-directed mutagenesis of endopin 2, with substitution of Ala for Cys-232 or Cys-374, demonstrated that Cys-374 (but not Cys-232) was required for the DTT-sensitive nature of endopin 2. Chemical modification of Cys-374 by bis(maleimido)ethane also reduced inhibitory activity. Modified electrophoretic mobilities of mutant endopin 2 suggested the presence of intramolecular disulfide bonds; in addition, chemical modification suggested that Cys-374 influences the electrophoretic and conformational properties of endopin 2. Moreover, the reducing agent glutathione enhanced endopin 2 activity, suggesting that glutathione can function as an endogenous reducing agent for endopin 2 in vivo. These findings demonstrate the importance of Cys-374 for DTT-sensitive inhibition of elastase by endopin 2.  相似文献   

19.
J T Patton  J Hua    E A Mansell 《Journal of virology》1993,67(8):4848-4855
Because the rotavirus spike protein VP4 contains conserved Cys residues at positions 216, 318, 380, and 774 and, for many animal rotaviruses, also at position 203, we sought to determine whether disulfide bonds were structural elements of VP4. Electrophoretic analysis of untreated and trypsin-treated rhesus rotavirus (RRV) and simain rotavirus SA11 in the presence and absence of the reducing agent dithioerythritol revealed that VP4 and its cleavage fragments VP5* and VP8* possessed intrachain disulfide bonds. Given that the VP8* fragments of RRV and SA11 contain only two Cys residues, those at positions 203 and 216, these data indicated that these two residues were covalently linked. Electrophoretic examination of truncated species of VP4 and VP4 containing Cys-->Ser mutations synthesized in reticulocyte lysates provided additional evidence that Cys-203 and Cys-216 in VP8* of RRV were linked by a disulfide bridge. VP5* expressed in vitro was able to form a disulfide bond analogous to that in the VP5* fragment of trypsin-treated RRV. Analysis of a Cys-774-->Ser mutant of VP5* showed that, while it was able to form a disulfide bond, a Cys-318-->Ser mutant of VP5* was not. These results indicated that the VP4 component of all rotaviruses, except B223, contains a disulfide bond that links Cys-318 and Cys-380 in the VP5* region of the protein. This bond is located between the trypsin cleavage site and the putative fusion domain of VP4. Because human rotaviruses lack Cys-203 and, hence, unlike many animal rotaviruses cannot possess a disulfide bond in VP8*, it is apparent that VP4 is structurally variable in nature, with human rotaviruses generally containing one disulfide linkage and animal rotaviruses generally containing two such linkages. Considered with the results of anti-VP4 antibody mapping studies, the data suggest that the disulfide bond in VP5* exists within the 2G4 epitope and may be located at the distal end of the VP4 spike on rotavirus particles.  相似文献   

20.
Tris(2-carboxyethyl)phosphine (TCEP) is a widely used substitute for dithiothreitol (DTT) in the reduction of disulfide bonds in biochemical systems. Although TCEP has been recently shown to be a substrate of the flavin-dependent sulfhydryl oxidases, there is little quantitative information concerning the rate by which TCEP reduces other peptidic disulfide bonds. In this study, mono-, di-, and trimethyl ester analogues of TCEP were synthesized to evaluate the role of carboxylate anions in the reduction mechanism, and to expand the range of phosphine reductants. The effectiveness of all four phosphines relative to DTT has been determined using model disulfides, including a fluorescent disulfide-containing peptide (H(3)N(+)-VTWCGACKM-NH(2)), and with protein disulfide bonds in thioredoxin and sulfhydryl oxidase. Mono-, di-, and trimethyl esters exhibit phosphorus pK values of 6.8, 5.8, and 4.7, respectively, extending their reactivity with the model peptide to correspondingly lower pH values relative to that of TCEP (pK = 7.6). At pH 5.0, the order of reactivity is as follows: trimethyl- > dimethyl- > monomethyl- > TCEP > DTT; tmTCEP is 35-fold more reactive than TCEP, and DTT is essentially unreactive. Esterification also increases lipophilicity, allowing tmTCEP to penetrate phospholipid bilayers rapidly (>30-fold faster than DTT), whereas the parent TCEP is impermeant. Although more reactive than DTT toward small-molecule disulfides at pH 7.5, all phosphines are markedly less reactive toward protein disulfides at this pH. Molecular modeling suggests that the nucleophilic phosphorus of TCEP is more sterically crowded than the thiolate of DTT, contributing to the lower reactivity of the phosphine with protein disulfides. In sum, these data suggest that there is considerable scope for the synthesis of phosphine analogues tailored for specific applications in biological systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号