首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
The circadian clock is required for the rhythmic expression of a plethora of genes that orchestrate metabolism, sleep-wake behaviour and the immune response to pathogens. The cold-inducible RNA binding protein (CIRBP) is required for high amplitude expression of clock genes. Moreover, CIRBP protects the expression of clock genes from the inhibitory effects of tumour necrosis factor (TNF). However, since TNF represses Cirbp expression, the protective effect of CIRBP is lost. Here, we show that the TNF effect on Cirbp requires the non-canonical NF-κB signalling pathway. While a knock down of RelA does not alter the effects of TNF on Cirbp, a knock down of RelB represses this effect. In addition, the data indicate that p50 and p52 are required in the TNF induced inhibition of Cirbp. These results show that Cirbp expression in TNF treated cells is regulated via the non-canonical NF-κB pathway.  相似文献   

6.
7.
Angiogenesis in glioma is associated with the poor prognosis of the disease and closely correlates with the highly invasive phenotype of glioma cells, which represents the most challenging impediment against the currently glioma treatments. Bmi-1, an onco-protein, has been implicated in the progression of various human cancers, including gliomas, whereas its role in glioma angiogenesis remains unclear. Our current study examined the effects of Bmi-1 on glioma angiogenesis in vitro as well as in vivo. We found that overexpression of Bmi-1 enhanced, whereas knockdown of Bmi-1 diminished, the capability of glioma cells to induce tubule formation and migration of endothelial cells and neovascularization in chicken chorioallantoic membrane. In vivo, Bmi-1 overexpression and knockdown, respectively, promoted and inhibited angiogenesis in orthotopically transplanted human gliomas. Furthermore, NF-κB activity and VEGF-C expression was induced by Bmi-1 overexpression, whereas Bmi-1 knockdown attenuated NF-κB signaling and decreased VEGF-C expression. Additionally suppression of NF-κB activity using a specific chemical inhibitor abrogated the NF-κB activation and the pro-angiogenic activities of glioma cells. Together, our data suggest that Bmi-1 plays an important role in glioma angiogenesis and therefore could represent a potential target for anti-angiogenic therapy against the disease.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
The NF-κB pathway is a phylogenetically conserved signaling pathway with a central role in inflammatory and immune responses. Here we demonstrate that a cochaperone protein, Droj2/DNAJA3, is involved in the activation of canonical NF-κB signaling in flies and in human cultured cells. Overexpression of Droj2 induced the expression of an antimicrobial peptide in Drosophila. Conversely, Droj2 knockdown resulted in reduced expression of antimicrobial peptides and higher susceptibility to Gram-negative bacterial infection in flies. Similarly, Toll-like receptor-stimulated IκB phosphorylation and NF-κB activation were suppressed by DNAJA3 knockdown in HEK293 cells. IκB kinase overexpression-induced NF-κB phosphorylation was also compromised in DNAJA3 knockdown cells. Our study reveals a novel conserved regulator of the NF-κB pathway acting at the level of IκB phosphorylation.  相似文献   

16.
17.
18.
Gastric H+/K+-ATPase or vacuolar-ATPases (V-ATPases) are critical for the cancer cells survival and growth in the ischemic microenvironment by extruding protons from the cell. The drugs which inhibit V-ATPases are known as proton pump inhibitors (PPIs). In the present study, we aimed to evaluate the anticancer efficacy of pantoprazole (PPZ) and its consequences on NF-κB signaling in glioma cells. We have used MTT and clonogenic assay to show PPZ effect on glioma cell growth. Propidium iodide and rhodamine 123 staining were performed to demonstrate cell cycle arrest and mitochondrial depolarization. TUNEL staining was used to evidence apoptosis after PPZ treatment. Immunoblotting and immunofluorescence microscopy were performed to depict protein levels and localization, respectively. Luciferase assay was performed to confirm NF-κB suppression by PPZ. Our results revealed PPZ treatment inhibits cell viability or growth and induced cell death in a dose- and time-dependent manner. PPZ exposure arrested G0/G1 cyclic phase and increased TUNEL positivity, caspase-3 and PARP cleavage with altered pro and anti-apoptotic proteins. PPZ also induced ROS levels and depolarized mitochondria (Δψm) with increased cytosolic cytochrome c level. Further, PPZ suppressed TNF-α stimulated NF-κB signaling by repressing p65 nuclear translocation. NF-κB luciferase reporter assays revealed significant inhibition of NF-κB gene upon PPZ treatment. PPZ exposure also reduced the expression of NF-κB-associated genes, such as cyclin-D1, iNOS, and COX-2, which indicate NF-κB inhibition. Altogether, the present study disclosed that PPZ exerts mitochondrial apoptosis and attenuates NF-κB signaling suggesting PPZ can be an effective and safe anticancer drug for glioma.  相似文献   

19.
20.
Oxoglutarate dehydrogenase (OGDH) is the first and rate-limiting component of the multi-enzyme OGDH complex (OGDHC) whose malfunction is associated with neuro-degeneration. The essential role of this complex is in the degradation of glucose and glutamate and the OGDHL gene (one component of OGDHC) is down-regulated by promoter hypermethylation in many different cancer types. These properties suggest a potential growth modulating role of OGDHL in cancer; however, the molecular mechanism through which OGDHL exerts its growth modulating function has not been elucidated.Here, we report that restoration of OGDHL expression in cervical cancer cells lacking endogenous OGDHL expression suppressed cell proliferation, invasion and soft agar colony formation in vitro. Knockdown of OGDHL expression in cervical cancer cells expressing endogenous OGDHL had the opposite effect. Forced expression of OGDHL increased the production of reactive oxygen species (ROS) leading to apoptosis through caspase 3 mediated down-regulation of the AKT signaling cascade and decreased NF-κB phosphorylation. Conversely, silencing OGDHL stimulated the signaling pathway via increased AKT phosphorylation. Moreover, the addition of caspase 3 or ROS inhibitors in the presence of OGDHL increased AKT signaling and cervical cancer cell proliferation.Taken together, these data suggest that inactivation of OGDHL can contribute to cervical tumorigenesis via activation of the AKT signaling pathway and thus support it as an important anti-proliferative gene in cervical cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号