首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To determine the fluorescence properties of cyanobacterial Photosystem I (PS I) in relatively intact systems, fluorescence emission from 20 to 295 K and polarization at 77 K have been measured from phycobilisomes-less thylakoids of Synechocystis sp. PCC 6803 and a mutant strain lacking Photosystem II (PS II). At 295 K, the fluorescence maxima are 686 nm in the wild type from PS I and PS II and at 688 nm from PS I in the mutant. This emission is characteristic of bulk antenna chlorophylls (Chls). The 690-nm fluorescence component of PS I is temperature independent. For wild-type and mutant, 725-nm fluorescence increases by a factor of at least 40 from 295 to 20 K. We model this temperature dependence assuming a small number of Chls within PS I, emitting at 725 nm, with an energy level below that of the reaction center, P700. Their excitation transfer rate to P700 decreases with decreasing temperature increasing the yield of 725-nm fluorescence.Fluorescence excitation spectra of polarized emission from low-energy Chls were measured at 77 and 295 K on the mutant lacking PS II. At excitation wavelengths longer than 715 nm, 760-nm emission is highly polarized indicating either direct excitation of the emitting Chls with no participation in excitation transfer or total alignment of the chromophores. Fluorescence at 760 nm is unpolarized for excitation wavelengths shorter than 690 nm, inferring excitation transfer between Chls before 760-nm fluorescence occurs.Our measurements illustrate that: 1) a single group of low-energy Chls (F725) of the core-like PS I complex in cyanobacteria shows a strongly temperature-dependent fluorescence and, when directly excited, nearly complete fluorescence polarization, 2) these properties are not the result of detergent-induced artifacts as we are examining intact PS I within the thylakoid membrane of S. 6803, and 3) the activation energy for excitation transfer from F725 Chls to P700 is less than that of F735 Chls in green plants; F725 Chls may act as a sink to locate excitations near P700 in PS I.Abbreviations Chl chlorophyll - BChl bacteriochlorophyll - PS Photosystem - S. 6803 Synechocystis sp. PCC 6803 - PGP potassium glycerol phosphate  相似文献   

2.
《BBA》2020,1861(2):148136
Photosystem I core-light-harvesting antenna supercomplexes (PSI-LHCI) were isolated from the extremophilic red alga Cyanidioschyzon merolae and studied by three fluorescence techniques in order to characterize chlorophylls (Chls) energetically uncoupled from the PSI reaction center (RC). Such Chls are observed in virtually all optical experiments of any PSI core and PSI-LHCI supercomplex preparations across various species and may influence the operation of PSI-based solar cells and other biohybrid systems. However, the nature of the uncoupled Chls (uChls) has never been explored deeply before. In this work, the amount of uChls was controlled by stirring the solution of C. merolae PSI-LHCI supercomplex samples at elevated temperature (~303 K) and was found to increase from <2% in control samples up to 47% in solutions stirred for 3.5 h. The fluorescence spectrum of uChls was found to be blue-shifted by ~20 nm (to ~680 nm) relative to the fluorescence band from Chls that are well coupled to PSI RC. This effect indicates that mechanical stirring leads to disappearance of some red Chls (emitting at above ~700 nm) that are present in the intact LHCI antenna associated with the PSI core. Comparative diffusion studies of control and stirred samples by fluorescence correlation spectroscopy together with biochemical analysis by SDS-PAGE and BN-PAGE indicate that energetically uncoupled Lhcr subunits are likely to be still physically attached to the PSI core, albeit with altered three-dimensional organization due to the mechanical stress.  相似文献   

3.
《BBA》2020,1861(11):148274
In higher-plant Photosystem I (PSI), the majority of “red” chlorophylls (absorbing at longer wavelengths than the reaction centre P700) are located in the peripheral antenna, but contradicting reports are given about red forms in the core complex. Here we attempt to clarify the spectroscopic characteristics and quantify the red forms in the PSI core complex, which have profound implication on understanding the energy transfer and charge separation dynamics. To this end we compare the steady-state absorption and fluorescence spectra and picosecond time-resolved fluorescence kinetics of isolated PSI core complex and PSI–LHCI supercomplex from Pisum sativum recorded at 77 K. Gaussian decomposition of the absorption spectra revealed a broad band at 705 nm in the core complex with an oscillator strength of three chlorophylls. Additional absorption at 703 nm and 711 nm in PSI–LHCI indicated up to five red chlorophylls in the peripheral antenna. Analysis of fluorescence emission spectra resolved states emitting at 705, 715 and 722 nm in the core and additional states around 705–710 nm and 733 nm in PSI–LHCI. The red states compete with P700 in trapping excitations in the bulk antenna, which occurs on a timescale of ~20 ps. The three red forms in the core have distinct decay kinetics, probably in part determined by the rate of quenching by the oxidized P700. These results affirm that the red chlorophylls in the core complex must not be neglected when interpreting kinetic experimental results of PSI.  相似文献   

4.
《BBA》2020,1861(2):148139
An aerial green alga, Prasiola crispa (Lightf.) Menegh, which is known to form large colonies in Antarctic habitats, is subject to severe environmental stresses due to low temperature, draught and strong sunlight in summer. A considerable light-absorption by long-wavelength chlorophylls (LWC) at around 710 nm, which seem to consist of chlorophyll a, was detected in thallus of P. crispa harvested at a terrestrial environment in Antarctica. Absorption level at 710 nm against that at 680 nm was correlated with fluorescence emission intensity at 713 nm at room temperature and the 77 K fluorescence emission band from LWC was found to be emitted at 735 nm. We demonstrated that the LWC efficiently transfer excitation energy to photosystem II (PSII) reaction center from measurements of action spectra of photosynthetic oxygen evolution and P700 photo-oxidation. The global quantum yield of PSII excitation in thallus by far-red light was shown to be as high as by orange light, and the excitation balance between PSII and PSI was almost same in the two light sources. It is thus proposed that the LWC increase the photosynthetic productivity in the lower parts of overlapping thalli and contribute to the predominance of alga in the severe environment.  相似文献   

5.
A divinyl chlorophyll (DV-Chl) a harboring mutant of Synechocystis sp. PCC 6803, in which chlorophyll species is replaced from monovinyl(normal)-Chl a to DV-Chl a, was characterized. The efficiency of light utilization for photosynthesis was decreased in the mutant. Absorption spectra at 77 K and their fourth derivative analyses revealed that peaks of each chlorophyll forms were blue-shifted by 1–2 nm, suggesting lowered stability of chlorophylls at their binding sites. This was also true both in PSI and PSII complexes. On the other hand, fluorescence emission spectra measured at 77 K were not different between wild type and the mutant. This indicates that the mode of interaction between chlorophyll and its binding pockets responsible for emitting fluorescence at 77 K is not altered in the mutant. P700 difference spectra of thylakoid membranes and PSI complexes showed that the spectrum in Soret region was red-shifted by 7 nm in the mutant. This is a characteristic feature of DV-Chl a. Microenvironments of iron–sulfur center of a terminal electron acceptor of PSI complex, P430, were practically the same as that of wild type.  相似文献   

6.
The features of the two types of short-term light-adaptations of photosynthetic apparatus, State 1/State 2 transitions, and non-photochemical fluorescence quenching of phycobilisomes (PBS) by orange carotene-protein (OCP) were compared in the cyanobacterium Synechocystis sp. PCC 6803 wild type, CK pigment mutant lacking phycocyanin, and PAL mutant totally devoid of phycobiliproteins. The permanent presence of PBS-specific peaks in the in situ action spectra of photosystem I (PSI) and photosystem II (PSII), as well as in the 77 K fluorescence excitation spectra for chlorophyll emission at 690 nm (PSII) and 725 nm (PSI) showed that PBS are constitutive antenna complexes of both photosystems. The mutant strains compensated the lack of phycobiliproteins by higher PSII content and by intensification of photosynthetic linear electron transfer. The detectable changes of energy migration from PBS to the PSI and PSII in the Synechocystis wild type and the CK mutant in State 1 and State 2 according to the fluorescence excitation spectra measurements were not registered. The constant level of fluorescence emission of PSI during State 1/State 2 transitions and simultaneous increase of chlorophyll fluorescence emission of PSII in State 1 in Synechocystis PAL mutant allowed to propose that spillover is an unlikely mechanism of state transitions. Blue–green light absorbed by OCP diminished the rout of energy from PBS to PSI while energy migration from PBS to PSII was less influenced. Therefore, the main role of OCP-induced quenching of PBS is the limitation of PSI activity and cyclic electron transport under relatively high light conditions.  相似文献   

7.
Diatoms occupy a key position as a primary producer in the global aquatic ecosystem. We developed methods to isolate highly intact thylakoid membranes and the photosystem I (PS I) complex from a marine centric diatom, Chaetoceros gracilis. The PS I reaction center (RC) was purified as a super complex with light-harvesting fucoxanthin-chlorophyll (Chl)-binding proteins (FCP). The super complex contained 224 Chl a, 22 Chl c, and 55 fucoxanthin molecules per RC. The apparent molecular mass of the purified FCP-PS I super complex (∼ 1000 kDa) indicated that the super complex was composed of a monomer of the PS I RC complex and about 25 copies of FCP. The complex contained menaquinone-4 as the secondary electron acceptor A1 instead of phylloquinone. Time-resolved fluorescence emission spectra at 77 K indicated that fast (16 ps) energy transfer from a Chl a band at 685 nm on FCP to Chls on the PS I RC complex occurs. The ratio of fucoxanthin to Chl a on the PS I-bound FCP was lower than that of weakly bound FCP, suggesting that PS I-bound FCP specifically functions as the mediator of energy transfer between weakly bound FCPs and the PS I RC.  相似文献   

8.
Some mosses are extremely tolerant of drought stress. Their high drought tolerance relies on their ability to effectively dissipate absorbed light energy to heat under dry conditions. The energy dissipation mechanism in a drought-tolerant moss, Bryum argenteum, has been investigated using low-temperature picosecond time-resolved fluorescence spectroscopy. The results are compared between moss thalli samples harvested in Antarctica and in Japan. Both samples show almost the same quenching properties, suggesting an identical drought tolerance mechanism for the same species with two completely different habitats. A global target analysis was applied to a large set of data on the fluorescence-quenching dynamics for the 430-nm (chlorophyll-a selective) and 460-nm (chlorophyll-b and carotenoid selective) excitations in the temperature region from 5 to 77 K. This analysis strongly suggested that the quencher is formed in the major peripheral antenna of photosystem II, whose emission spectrum is significantly broadened and red-shifted in its quenched form. Two emission components at around 717 and 725 nm were assigned to photosystem I (PS I). The former component at around 717 nm is mildly quenched and probably bound to the PS I core complex, while the latter at around 725 nm is probably bound to the light-harvesting complex. The dehydration treatment caused a blue shift of the PS I emission peak via reduction of the exciton energy flow to the pigment responsible for the 725 nm band.  相似文献   

9.
Fluorescence excitation spectra of highly anisotropic emission from Photosystem I (PS I) were measured at 295 and 77 K on a PS II-less mutant of the cyanobacterium Synechocystis sp. PCC 6803 (S. 6803). When PS I was excited with light at wavelengths greater than 715 nm, fluorescence observed at 745 nm was highly polarized with anisotropies of 0.32 and 0.20 at 77 and 295 K, respectively. Upon excitation at shorter wavelengths, the 745-nm fluorescence had low anisotropy. The highly anisotropic emission observed at both 77 and 295 K is interpreted as evidence for low-energy chlorophylls (Chls) in cyanobacteria at room temperature. This indicates that low-energy Chls, defined as Chls with first excited singlet-state energy levels below or near that of the reaction center, P700, are not artifacts of low-temperature measurements.If the low-energy Chls are a distinct subset of Chls and a simple two-pool model describes the excitation transfer network adequately, one can take advantage of the low-energy Chls' high anisotropy to approximate their fluorescence excitation spectra. Maxima at 703 and 708 nm were calculated from 295 and 77 K data, respectively. Upper limits for the number of low-energy Chls per P700 in PS I from S. 6803 were calculated to be 8 (295 K) and 11 (77 K).Abbreviations Chl - chlorophyll - BChl - bacteriochlorophyll - LHC - light-harvesting chlorophyll - PS - Photosystem - RC - reaction center - S. 6803 - Synechocystis sp. PCC 6803  相似文献   

10.
Excitation energy transfer (EET) and trapping in Synechococcus WH 7803 whole cells and isolated photosystem I (PSI) complexes have been studied by time-resolved emission spectroscopy at room temperature (RT) and at 77 K. With the help of global and target analysis, the pathways of EET and the charge separation dynamics have been identified. Energy absorbed in the phycobilisome (PB) rods by the abundant phycoerythrin (PE) is funneled to phycocyanin (PC645) and from there to the core that contains allophycocyanin (APC660 and APC680). Intra-PB EET rates have been estimated to range from 11 to 68/ns. It was estimated that at RT, the terminal emitter of the phycobilisome, APC680, transfers its energy at a rate of 90/ns to PSI and at a rate of 50/ns to PSII. At 77 K, the redshifted Chl a states in the PSI core were heterogeneous, with maximum emission at 697 and 707 nm. In 72% of the PSI complexes, the bulk Chl a in equilibrium with F697 decayed with a main trapping lifetime of 39 ps.  相似文献   

11.
Maintenance of energy balance under changeable light conditions is an essential function of photosynthetic organisms to achieve efficient photochemical reactions. Among the photosynthetic organisms, diatoms possess light-harvesting fucoxanthin chlorophyll (Chl) a/c-binding protein (FCP) as peripheral antennas. However, how diatoms regulate excitation-energy distribution between FCP and the two photosystem cores during light adaptation is poorly understood. In this study, we examined spectroscopic properties of a marine diatom Chaetoceros gracilis adapted in the dark and at photosynthetic photon flux density at 30 and 300?μmol?photons?m?2?s?1. Absorption spectra at 77?K showed significant changes in the Soret region, and 77-K steady-state fluorescence spectra showed significant differences in the spectral shape and relative fluorescence intensity originating from both PSII and PSI, among the cells grown under different light conditions. These results suggest alterations of pigment composition and their interactions under the different light conditions. These alterations affected the excitation-energy dynamics monitored by picosecond time-resolved fluorescence analyses at 77?K significantly. The contributions of Chls having lower energy levels than the reaction center Chls in the two photosystems to the energy dynamics were clearly identified in the three cells but with presumably different roles. These findings provide insights into the regulatory mechanism of excitation-energy balance in diatoms under various light conditions.  相似文献   

12.
Antenna complexes are key components of plant photosynthesis, the process that converts sunlight, CO2, and water into oxygen and sugars. We report the first (to our knowledge) femtosecond transient absorption study on the light-harvesting pigment-protein complexes CP26 (Lhcb5) and CP24 (Lhcb6) of Photosystem II. The complexes are excited at three different wavelengths in the chlorophyll (Chl) Qy region. Both complexes show a single subpicosecond Chl b to Chl a transfer process. In addition, a reduction in the population of the intermediate states (in the 660-670 nm range) as compared to light-harvesting complex II is correlated in CP26 to the absence of both Chls a604 and b605. However, Chl forms around 670 nm are still present in the Chl a Qy range, which undergoes relaxation with slow rates (10-15 ps). This reduction in intermediate-state amplitude CP24 shows a distinctive narrow band at 670 nm connected with Chls b and decaying to the low-energy Chl a states in 3-5 ps. This 670 nm band, which is fully populated in 0.6 ps together with the Chl a low-energy states, is proposed to originate from Chl 602 or 603. In this study, we monitored the energy flow within two minor complexes, and our results may help elucidate these structures in the future.  相似文献   

13.
State transitions in the green alga Chlamydomonas reinhardtii serve to balance excitation energy transfer to photosystem I (PSI) and to photosystem II (PSII) and possibly play a role as a photoprotective mechanism. Thus, light-harvesting complex II (LHCII) can switch between the photosystems consequently transferring more excitation energy to PSII (state 1) or to PSI (state 2) or can end up in LHCII-only domains. In this study, low-temperature (77 K) steady-state and time-resolved fluorescence measured on intact cells of Chlamydomonas reinhardtii shows that independently of the state excitation energy transfer from LHCII to PSI or to PSII occurs on two main timescales of <15 ps and ∼100 ps. Moreover, in state 1 almost all LHCIIs are functionally connected to PSII, whereas the transition from state 1 to a state 2 chemically locked by 0.1 M sodium fluoride leads to an almost complete functional release of LHCIIs from PSII. About 2/3 of the released LHCIIs transfer energy to PSI and ∼1/3 of the released LHCIIs form a component designated X-685 peaking at 685 nm that decays with time constants of 0.28 and 5.8 ns and does not transfer energy to PSI or to PSII. A less complete state 2 was obtained in cells incubated under anaerobic conditions without chemical locking. In this state about half of all LHCIIs remained functionally connected to PSII, whereas the remaining half became functionally connected to PSI or formed X-685 in similar amounts as with chemical locking. We demonstrate that X-685 originates from LHCII domains not connected to a photosystem and that its presence introduces a change in the interpretation of 77 K steady-state fluorescence emission measured upon state transitions in Chalamydomonas reinhardtii.  相似文献   

14.
The peripheral light-harvesting complex of photosystem I contains red chlorophylls (Chls) that, unlike the typical antenna Chls, absorb at lower energy than the primary electron donor P700. It has been shown that the red-most absorption band arises from two excitonically coupled Chls, although this interaction alone cannot explain the extreme red-shifted emission (25 nm, ∼480 cm−1 for Lhca4 at 4 K) that the red Chls present. Here, we report the electric field-induced absorption changes (Stark effect) on the Qy region of the Lhca4 complex. Two spectral forms, centered around 690 nm and 710 nm, were necessary to describe the absorption and Stark spectra. The analysis of the lowest energy transition yields a high value for the change in dipole moment, Δμ710nm ≈ 8 Df−1, between the ground and excited states as compared with monomeric, Δμ = 1 D, or dimeric, Δμ = 5 D, Chl a in solution. The high value of the Δμ demonstrates that the origin of the red-shifted emission is the mixing of the lowest exciton state with a charge-transfer state of the dimer. This energetic configuration, an excited state with charge-transfer character, is very favorable for the trapping and dissipation of excitations and could be involved in the photoprotective mechanism(s) of the photosystem I complex.  相似文献   

15.
In this article we report the characterization of the energy transfer process in the reconstituted isoforms of the plant light-harvesting complex II. Homotrimers of recombinant Lhcb1 and Lhcb2 and monomers of Lhcb3 were compared to native trimeric complexes. We used low-intensity femtosecond transient absorption (TA) and time-resolved fluorescence measurements at 77 K and at room temperature, respectively, to excite the complexes selectively in the chlorophyll b absorption band at 650 nm with 80 fs pulses and on the high-energy side of the chlorophyll a absorption band at 662 nm with 180 fs pulses. The subsequent kinetics was probed at 30–35 different wavelengths in the region from 635 to 700 nm. The rate constants for energy transfer were very similar, indicating that structurally the three isoforms are highly homologous and that probably none of them play a more significant role in light-harvesting and energy transfer. No signature has been found in the transient absorption measurements at 77 K for Lhcb3 which might suggest that this protein acts as a relative energy sink of the excitations in heterotrimers of Lhcb1/Lhcb2/Lhcb3. Minor differences in the amplitudes of some of the rate constants and in the absorption and fluorescence properties of some pigments were observed, which are ascribed to slight variations in the environment surrounding some of the chromophores depending on the isoform. The decay of the fluorescence was also similar for the three isoforms and multi-exponential, characterized by two major components in the ns regime and a minor one in the ps regime. In agreement with previous transient absorption measurements on native LHC II complexes, Chl b → Chl a energy transfer exhibited very fast channels but at the same time a slow component (ps). The Chls absorbing at around 660 nm exhibited both fast energy transfer which we ascribe to transfer from ‘red’ Chl b towards ‘red’ Chl a and slow transfer from ‘blue’ Chl a towards ‘red’ Chl a. The results are discussed in the context of the new available atomic models for LHC II.  相似文献   

16.
In algae, light-harvesting complexes contain specific chlorophylls (Chls) and keto-carotenoids; Chl a, Chl c, and fucoxanthin (Fx) in diatoms and brown algae; Chl a, Chl c, and peridinin in photosynthetic dinoflagellates; and Chl a, Chl b, and siphonaxanthin in green algae. The Fx–Chl a/c-protein (FCP) complex from the diatom Chaetoceros gracilis contains Chl c1, Chl c2, and the keto-carotenoid, Fx, as antenna pigments, in addition to Chl a. In the present study, we investigated energy transfer in the FCP complex associated with photosystem II (FCPII) of C. gracilis. For these investigations, we analyzed time-resolved fluorescence spectra, fluorescence rise and decay curves, and time-resolved fluorescence anisotropy data. Chl a exhibited different energy forms with fluorescence peaks ranging from 677 nm to 688 nm. Fx transferred excitation energy to lower-energy Chl a with a time constant of 300 fs. Chl c transferred excitation energy to Chl a with time constants of 500–600 fs (intra-complex transfer), 600–700 fs (intra-complex transfer), and 4–6 ps (inter-complex transfer). The latter process made a greater contribution to total Chl c-to-Chl a transfer in intact cells of C. gracilis than in the isolated FCPII complexes. The lower-energy Chl a received excitation energy from Fx and transferred the energy to higher-energy Chl a. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: Keys to Produce Clean Energy.  相似文献   

17.
Cyanobacteria respond to iron deficiency during growth by expressing the isiA gene, which produces a chlorophyll-carotenoid protein complex known as IsiA or CP43′. Long-term iron deficiency results in the formation of large IsiA aggregates, some of which associate with photosystem I (PSI) while others are not connected to a photosystem. The fluorescence at room temperature of these unconnected aggregates is strongly quenched, which points to a photoprotective function. In this study, we report time-resolved fluorescence measurements of IsiA aggregates at low temperatures. The average fluorescence lifetimes are estimated to be about 600 ps at 5 K and 150 ps at 80 K. Both lifetimes are much shorter than that of the monomeric complex CP47 at 77 K. We conclude that IsiA aggregates quench fluorescence to a significant extent at cryogenic temperatures. We show by low-temperature fluorescence spectroscopy that unconnected IsiA is present already after two days of growth in an iron-deficient medium, when PSI and PSII are still present in significant amounts and that under these conditions the fluorescence quenching is similar to that after 18 days, when PSI is almost completely absent. We conclude that unconnected IsiA provides photoprotection in all stages of iron deficiency.  相似文献   

18.
This work addresses the question of occurrence and function of photosystem II (PSII) in bundle sheath (BS) cells of leaves possessing NADP-malic enzyme-type C4 photosynthesis (Zea mays). Although no requirement for PSII activity in the BS has been established, several component proteins of PSII have been detected in BS cells of developing maize leaves exhibiting O2-insensitive photosynthesis. We used the basal fluorescence emissions of PSI (F 0I) and PSII (F 0II) as quantitative indicators of the respective relative photosystem densities. Chl fluorescence induction was measured simultaneously at 680 and 750 nm. In mature leaves, the F m(680)/F 0(680) ratio was 10.5 but less in immature leaves. We propose that the lower ratio was caused by the presence of a distinct non-variable component, F c, emitting at 680 and 750 nm. After F c was subtracted, the fluorescence of PSI (F 0I) was detected as a non-variable component at 750 nm and was undetectably low at 680 nm. Contents of Chls a and b were measured in addition to Chl fluorescence. The Chl b/(a + b) was relatively stable in developing sunflower leaves (0.25–0.26), but in maize it increased from 0.09 to 0.21 with leaf tissue age. In sunflower, the F 0I/(F 0I + F 0II) was 0.39 ± 0.01 independent of leaf age, but in maize, this parameter was 0.65 in young tissue of very low Chl content (20–50 mg m?2) falling to a stable level of 0.53 ± 0.01 at Chl contents >100 mg m?2. The values of F 0I/(F 0I + F 0II) showed that in sunflower, excitation was partitioned between PSII and PSI in a ratio of 2:1, but the same ratio was 1:1 in the C4 plant. The latter is consistent with a PSII:PSI ratio of 2:1 in maize mesophyll cells and PSI only in BS cells (2:1:1 distribution). We suggest, moreover, that redox mediation of Chl synthesis, rather than protein accumulation, regulates photosystem assembly to ensure optimum excitation balance between functional PSII and PSI. Indeed, the apparent necessity for two Chls (a and b) may reside in their targeted functions in influencing accumulation of PSI and PSII, respectively, as opposed to their spectral differences.  相似文献   

19.
Steady-state fluorescence and absorption spectra have been obtained in the Qy spectral region (690-780 nm and 600-750 nm, respectively) for several subunit-deficient photosystem I mutants from the cyanobacterium Synechocystis sp. PCC 6803. The 77 K fluorescence spectra of the wild-type and subunit-deficient mutant photosystem I particles are all very similar, peaking at approximately 720 nm with essentially the same excitation spectrum. Because emission from far-red chlorophylls absorbing near 708 nm dominates low-temperature fluorescence in Synechocystis sp., these pigments are not coordinated to any the subunits PsaF, Psa I, PsaJ, PsaK, PsaL, or psaM. The room temperature (wild-type-mutant) absorption difference spectra for trimeric mutants lacking the PsaF/J, PsaK, and PsaM subunits suggest that these mutants are deficient in core antenna chlorophylls (Chls) absorbing near 685, 670, 675, and 700 nm, respectively. The absorption difference spectrum for the PsaF/J/I/L-deficient photosystem I complexes at 5 K reveals considerably more structure than the room-temperature spectrum. The integrated absorbance difference spectra (when normalized to the total PS I Qy spectral area) are comparable to the fractions of Chls bound by the respective (groups of) subunits, according to the 4-A density map of PS I from Synechococcus elongatus. The spectrum of the monomeric PsaL-deficient mutant suggests that this subunit may bind pigments absorbing near 700 nm.  相似文献   

20.
The assembly of the photosynthetic apparatus was studied during the first six days of development of Fucus serratus L. embryos. HPLC analysis revealed that oospheres and zygotes contain the same photosynthetic pigments (i.e., chlorophyll a, chlorophyll c, fucoxanthin, violaxanthin, and β-carotene) as fully developed thalli. Total pigment amount increased after fertilization, mainly due to an active synthesis of Chl a and fucoxanthin. Spectral modifications revealing the progressive integration of Chl a and Chl c in the photosynthetic units are described. In particular, a distinct emission at 705 nm, reflecting the accumulation of LHC I, was clearly detected. The emission bands at 705 nm and 725 nm were characterized by 77 K excitation fluorescence measurements. Their spectra differed by the presence of a large band at approximately 550 nm due to fucoxanthin in the excitation spectrum of F705 nm. Room temperature variable fluorescence was first observed 30 h after fertilization indicating a functional Photosystem II electron transfer at this developmental stage. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号