首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bax is a member of the Bcl-2 family that, together with Bak, is required for permeabilisation of the outer mitochondrial membrane (OMM). Bax differs from Bak in that it is predominantly cytosolic in healthy cells and only associates with the OMM after an apoptotic signal. How Bax is targeted to the OMM is still a matter of debate, with both a C-terminal tail anchor and an N-terminal pre-sequence being implicated. We now show definitively that Bax does not contain an N-terminal import sequence, but does have a C-terminal anchor. The isolated N terminus of Bax cannot target a heterologous protein to the OMM, whereas the C terminus can. Furthermore, if the C terminus is blocked, Bax fails to target to mitochondria upon receipt of an apoptotic stimulus. Zebra fish Bax, which shows a high degree of amino-acid homology with mammalian Bax within the C terminus, but not in the N terminus, can rescue the defective cell-death phenotype of Bax/Bak-deficient cells. Interestingly, we find that Bax mutants, which themselves cannot target mitochondria or induce apoptosis, are recruited to clusters of activated wild-type Bax on the OMM of apoptotic cells. This appears to be an amplification of Bax activation during cell death that is independent of the normal tail anchor-mediated targeting.  相似文献   

2.
During apoptosis, engagement of the mitochondrial pathway involves the permeabilization of the outer mitochondrial membrane (OMM), which leads to the release of cytochrome c and other apoptogenic proteins such as Smac/DIABLO, AIF, EndoG, Omi/HtraA2 and DDP/TIMM8a. OMM permeabilization depends on activation, translocation and oligomerization of multidomain Bcl-2 family proteins such as Bax or Bak. Factors involved in Bax conformational change and the function(s) of the distinct domains controlling the addressing and the insertion of Bax into mitochondria are described in this review. We also discuss our current knowledge on Bax oligomerization and on the molecular mechanisms underlying the different models accounting for OMM permeabilization during apoptosis.  相似文献   

3.
During mitochondrial apoptosis, pro-apoptotic BH3-only proteins cause the translocation of cytosolic Bcl-2-associated X protein (Bax) to the outer mitochondrial membrane (OMM) where it is activated to release cytochrome c from the mitochondrial intermembrane space, but the mechanism is under dispute. We show that most BH3-only proteins are mitochondrial proteins that are imported into the OMM via a C-terminal tail-anchor domain in isolated yeast mitochondria, independently of binding to anti-apoptotic Bcl-2 proteins. This C-terminal domain acted as a classical mitochondrial targeting signal and was sufficient to direct green fluorescent protein to mitochondria in human cells. When expressed in mouse fibroblasts, these BH3-only proteins localised to mitochondria and were inserted in the OMM. The BH3-only proteins Bcl-2-interacting mediator of cell death (Bim), tBid and p53-upregulated modulator of apoptosis sensitised isolated mitochondria from Bax/Bcl-2 homologous antagonist/killer-deficient fibroblasts to cytochrome c-release by recombinant, extramitochondrial Bax. For Bim, this activity is shown to require the C-terminal-targeting signal and to be independent of binding capacity to and presence of anti-apoptotic Bcl-2 proteins. Bim further enhanced Bax-dependent killing in yeast. A model is proposed where OMM-tail-anchored BH3-only proteins permit passive 'recruitment' and catalysis-like activation of extra-mitochondrial Bax. The recognition of C-terminal membrane-insertion of BH3-only proteins will permit the development of a more detailed concept of the initiation of mitochondrial apoptosis.  相似文献   

4.
Mitochondrial membrane permeabilisation by Bax/Bak   总被引:15,自引:0,他引:15  
Recent studies on cells derived from mice deficient in both multi-domain pro-apoptotic genes of the Bcl-2 family, Bax and Bak, suggest that one or other of these proteins are required for the release of apoptogens such as cytochrome c from mitochondria. In addition BH-3 only proteins of this family such as Bid are suggested to act as critical death inducing ligands via interactions with pro- and anti-apoptotic Bcl-2 family proteins with Bax or Bak at the mitochondrial surface. Despite this increase in knowledge it remains unclear precisely how Bak and Bax promote outer mitochondrial membrane (OMM) permeabilisation. We suggest that Bax and Bak may not operate in precisely the same manner and evaluate the current models for their function. We also consider the emerging information that lipid-protein interactions may be crucial to the actions of Bax and Bak.  相似文献   

5.
The translocation of Bax from the cytosol into the mitochondrial outer membrane is a central event during apoptosis. We report that beyond the addressing step, which involves its first alpha-helix (halpha1), the helices alpha5 and alpha6 (halpha5alpha6) are responsible for the insertion of Bax into mitochondrial outer membrane bilayer. The translocation of Bax to mitochondria is associated with specific changes in the conformation of the protein that are under the control of two prolines: Pro-13, which controls the unfolding of halpha1, and Pro-168, a proline located immediately before the hydrophobic carboxyl-terminal end (i.e. helix alpha9, halpha9), which controls the disclosure of halpha5alpha6. An additional step, the disruption of an electrostatic bond formed between Asp-33 (halpha1) and Lys-64 (BH3), allows the mitochondria addressing of Bax. We conclude that, although the intramolecular interactions of halpha1 with the BH3 region control the addressing of Bax to mitochondria, the Pro-168 is involved in the control of its membrane insertion through halpha5alpha6.  相似文献   

6.
In healthy cells, Bax resides inactive in the cytosol because its COOH-terminal transmembrane region (TMB) is tucked into a hydrophobic pocket. During apoptosis, Bax undergoes a conformational change involving NH2-terminal exposure and translocates to mitochondria to release apoptogenic factors. How this process is regulated remains unknown. We show that the TMB of Bax is both necessary and sufficient for mitochondrial targeting. However, its availability for targeting depends on Pro168 located within the preceding loop region. Pro168 mutants of Bax lack apoptotic activity, cannot rescue the apoptosis-resistant phenotype of Bax/Bak double knockout cells, and are retained in the cytosol even in response to apoptotic stimuli. Moreover, the mutants have their NH2 termini exposed. We propose that Pro168 links the NH2 and the COOH terminus of Bax and is required for COOH-terminal release and mitochondrial targeting once this link is broken.  相似文献   

7.
8.
B-cell lymphoma 2 (Bcl-2)-associated X protein (Bax) is a member of the Bcl-2 protein family having a pivotal role in triggering cell commitment to apoptosis. Bax is latent and monomeric in the cytosol but transforms into its lethal, mitochondria-embedded oligomeric form in response to cell stress, leading to the release of apoptogenic factors such as cytochrome C. Here, we dissected the structural correlates of Bax membrane insertion while oligomerization is halted. This strategy was enabled through the use of nanometer-scale phospholipid bilayer islands (nanodiscs) the size of which restricts the reconstituted system to single Bax-molecule activity. Using this minimal reconstituted system, we captured structural correlates that precede Bax homo-oligomerization elucidating previously inaccessible steps of the core molecular mechanism by which Bcl-2 family proteins regulate membrane permeabilization. We observe that, in the presence of BH3 interacting domain death agonist (Bid) BH3 peptide, Bax monomers induce the formation of ∼3.5-nm diameter pores and significantly distort the phospholipid bilayer. These pores are compatible with promoting release of ions as well as proteinaceous components, suggesting that membrane-integrated Bax monomers in the presence of Bid BH3 peptides are key functional units for the activation of the cell demolition machinery.  相似文献   

9.
Here, we report that acute reduction in mitochondrial translation fidelity (MTF) causes ubiquitination of the inner mitochondrial membrane (IMM) proteins, including TRAP1 and CPOX, which occurs selectively in mitochondria with a severed outer mitochondrial membrane (OMM). Ubiquitinated IMM recruits the autophagy machinery. Inhibiting autophagy leads to increased accumulation of mitochondria with severed OMM and ubiquitinated IMM. This process occurs downstream of the accumulation of cytochrome c/CPOX in a subset of mitochondria heterogeneously distributed throughout the cell (“mosaic distribution”). Formation of mosaic mitochondria, OMM severing, and IMM ubiquitination require active mitochondrial translation and mitochondrial fission, but not the proapoptotic proteins Bax and Bak. In contrast, in Parkin-overexpressing cells, MTF reduction does not lead to the severing of the OMM or IMM ubiquitination, but it does induce Drp1-independent ubiquitination of the OMM. Furthermore, high–cytochrome c/CPOX mitochondria are preferentially targeted by Parkin, indicating that in the context of reduced MTF, they are mitophagy intermediates regardless of Parkin expression. In sum, Parkin-deficient cells adapt to mitochondrial proteotoxicity through a Drp1-mediated mechanism that involves the severing of the OMM and autophagy targeting ubiquitinated IMM proteins.  相似文献   

10.
During apoptosis, cytochrome c is released from mitochondria into the cytosol, where it participates in caspase activation. Various and often conflicting mechanisms have been proposed to account for the increased permeability of the mitochondrial outer membrane that is responsible for this process. The voltage-dependent anion channel (VDAC) is the major permeability pathway for metabolites in the mitochondrial outer membrane and therefore is a very attractive candidate for cytochrome c translocation. Here, we report that properties of VDAC channels reconstituted into planar phospholipid membranes are unaffected by addition of the pro-apoptotic protein Bax under a variety of conditions. Contrary to other reports (Shimizu, S., Narita, M., and Tsujimoto, Y. (1999) Nature 399, 483-487; Shimizu, S., Ide, T., Yanagida, T., and Tsujimoto, Y. (2000) J. Biol. Chem. 275, 12321-12325; Shimizu, S., Konishi, A., Kodama, T., and Tsujimoto, Y. (2000) Proc. Natl. Acad. Sci. U. S. A. 97, 3100-3105), we found no electrophysiologically detectable interaction between VDAC channels isolated from mammalian mitochondria and either monomeric or oligomeric forms of Bax. We conclude that Bax does not induce cytochrome c release by acting on VDAC. In contrast to Bax, another pro-apoptotic protein (Bid) proteolytically cleaved with caspase-8 affected the voltage gating of VDAC by inducing channel closure. We speculate that by decreasing the probability of VDAC opening, Bid reduces metabolite exchange between mitochondria and the cytosol, leading to mitochondrial dysfunction.  相似文献   

11.
During apoptosis Bid and Bax are sufficient for mitochondrial outer membrane permeabilization, releasing pro-apoptotic proteins such as cytochrome c and Smac/Diablo into the cytoplasm. In most cells, both Bid and Bax are cytoplasmic but bind to mitochondrial outer membranes to exert pro-apoptotic functions. Binding to membranes is regulated by cleavage of Bid to truncated Bid (tBid), by conformation changes in tBid and Bax, and by interactions with other proteins. At least at the peripherally bound stage, binding is reversible. Therefore, regulation of apoptosis is closely linked with the interactions of tBid and Bax with mitochondria. Here we use fluorescence techniques and cell-free systems containing mitochondria or liposomes that faithfully mimic tBid/Bax-dependent membrane permeabilization to study the dynamic interactions of the proteins with membranes. We confirm that the binding of both proteins to the membrane is reversible by quantifying the binding affinity of proteins for the membrane. For Bax, both peripherally bound (inactive) and oligomerized (active) proteins migrate between membranes but much slower than and independent of tBid. When re-localized to a new membrane, Bax inserts into and permeabilizes it only if primed by an activator. In the case of tBid, the process of transfer is synergetic with Bax in the sense that tBid ‘runs'' faster if it has been ‘kissed'' by Bax. Furthermore, Mtch2 accelerates the re-localization of tBid at the mitochondria. In contrast, binding to Bcl-XL dramatically impedes tBid re-localization by lowering the off-rate threefold. Our results suggest that the transfer of activated tBid and Bax to different mitochondria is governed by dynamic equilibria and potentially contributes more than previously anticipated to the dissemination of the permeabilization signal within the cell.  相似文献   

12.
Cells control their volume through the accumulation of compatible solutes. The bacterial ATP-binding cassette transporter OpuA couples compatible solute uptake to ATP hydrolysis. Here, we study the gating mechanism and energy coupling of OpuA reconstituted in lipid nanodiscs. We show that anionic lipids are essential both for the gating and the energy coupling. The tight coupling between substrate binding on extracellular domains and ATP hydrolysis by cytoplasmic nucleotide-binding domains allows the study of transmembrane signaling in nanodiscs. From the tight coupling between processes at opposite sides of the membrane, we infer that the ATPase activity of OpuA in nanodiscs reflects solute translocation. Intriguingly, the substrate-dependent, ionic strength-gated ATPase activity of OpuA in nanodiscs is at least an order of magnitude higher than in lipid vesicles (i.e. with identical membrane lipid composition, ionic strength, and nucleotide and substrate concentrations). Even with the chemical components the same, the lateral pressure (profile) of the nanodiscs will differ from that of the vesicles. We thus propose that membrane tension limits translocation in vesicular systems. Increased macromolecular crowding does not activate OpuA but acts synergistically with ionic strength, presumably by favoring gating interactions of like-charged surfaces via excluded volume effects.  相似文献   

13.
Bax is a pro-apoptotic protein allowing apoptosis to occur through the intrinsic, damage-induced pathway, and amplifying that one occurring via the extrinsic, receptor mediated pathway. Bax is present in viable cells and activated by pro-apoptotic stimuli. Activation implies structural changes, consisting of exposure of the N terminus and hydrophobic domains; changes in localization, consisting in migration from cytosol to mitochondria and endoplasmic reticulum membranes; changes in the aggregation status, from monomer to dimer and multimer. Bax has multiple critical domains, namely the N terminus exposed after activation; two hydrophobic stretches exposed for membrane anchorage; two reactive cysteines allowing multimerization; the BH3 domain for interactions with the Bcl-2 family members; alpha helix 1 for t-Bid interaction. Bax has also multiple functions: it releases different mitochondrial factors such as cytochrome c, SMAC/diablo; it regulates mitochondrial fission, the mitochondrial permeability transition pore; it promotes Ca2+ leakage through ER membrane. Altogether, Bax activation is a complex multi-step phenomenon. Here, we analyze these events as logically separable or alternative steps, attempting to assess their role, timing and reciprocal relation.  相似文献   

14.
During many forms of apoptosis, Bax, a pro-apoptotic protein of the Bcl-2 family, translocates from the cytosol to the mitochondria and induces cytochrome c release, followed by caspase activation and DNA degradation. Both Bcl-X(L) and the protein phosphatase inhibitor calyculin A have been shown to prevent apoptosis, and here we investigated their impact on Bax translocation. ML-1 cells incubated with either anisomycin or staurosporine exhibited Bax translocation, cytochrome c release, caspase 8 activation, and Bid cleavage; only the latter two events were caspase-dependent, confirming that they are consequences in this apoptotic pathway. Both Bcl-X(L) and calyculin A prevented Bax translocation and cytochrome c release. Bcl-X(L) is generally thought to heterodimerize with Bax to prevent cytochrome c release and yet they remain in different cellular compartments, suggesting that their heterodimerization at the mitochondria is not the primary mechanism of Bcl-X(L)-mediated protection. Using chemical cross-linking agents, Bax appeared to exist as a monomer in undamaged cells. Upon induction of apoptosis, Bax formed homo-oligomers in the mitochondrial fraction with no evidence for cross-linking to Bcl-2 or Bcl-X(L). Considering that both Bcl-X(L) and calyculin A inhibit Bax translocation, we propose that Bcl-X(L) may regulate Bax translocation through modulation of protein phosphatase or kinase signaling.  相似文献   

15.
Bax and Bid are pro-apoptotic members of the Bcl-2 protein family. Upon cleavage by caspase-8, Bid activates Bax. Activated Bax inserts into the mitochondrial outer membrane forming oligomers which lead to membrane poration, release of cytochrome c, and apoptosis. The detailed mechanism of Bax activation and the topology and composition of the oligomers are still under debate. Here molecular details of Bax activation and oligomerization were obtained by application of several biophysical techniques, including atomic force microscopy, cryoelectron microscopy, and particularly electron paramagnetic resonance (EPR) spectroscopy performed on spin-labeled Bax. Incubation with detergents, reconstitution, and Bid-triggered insertion into liposomes were found to be effective in inducing Bax oligomerization. Bid was shown to activate Bax independently of the stoichiometric ratio, suggesting that Bid has a catalytic function and that the interaction with Bax is transient. The formation of a stable dimerization interface involving two Bcl-2 homology 3 (BH3) domains was found to be the nucleation event for Bax homo-oligomerization. Based on intermolecular distance determined by EPR, a model of six adjacent Bax molecules in the oligomer is presented where the hydrophobic hairpins (helices α5 and α6) are equally spaced in the membrane and the two BH3 domains are in close vicinity in the dimer interface, separated by >5 nm from the next BH3 pairs.  相似文献   

16.
When activated, the proapoptotic protein Bax permeabilizes the mitochondrial outer membrane, allowing the release of proteins into the cytosol and thus initiating the execution phase of apoptosis. When activated Bax was reconstituted into phospholipid membranes, we discovered a new, to our knowledge, property of Bax channels: voltage gating. We also found that the same Bax sample under the same experimental conditions could give rise to two radically different channels: Type A, which is small, well behaved, homogeneous, and voltage-gated, and Type B, which is large, noisy, and voltage-independent. One Type B channel can be converted irreversibly into a population of Type A channels by the addition of La3+. This conversion process appears to involve a two-dimensional budding mechanism. The existence of these two types of Bax channels suggests a process for controlling the degree of mitochondrial outer membrane permeabilization.  相似文献   

17.
Endophilins participate in membrane scission events that occur during endocytosis and intracellular organelle biogenesis through the combined activity of an N-terminal BAR domain that interacts with membranes and a C-terminal SH3 domain that mediates protein binding. Endophilin B1 (Endo B1) was identified to bind Bax, a Bcl-2 family member that promotes apoptosis, through yeast two-hybrid protein screens. Although Endo B1 does not bind Bax in healthy cells, during apoptosis, Endo B1 interacts transiently with Bax and promotes cytochrome c release from mitochondria. To explore the molecular mechanism of action of Endo B1, we have analyzed its interaction with Bax in cell-free systems. Purified recombinant Endo B1 in solution displays a Stokes radius indicating a tetrameric quarternary structure. However, when incubated with purified Bax, it assembles into oligomers more than 4-fold greater in molecular weight. Although Endo B1 oligomerization is induced by Bax, Bax does not stably associate with the high molecular weight Endo B1 complex. Endo B1 oligomerization requires its C-terminal Src homology 3 domain and is not induced by Bcl-xL. Endo B1 combined with Bax reduces the size and changes the morphology of giant unilamellar vesicles by inducing massive vesiculation of liposomes. This activity of purified Bax protein to induce cell-free assembly of Endo B1 may reflect its activity in cells that regulates apoptosis and/or mitochondrial fusion.  相似文献   

18.
The Bcl-2 proapoptotic proteins Bax and Bak mediate the permeabilization of the mitochondrial outer membrane during apoptosis. Current models consider that Bax and Bak form pores at the mitochondrial outer membrane that are responsible for the release of cytochrome c and other larger mitochondrial apoptotic factors (i.e. Smac/DIABLO, AIF, and endoglycosidase G). However, the properties and nature of Bax/Bak apoptotic pores remain enigmatic. Here, we performed a detailed analysis of the membrane permeabilizing activity of Bax and Bak at the single vesicle level. We directly visualized that cBid-activated Bax and BakΔC21 can form membrane pores large enough to release not only cytochrome c, but also allophycocyanine, a protein of 104 kDa. Interestingly, the size of Bax and BakΔC21 pores is not constant, as typically observed in purely proteinaceous channels, but evolves with time and depends on protein concentration. We found that Bax and BakΔC21 formed long-lived pores, whose areas changed with the amount of Bax/BakΔC21 but not with cardiolipin concentration. Altogether, our results demonstrate that Bax and BakΔC21 follow similar mechanisms of membrane permeabilization characterized by the formation of protein-permeable pores of dynamic size, in agreement with the proteolipidic nature of these apoptotic pores.  相似文献   

19.
The function of membrane-bound transporters is commonly affected by the milieu of the hydrophobic, membrane-spanning part of the transmembrane protein. Consequently, functional studies of these proteins often involve incorporation into a native-like bilayer where the lipid components of the membrane can be controlled. The classical approach is to reconstitute the purified protein into liposomes. Even though the use of such liposomes is essential for studies of transmembrane transport processes in general, functional studies of the transporters themselves in liposomes suffer from several disadvantages. For example, transmembrane proteins can adopt two different orientations when reconstituted into liposomes, and one of these populations may be inaccessible to ligands, to changes in pH or ion concentration in the external solution. Furthermore, optical studies of proteins reconstituted in liposomes suffer from significant light scattering, which diminishes the signal-to-noise value of the measurements. One attractive approach to circumvent these problems is to use nanodiscs, which are phospholipid bilayers encircled by a stabilizing amphipathic helical membrane scaffold protein. These membrane nanodiscs are stable, soluble in aqueous solution without detergent and do not scatter light significantly. In the present study, we have developed a protocol for reconstitution of the aa(3)- and ba(3)-type cytochrome c oxidases into nanodiscs. Furthermore, we studied proton-coupled electron-transfer reactions in these enzymes with microsecond time resolution. The data show that the nanodisc membrane environment accelerates proton uptake in both oxidases.  相似文献   

20.
Puma strikes Bax     
The commitment to programmed cell death via apoptosis is largely made upon activation of the proapoptotic mitochondrial proteins Bax or Bak. In this issue, Gallenne et al. (Gallenne, C., F. Gautier, L. Oliver, E. Hervouet, B. Noël, J.A. Hickman, O. Geneste, P.-F. Cartron, F.M. Vallette, S. Manon, and P. Juin. 2009. J. Cell Biol. 185:279–290) provide evidence that the p53 up-regulated modulator of apoptosis (Puma) protein can directly activate Bax.The Bcl-2 family of proteins participates in the control of the cell''s commitment to programmed cell death via the mitochondrial or intrinsic apoptotic pathway. Certain proteins in this family, including Bcl-2, Bcl-xL, Bcl-w, Mcl-1, and Bfl-1/A1, inhibit apoptosis, whereas others in this family promote apoptosis. Proapoptotic Bax and Bak appear to be indispensible for apoptosis (Lindsten et al., 2000; Wei et al., 2001). How does the cell determine fate in the face of competing pro- and antiapoptotic proteins? The rheostat model proposed that when there were more antiapoptotic proteins than proapoptotic proteins, the cell survived and vice versa. However, in many cases, the conversion of a living cell to one committed to death occurs without significant change in the levels of pro- and antiapoptotic proteins. The participation of a third class of proapoptotic proteins largely explained this riddle. These proteins, so-called BH3-only as they share homology only in the proapoptotic Bcl-2 homology 3 domain, appear to act as sentinels of cell damage, which convert initial perturbations into death signals, that act in the mitochondrial pathway. Now, Gallenne et al. (see p. 279 of this issue) provide mechanistic insight into how the BH3-only protein Puma promotes apoptosis. The authors find that Puma, like the BH3-only proteins Bim and Bid, directly activates Bax.A key event in the commitment to apoptosis is Bax- and Bak-mediated permeabilization of the outer mitochondrial membrane. For this to occur, Bax and Bak alter their conformation from an inactive to an active form, form homo-oligomers in the membrane, and contribute to the formation of pores, which allows the egress of proapoptotic proteins to the cytosol (Fig. 1). Although there is consensus that Bax and Bak must shift from an inactive to an active state for this to occur, there is less consensus about what specific factors cause this crucial switch (Willis et al., 2007). Bid and Bim have been shown to cause activation (conformational change and oligomerization) of Bax and Bak in cellular, mitochondrial, and liposomal systems (Wei et al., 2000; Kuwana et al., 2002; Cartron et al., 2004; Certo et al., 2006). Direct interaction between these activators and Bax has been established experimentally (Gavathiotis et al., 2008; Lovell et al., 2008). Additional studies have suggested that p53 itself may translocate to the mitochondria and activate Bax after select stimuli (Mihara et al. 2003; Chipuk et al., 2004). Even heat has been indicted as a potential activating factor (Pagliari et al., 2005). It is quite possible that many activating factors remain to be discovered.Open in a separate windowFigure 1.Control of mitochondrial permeabilization by Bcl-2 family proteins. Activated Bax or Bak are available to oligomerize either when they are directly activated by activating factors, including activator BH3-only proteins (top), or when preactivated Bax or Bak are displaced from antiapoptotic proteins by either activator or sensitizer BH3-only proteins (bottom). Gallenne et al. (2009) provide evidence that Puma is an activator rather than a sensitizer. Oligomerized Bax or Bak participate in forming a pore that allows egress of proapoptotic factors like cytochrome c. Cytochrome c promotes formation of the apoptosome complex, which causes activation of effector caspases. These proteases cleave many key cellular proteins to bring about the apoptotic phenotype. Figure adapted with permission from the Journal of Cell Science (Brunelle, J.K., and A. Letai. 2009. J. Cell Sci. 122:437–441).Antiapoptotic proteins inhibit apoptosis by binding proapoptotic factors. In many cases, the proapoptotic factors are activator BH3-only proteins like Bid and Bim. However, in some cases, the proapoptotic factors may also include activated monomeric Bax and Bak, which are intercepted before they can oligomerize and form pores. Cells have been described in which antiapoptotic proteins are loaded with abundant prodeath proteins as being “primed for death.” Such cells are particularly sensitive to treatment with chemotherapy and antagonists of antiapoptotic proteins like ABT-737 (Certo et al., 2006; Deng et al., 2007). In most cells, the vast majority of Bax and Bak are in the inactive form, and activated Bax and Bak can be difficult to detect in the absence of toxic perturbation. Nonetheless, BH3-only molecules, which lack the ability to directly activate Bax or Bak, can cause apoptosis by competing for binding to antiapoptotic proteins (Fig. 1). If this competition frees sufficient activator proteins (or activated Bax and Bak), oligomerization of Bax and Bak ensues, committing the cell to death. Based on performance in assays on mitochondria and artificial liposomes spiked with Bax, the BH3-only family has thus been segregated into two subfamilies: the sensitizers and the activators.Where does Puma fit in? Puma was initially identified as a p53-regulated gene that was induced after DNA damage (Nakano and Vousden, 2001). It has subsequently been found that Puma is responsible for much of the proapoptotic effect of p53 induction but that Puma can also cause apoptosis in a p53-independent fashion (Jeffers et al., 2003; Villunger et al., 2003). The assignment of Puma as either a sensitizer or an activator has been somewhat contentious. The BH3 domains of BH3-only proteins are both necessary and sufficient to interact with Bcl-2 family members and seem to largely recapitulate function of the entire protein. For instance, the BH3 domains of Bid and Bim can activate Bax and Bak in liposomal or mitochondrial settings. The Puma BH3 domain lacked this function in several studies, leading many to classify Puma as a sensitizer (Kuwana et al., 2005; Certo et al., 2006). However, experiments with the full-length protein translated in vitro show an ability to activate Bax comparable with that of Bim and Bid (Kim et al., 2006).Cartron et al. (2004) has previously found that the BH3 domains of Bim and Puma but not the sensitizer Bad interact with Bax and cause its activation. In Gallenne et al. (2009), the role of Puma as an activator is further supported by three main pieces of evidence. First, Bax preincubated with the Puma BH3 peptide is more toxic to microinjected cells than is Bax alone. This enhancement is blocked by coincubation with a peptide mimicking the putative interaction site on Bax, the Hα1 C-terminal peptide. This suggests that the interaction of the Puma BH3 domain with a site on the first α helix of Bax is necessary for Puma''s enhancement of Bax killing. It is worth noting that this interaction site on Bax, first identified by this group 4 yr ago, overlaps with an interaction site of the activator Bim BH3 peptide with Bax recently demonstrated by nuclear magnetic resonance in solution (Gavathiotis et al., 2008). The fact that two groups independently identified a similar and unexpected site for interaction of activating BH3 domains with Bax lends some confidence to this finding.Additionally, because the Bcl-2 family is absent from the yeast genome, the authors exploit yeast to study Puma and Bax in a setting uncontaminated by the contribution of unmeasured Bcl-2 family proteins. Again, they find that coexpression of Puma is necessary for efficient killing by Bax. Finally, the authors investigate the participation of Puma in killing human colorectal cancer cells with ABT-737. ABT-737 is a BH3 mimetic that promotes apoptosis by binding antiapoptotic proteins and displacing select prebound prodeath proteins. Thus, ABT-737 can only kill cells that are primed with either activators or preactivated Bax or Bak. They find that ABT-737 treatment results in the freeing of Puma, which then interacts with Bax, correlating with the death of the cell. This finding suggests that Puma can play the priming function that is likely critical to sensitivity to many chemotherapeutic agents as well as ABT-737 (Deng et al., 2007). This role may be particularly important in cells in which Bim and Bid are not expressed at high levels.Some questions remain. It is not clear why several laboratories have consistently failed to observe an activating function for the BH3 domain of Puma in either mitochondrial or liposomal systems. It is possible that even if Puma can play an activating role, the efficiency of this function may vary considerably according to context and perhaps be much less in many contexts than that of Bid or Bim. In a full-length Puma protein, perhaps interactions of the Puma BH3 domain with Bax are enhanced. It is also possible that unknown posttranslational modifications of Puma or Bax, varying according to cellular context, significantly influence the ability of Puma to activate Bax. In any case, Gallenne et al. (2009) have strengthened the case for Puma as an activator so that its potential contribution to this function cannot be ignored. One must now wonder: what other activators might still be out there waiting to be discovered?  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号