首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Phosphorylation of the Wnt receptor low-density lipoprotein receptor-related protein 6 (LRP6) by glycogen synthase kinase 3β (GSK3β) and casein kinase 1γ (CK1γ) is a key step in Wnt/β-catenin signalling, which requires Wnt-induced formation of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)). Here, we show that adenomatous polyposis coli membrane recruitment 1 (Amer1) (also called WTX), a membrane associated PtdIns(4,5)P(2)-binding protein, is essential for the activation of Wnt signalling at the LRP6 receptor level. Knockdown of Amer1 reduces Wnt-induced LRP6 phosphorylation, Axin translocation to the plasma membrane and formation of LRP6 signalosomes. Overexpression of Amer1 promotes LRP6 phosphorylation, which requires interaction of Amer1 with PtdIns(4,5)P(2). Amer1 translocates to the plasma membrane in a PtdIns(4,5)P(2)-dependent manner after Wnt treatment and is required for LRP6 phosphorylation stimulated by application of PtdIns(4,5)P(2). Amer1 binds CK1γ, recruits Axin and GSK3β to the plasma membrane and promotes complex formation between Axin and LRP6. Fusion of Amer1 to the cytoplasmic domain of LRP6 induces LRP6 phosphorylation and stimulates robust Wnt/β-catenin signalling. We propose a mechanism for Wnt receptor activation by which generation of PtdIns(4,5)P(2) leads to recruitment of Amer1 to the plasma membrane, which acts as a scaffold protein to stimulate phosphorylation of LRP6.  相似文献   

2.
Phosphoinositides (PtdIns) play important roles in exocytosis and are thought to regulate secretory granule docking by co‐clustering with the SNARE protein syntaxin to form a docking receptor in the plasma membrane. Here we tested this idea by high‐resolution total internal reflection imaging of EGFP‐labeled PtdIns markers or syntaxin‐1 at secretory granule release sites in live insulin‐secreting cells. In intact cells, PtdIns markers distributed evenly across the plasma membrane with no preference for granule docking sites. In contrast, syntaxin‐1 was found clustered in the plasma membrane, mostly beneath docked granules. We also observed rapid accumulation of syntaxin‐1 at sites where granules arrived to dock. Acute depletion of plasma membrane phosphatidylinositol (4,5) bisphosphate (PtdIns(4,5)P2) by recruitment of a 5′‐phosphatase strongly inhibited Ca2+‐dependent exocytosis, but had no effect on docked granules or the distribution and clustering of syntaxin‐1. Cell permeabilization by α‐toxin or formaldehyde‐fixation caused PtdIns marker to slowly cluster, in part near docked granules. In summary, our data indicate that PtdIns(4,5)P2 accelerates granule priming, but challenge a role of PtdIns in secretory granule docking or clustering of syntaxin‐1 at the release site.   相似文献   

3.
4.
Phagocytosis requires phosphoinositides (PIs) as both signaling molecules and localization cues. How PIs coordinate to control phagosomal sealing and the accompanying switch of organelle identity is unclear. In this study, we followed dynamic changes in PIs during apoptotic cell clearance in Caenorhabditis elegans. We found that phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2) and phosphatidylinositol-3-phosphate (PtdIns3P), which accumulate transiently on unsealed and fully sealed phagosomes, respectively, are both involved in phagosome closure. We identified PtdIns3P phosphatase MTM-1 as an effector of PtdIns(4,5)P2 to promote phagosomal sealing. MTM-1 coordinates with the class II PI3 kinase PIKI-1 to control PtdIns3P levels on unsealed phagosomes. The SNX9 family protein LST-4 is required for sealing, and its association with unsealed phagosomes is regulated by PtdIns(4,5)P2, PIKI-1, and MTM-1. Loss of LST-4 or its retention on phagosomes disrupts sealing and suppresses PtdIns3P accumulation, indicating close coupling of the two events. Our findings support a coincidence detection mechanism by which phagosomal sealing is regulated and coupled with conversion from PtdIns(4,5)P2 enrichment on unsealed phagosomes to PtdIns3P enrichment on fully sealed phagosomes.  相似文献   

5.
The lipid phosphatidylinositol-4,5-bisphosphate (PtdIns[4,5]P(2)) appears to play an important role in endocytosis. However, the timing of its formation and turnover, and its specific functions at different stages during endocytic internalization, have not been established. In this study, Sla2 ANTH-GFP and Sjl2-3GFP were expressed as functional fusion proteins at endogenous levels to quantitatively explore PtdIns(4,5)P(2) dynamics during endocytosis in yeast. Our results indicate that PtdIns(4,5)P(2) levels increase and decline in conjunction with coat and actin assembly and disassembly, respectively. Live-cell image analysis of endocytic protein dynamics in an sjl1Delta sjl2Delta mutant, which has elevated PtdIns(4,5)P(2) levels, revealed that the endocytic machinery is still able to assemble and disassemble dynamically, albeit nonproductively. The defects in the dynamic behavior of the various endocytic proteins in this double mutant suggest that PtdIns(4,5)P(2) turnover is required for multiple stages during endocytic vesicle formation. Furthermore, our results indicate that PtdIns(4,5)P(2) turnover may act in coordination with the Ark1/Prk1 protein kinases in stimulating disassembly of the endocytic machinery.  相似文献   

6.
7.
8.
9.
10.
Phosphoinositides and their binding proteins are regulators of many aspects of the vesicle-trafficking processes that underlie cellular physiology in animal cells. Relatively little is known, by comparison, of the contribution of phosphoinositides to membrane-trafficking phenomena in plants. A study in this issue of the Biochemical Journal by K?nig et al. reports for the first time in this kingdom the association of PtdIns(4,5)P(2) with an endomembrane fraction enriched for clathrin. This work is discussed in the context of current evidence for constitutive and evoked endocytosis of membrane protein cargoes in plants.  相似文献   

11.
Focal adhesions (FAs) are large assemblies of proteins that mediate intracellular signals between the cytoskeleton and the extracellular matrix (ECM). The turnover of FA proteins plays a critical regulatory role in cancer cell migration. Plasma membrane lipids locally generated or broken down by different inositide kinases and phosphatase enzymes to activate and recruit proteins to specific regions in the plasma membrane. Presently, little attention has been given to the use of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) and Phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) fluorescent biosensors in order to determine the spatiotemporal organisation of PtdIns(4,5)P2 and PtdIns(3,4,5)P3 within and around or during assembly and disassembly of FAs. In this study, specific biosensors were used to detect PtdIns(4,5)P2, PtdIns(3,4,5)P3, and FAs proteins conjugated to RFP/GFP in order to monitor changes of PtdIns(4,5)P2 and PtdIns(3,4,5)P3 levels within FAs. We demonstrated that the localisation of PtdIns(4,5)P2 and PtdIns(3,4,5)P3 were moderately correlated with that of FA proteins. Furthermore, we demonstrate that local levels of PtdIns(4,5)P2 increased within FA assembly and declined within FA disassembly. However, PtdIns(3,4,5)P3 levels remained constant within FAs assembly and disassembly. In conclusion, this study shows that PtdIns(4,5)P2 and PtdIns(3,4,5)P3 localised in FAs may be regulated differently during FA assembly and disassembly.  相似文献   

12.
Phosphoinositides play important roles in regulating the cytoskeleton and vesicle trafficking, potentially important processes at the cleavage furrow. However, it remains unclear which, if any, of the phosphoinositides play a role during cytokinesis. A systematic analysis to determine if any of the phosphoinositides might be present or of functional importance at the cleavage furrow has not been published. Several studies hint at a possible role for one or more phosphoinositides at the cleavage furrow. The best of these are genetic data identifying mutations in phosphoinositide-modifying enzymes (a PtdIns(4)P-5-kinase in S. pombe and a PI-4-kinase in D. melanogaster) that interfere with cytokinesis. The genetic nature of these experiments leaves questions as to how direct may be their contribution to cytokinesis. Here we show that a single phosphoinositide, PtdIns(4,5)P2, specifically accumulates at the furrow. Interference with PtdIns(4,5)P2 interferes with adhesion of the plasma membrane to the contractile ring at the furrow. Finally, four distinct interventions to specifically interfere with PtdIns(4,5)P2 each impair cytokinesis. We conclude that PtdIns(4,5)P2 is present at the cleavage furrow and is required for normal cytokinesis at least in part because of a role in adhesion between the contractile ring and the plasma membrane.  相似文献   

13.
Subcellular retrograde transport of cargo receptors from endosomes to the trans-Golgi network is critically involved in a broad range of physiological and pathological processes and highly regulated by a genetically conserved heteropentameric complex, termed retromer. Among the retromer components identified in mammals, sorting nexin 5 and 1 (SNX5; SNX1) have recently been found to interact, possibly controlling the membrane binding specificity of the complex. To elucidate how the unique sequence features of the SNX5 phox domain (SNX5-PX) influence retrograde transport, we have determined the SNX5-PX structure by NMR and x-ray crystallography at 1.5 Å resolution. Although the core fold of SNX5-PX resembles that of other known PX domains, we found novel structural features exclusive to SNX5-PX. It is most noteworthy that in SNX5-PX, a long helical hairpin is added to the core formed by a new α2′-helix and a much longer α3-helix. This results in a significantly altered overall shape of the protein. In addition, the unique double PXXP motif is tightly packed against the rest of the protein, rendering this part of the structure compact, occluding parts of the putative phosphatidylinositol (PtdIns) binding pocket. The PtdIns binding and specificity of SNX5-PX was evaluated by NMR titrations with eight different PtdIns and revealed that SNX5-PX preferentially and specifically binds to phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2). The distinct structural and PtdIns binding characteristics of SNX5-PX impart specific properties on SNX5, influencing retromer-mediated regulation of retrograde trafficking of transmembrane cargo receptors.The early work on retromer revealed its role in the trafficking of cargo proteins between endosomes and the trans-Golgi network (TGN),2 although recently, retromer involvement in many other physiological and developmental processes has been uncovered (1, 2). The best studied proteins associated with retromer activity are intracellular sorting receptors such as the yeast vacuolar protein-10 (Vps10) and mammalian mannose 6-phosphate receptors (3, 4). These receptors sort acid hydrolases, enzymes essential for protein degradation, out of the TGN into the yeast vacuole or the mammalian lysosome. Upon releasing their substrates, these cargos traffic back to the TGN to mediate further rounds of cargo-hydrolase transportation. Similar retrograde trafficking of cargo proteins involving signaling molecules such as Wnt and amyloid precursor protein (APP) are thought to be critical for their secretion and function (5, 6). Retrograde transportation is highly regulated by the heteropentameric retromer complex that consists of a sorting nexin (SNX) dimer (e.g. Vps5 and Vps17 in yeast) and a Vps26/29/35 trimer (7). In mammals, the binding of the SNX dimer to specific phosphatidylinositol (PtdIns) determines its subcellular membrane association and governs the recruitment of the Vps trimer to endosomal compartments. Mammalian orthologs of the trimer have been biochemically characterized, and their interaction and function in cargo protein trafficking is well established (8). More recently, crystal structures of three Vps proteins in the trimer suggested how this trimer interacts with the SNX dimer and cargo proteins as well as with curved membranes (912). In the SNX dimer, SNX1 and SNX2 are thought to be interchangeable Vps5 orthologs (13, 14). The NMR structure of SNX1 revealed details of PI(3)P specific binding, thereby explaining its role in endosomal trafficking (15). The identity for SNX5 as a potential functional mammalian ortholog of Vps17, however, was not revealed until recently.Although initially identified as a Fanconi anemia complementation group A (FANCA)-binding protein (16), SNX5 was later shown to play an important role in membrane trafficking (1719). SNX5 contains a PX domain (SNX5-PX) that is the signature feature in defining the SNX family, composed of 30 members at present (20) (Fig. 1B). In addition, SNX5 possesses a C-terminal BAR (Bin/Amphiphysin/Rvs) domain that has been reported to interact with a number of other proteins involved in endosomal trafficking (17, 2127). It functions as a dimerization module that senses and/or induces membrane curvature (28, 29). Our previous biochemical study suggested a specific interaction between SNX5 and SNX1 through which the two SNXs mutually influence each other''s effect in endosomal trafficking of epidermal growth factor receptor upon epidermal growth factor stimulation (17). In support of this observation are several recent reports that indicate a critical role of SNX5 and the closely related SNX6, beyond that of SNX1 and SNX2, on retrograde sorting of mannose 6-phosphate receptor (24, 27). Therefore, SNX5 and SNX6 may be functionally interchangeable orthologs of Vps17 in mammalian cells (7, 24). Furthermore, in contrast to some reports (18, 30), SNX5 partially localizes to late endosomes and the TGN, exhibiting very low binding affinity for PtdIns(3)P (17), the substrate for phox domain proteins associating with early endosome association. Therefore, the subcellular localization and function of the SNX dimer in SNX5 function may depend on its unique structure that is different from other known PX domains.Open in a separate windowFIGURE 1.Amino Acid sequence alignment of phox domains and domain architecture of the mammalian sorting nexin family. A, comparative sequence alignment of PX domains for residues equivalent to Gly49–Leu119 of the p40-PX domain (adapted from Worby and Dixon (21)). Prolines in the Pro-X-X-Pro motif are highlighted in yellow, and residues involved in phospholipid binding in the p40-PX domain are boxed in magenta. Arg58 and Arg105 are marked with magenta triangles, and Tyr59 and Lys92 are marked with black stars at the bottom of the sequences. The two conserved Arg residues and Lys92 of p40-PX in other PX domains are highlighted in dark blue boxes; those corresponding to Tyr59 are boxed in green. The secondary structure elements of p40-PX are indicated by yellow arrows (β-sheets) and red ovals (α-helices). The three sequence stretches that are unique in SNX5-PX (or SNX6-PX) are enclosed in a bright blue box. B, domain architecture of SNX family members. The four classes within the SNX family are designated as PX SNXs, PX-BAR SNXs, SH3-PX-BAR, and PX-other domain SNXs. Each individual domain is depicted in a different color and/or shape. The following domains are depicted: PX (phox), BAR (Bin-Amphiphysin-Rvs), SH3 (Src homology 3), TM (transmembrane), PXA (PX domain-associated), RGS (regulator of G-protein signaling), MIT (microtubule interacting and trafficking), B41 (band 4.1 homology), TPR (tetratricopeptide repeat), PDZ (postsynaptic protein PSD-95/SAP90, the Drosophila melanogaster septate junction protein Discs-large, and the tight junction protein ZO-1), and RA (Ras association).Most PX domains of SNX family proteins preferentially bind PtdIns(3)P (3034), with few exceptions that interact with other PtdIns (30, 32, 35). There are about a dozen structurally characterized PX domains from the SNX family or other PX domain-containing proteins currently deposited in the Protein Data Bank (PDB) data base. Their structures all share common core features, a three-stranded β-sheet that is abutted by three α-helices and an irregular strand containing the PXXP region. Analyses of the representative p47-PX and SNX3-PX domain structures suggested that PtdIns(3)P binding involves two conserved Arg residues at positions equivalent to Arg58 and Arg105 in p40-PX (36). Because equivalent Arg residues are found in the PX domains of most SNX family members, it is generally assumed that all SNX proteins interact with the PtdIns(3)P-enriched elements of the early endocytic compartments. The amino acid sequences of the PX domains of both SNX5 and SNX6, however, lack the two conserved Arg residues that are involved in PtdIns(3)P binding as well as comprising a ∼30-residue insertion immediately after the PXXP motif (Fig. 1A). In addition, the PXXP motif is extended into a double PXXP motif with the sequence PXXPXXP. These unique sequence features set SNX5/6 apart from the other SNX family members. In the p40-PX domain and yeast SNX3, the two conserved Arg residues, the loop between the PXXP motif, and the α3-helix are involved in forming the binding pocket for the phosphate groups of PtdIns(3)P (36, 37). Therefore, changes in length and sequence in this region in SNX5/6-PX are expected to have profound impact on the specific structure and conformation required for PtdIns recognition.To elucidate how its unique sequence features influence the function of SNX5 in retromer-mediated retrograde membrane trafficking, we structurally investigated the SNX5-PX domain by NMR spectroscopy and x-ray crystallography. Using direct NMR titrations, we established the PtdIns binding specificity of SNX5-PX. The high resolution (1.5 Å) crystal structure of the domain revealed its distinct features when compared with previously known family members. Our results demonstrate that the SNX5-PX domain is indeed unique, both with respect to its structure as well as with respect to ligand binding. These findings have important implications for the function of SNX5 in the subcellular membrane trafficking and retrograde sorting.  相似文献   

14.
Background:Phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5) P3) and Phosphatidylinositol 4,5-trisphosphate (PtdIns(4,5) P2] form an insignificant amount of phospholipids but play important roles in controlling membrane-bound signalling. Little attention has been given to visualize and monitor changes or differences in the local generation of PtdIns(4,5) P2 and PtdIns(3,4,5) P3 in the cell membranes of MDA-MB-231 breast cancer cell lines.Methods:PLCδ1-PH-GFP and Btk-PH-GFP were used as biosensors to detected PtdIns(4,5) P2 and PtdIns(3,4,5)P3 respectively. These biosensors and antibodies were transfected, immuostained and then visualized by confocal microscopy on different cell surfaces.Results:Our results showed that PLCδ1-PH-GFP/mCherry was localized at the cell membrane, while Btk-PH-GFP/mCherry was sometimes localized at the cell membrane but there was also a large amount of fluorescence present in the cytosol and nucleus. Our results also showed that the cells that expressed low levels of Btk-PH-GFP the fluorescence was predominantly localised to the cell membrane. While the cells that expressed high levels of Btk-PH-GFP the fluorescence was localization in the cytosol and cell membrane. Our results demonstrated that both anti-PtdIns(4,5)P2 and anti-PtdIns(3,4,5)P3 antibodies were localized everywhere in cell.Conclusion:Our results suggest that PLCδ1-PH-GFP and Btk-PH-GFP/mCherry have more specificity, reliability, suitability and accuracy than antibodies in binding with and detecting PtdIns(4,5)P2 and PtdIns(3,4,5)P3 and in studying the molecular dynamics of phospholipids in live and fixed cells.Key Words: Antibodies, Biosensors, MDA-MB-231, Phosphatidylinositol  相似文献   

15.
Phosphoinositides play a central role in the control of several cellular events including actin cytoskeleton organization. Here we show that, upon infection of epithelial cells with the Gram-negative pathogen Shigella flexneri, the virulence factor IpgD is translocated directly into eukaryotic cells and acts as a potent inositol 4-phosphatase that specifically dephosphorylates phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P(2)] into phosphatidylinositol 5-monophosphate [PtdIns(5)P] that then accumulates. Transfection experiments indicate that the transformation of PtdIns(4,5)P(2) into PtdIns(5)P by IpgD is responsible for dramatic morphological changes of the host cell, leading to a decrease in membrane tether force associated with membrane blebbing and actin filament remodelling. These data provide the molecular basis for a new mechanism employed by a pathogenic bacterium to promote membrane ruffling at the entry site.  相似文献   

16.
C2 domains are conserved protein modules in many eukaryotic signaling proteins, including the protein kinase (PKCs). The C2 domains of classical PKCs bind to membranes in a Ca(2+)-dependent manner and thereby act as cellular Ca(2+) effectors. Recent findings suggest that the C2 domain of PKCalpha interacts specifically with phosphatidylinositols 4,5-bisphosphate (PtdIns(4,5)P(2)) through its lysine rich cluster, for which it shows higher affinity than for POPS. In this work, we compared the three C2 domains of classical PKCs. Isothermal titration calorimetry revealed that the C2 domains of PKCalpha and beta display a greater capacity to bind to PtdIns(4,5)P(2)-containing vesicles than the C2 domain of PKCgamma. Comparative studies using lipid vesicles containing both POPS and PtdIns(4,5)P(2) as ligands revealed that the domains behave as PtdIns(4,5)P(2)-binding modules rather than as POPS-binding modules, suggesting that the presence of the phosphoinositide in membranes increases the affinity of each domain. When the magnitude of PtdIns(4,5)P(2) binding was compared with that of other polyphosphate phosphatidylinositols, it was seen to be greater in both PKCbeta- and PKCgamma-C2 domains. The concentration of Ca(2+) required to bind to membranes was seen to be lower in the presence of PtdIns(4,5)P(2) for all C2 domains, especially PKCalpha. In vivo experiments using differentiated PC12 cells transfected with each C2 domain fused to ECFP and stimulated with ATP demonstrated that, at limiting intracellular concentration of Ca(2+), the three C2 domains translocate to the plasma membrane at very similar rates. However, the plasma membrane dissociation event differed in each case, PKCalpha persisting for the longest time in the plasma membrane, followed by PKCgamma and, finally, PKCbeta, which probably reflects the different levels of Ca(2+) needed by each domain and their different affinities for PtdIns(4,5)P(2).  相似文献   

17.
The phosphoinositide phosphatidylinositol 4, 5-bisphosphate (PtdIns(4,5)P(2)) is essential for many cellular processes and is linked to the etiology of numerous human diseases . PtdIns(4,5)P(2) has been indirectly implicated as a negative regulator of apoptosis ; however, it is unclear if apoptotic stimuli negatively regulate PtdIns(4,5)P(2) levels in vivo. Here, we show that two apoptotic-stress stimuli, hydrogen peroxide (H(2)O(2)) and UV irradiation, cause PtdIns(4,5)P(2) depletion during programmed cell death independently of and prior to caspase activation. Depletion of PtdIns(4,5)P(2) is essential for apoptosis because maintenance of PtdIns(4,5)P(2) levels by overexpression of PIP5Kalpha rescues cells from H(2)O(2)-induced apoptosis. PIP5Kalpha expression promotes both basal and sustained ERK1/2 activation after H(2)O(2) treatment, and importantly, pharmacological inhibition of ERK1/2 signaling blocks PIP5Kalpha-mediated cell survival. H(2)O(2) induces tyrosine phosphorylation and translocation of PIP5Kalpha away from its substrate at the plasma membrane, and both are dependent upon the activity of c-src family kinases. Furthermore, constitutively active c-src enhances tyrosine phosphorylation of PIP5Kalpha in vivo and is sufficient for the translocation of PIP5Kalpha away from the plasma membrane. These observations demonstrate that certain apoptotic stimuli initiate an essential signaling pathway during cell death, and this pathway leads to caspase-independent downregulation of PIP5Kalpha and its product PtdIns(4,5)P(2).  相似文献   

18.
The 90-kDa isoform of the lipid kinase PIP kinase Type I γ (PIPKIγ) localizes to focal adhesions (FAs), where it provides a local source of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)). Although PtdIns(4,5)P(2) regulates the function of several FA-associated molecules, the role of the FA-specific pool of PtdIns(4,5)P(2) is not known. We report that the genetic ablation of PIPKIγ specifically from FAs results in defective integrin-mediated adhesion and force coupling. Adhesion defects in cells deficient in FAPtdIns(4,5)P(2) synthesis are corrected within minutes while integrin-actin force coupling remains defective over a longer period. Talin and vinculin, but not kindlin, are less efficiently recruited to new adhesions in these cells. These data demonstrate that the specific depletion of PtdIns(4,5)P(2) from FAs temporally separates integrin-ligand binding from integrin-actin force coupling by regulating talin and vinculin recruitment. Furthermore, it suggests that force coupling relies heavily on locally generated PtdIns(4,5)P(2) rather than bulk membrane PtdIns(4,5)P(2).  相似文献   

19.
TRPM3 has been reported to play an important role in Ca2+ homeostasis, but its gating mechanisms and regulation via Ca2+ are unknown. Ca2+ binding proteins such as calmodulin (CaM) could be probable modulators of this ion channel. We have shown that this protein binds to two independent domains, A35-K124 and H291-G382 on the TRPM3 N-terminus, which contain conserved hydrophobic as well as positively charged residues in specific positions, and that these residues have a crucial impact on its binding. We also showed that another Ca2+ binding protein, S100A1, is able to bind to these regions and that CaM and S100A1 compete for these binding sites on the TRPM3 N-terminus. Moreover, our results suggest that another very important TRP channel activity modulator, PtdIns(4,5)P2, interacts with the CaM/S100A1 binding sites on the TRPM3 N-terminus with high affinity.  相似文献   

20.
Movin' on up: the role of PtdIns(4,5)P(2) in cell migration   总被引:7,自引:0,他引:7  
Cell migration requires the coordination of many biochemical events, including cell-matrix contact turnover and cytoskeletal restructuring. Recent advances further implicate phosphatidylinositol(4,5)-bisphosphate [PtdIns(4,5)P(2)] in the control of these events. Many proteins that are crucial to the assembly of the migration machinery are regulated by PtdIns(4,5)P(2). Coordinated synthesis of PtdIns(4,5)P(2) at these sites is dependent on the precise targeting of the type I phosphatidylinositol phosphate kinases (PIPKs). Two PIPKI isoforms target to, and generate, PtdIns(4,5)P(2) at membrane ruffles and focal adhesions during cell migration. Here, we discuss our current understanding of PtdIns(4,5)P(2) in the regulation of cell responses to migratory stimuli and how the migrating cell controls PtdIns(4,5)P(2) availability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号