首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Na+-coupled symporter BetP catalyzes the uptake of the compatible solute betaine in the soil bacterium Corynebacterium glutamicum. BetP also senses hyperosmotic stress and regulates its own activity in response to stress level. We determined a three-dimensional (3D) map (at 8 Å in-plane resolution) of a constitutively active mutant of BetP in a C. glutamicum membrane environment by electron cryomicroscopy of two-dimensional crystals. The map shows that the constitutively active mutant, which lacks the C-terminal domain involved in osmosensing, is trimeric like wild-type BetP. Recently, we reported the X-ray crystal structure of BetP at 3.35 Å, in which all three protomers displayed a substrate-occluded state. Rigid-body fitting of this trimeric structure to the 3D map identified the periplasmic and cytoplasmic sides of the membrane. Fitting of an X-ray monomer to the individual protomer maps allowed assignment of transmembrane helices and of the substrate pathway, and revealed differences in trimer architecture from the X-ray structure in the tilt angle of each protomer with respect to the membrane. The three protomer maps showed pronounced differences around the substrate pathway, suggesting three different conformations within the same trimer. Two of those protomer maps closely match those of the atomic structures of the outward-facing and inward-facing states of the hydantoin transporter Mhp1, suggesting that the BetP protomer conformations reflect key states of the transport cycle. Thus, the asymmetry in the two-dimensional maps may reflect cooperativity of conformational changes within the BetP trimer, which potentially increases the rate of glycine betaine uptake.  相似文献   

2.
Ott V  Koch J  Späte K  Morbach S  Krämer R 《Biochemistry》2008,47(46):12208-12218
The glycine betaine carrier BetP from Corynebacterium glutamicum responds to changes in external osmolality by regulation of its transport activity, and the C-terminal domain was previously identified to be involved in this process. Here we investigate the structural requirements of the C-terminal domain for osmoregulation as well as interacting domains that are relevant for intramolecular signal transduction in response to osmotic stress. For this purpose, we applied a proline scanning approach and amino acid replacements other than proline in selected positions. To analyze the impact of the surrounding membrane, BetP mutants were studied in both C. glutamicum and Escherichia coli, which strongly differ in their phospholipid composition. A region of approximately 25 amino acid residues within the C-terminal domain with a high propensity for alpha-helical structure was found to be essential in terms of its conformational properties for osmodependent regulation. The size of this region was larger in E. coli membranes than in the highly negatively charged C. glutamicum membranes. As a novel aspect of BetP regulation, interaction of the C-terminal domain with one of the cytoplasmic loops as well as with the N-terminal domain was shown to be involved in osmosensing and/or osmoregulation. These results support a functional model of BetP activation that involves the C-terminal domain shifting from interaction with the membrane to interaction with intramolecular domains in response to osmotic stress.  相似文献   

3.
The Na+-coupled betaine symporter BetP regulates transport activity in response to hyperosmotic stress only in its trimeric state, suggesting a regulatory crosstalk between individual protomers. BetP shares the overall fold of two inverted structurally related five-transmembrane (TM) helix repeats with the sequence-unrelated Na+-coupled symporters LeuT, vSGLT, and Mhp1, which are neither trimeric nor regulated in transport activity. Conformational changes characteristic for this transporter fold involve the two first helices of each repeat, which form a four-TM-helix bundle. Here, we identify two ionic networks in BetP located on both sides of the membrane that might be responsible for BetP's unique regulatory behavior by restricting the conformational flexibility of the four-TM-helix bundle. The cytoplasmic ionic interaction network links both first helices of each repeat in one protomer to the osmosensing C-terminal domain of the adjacent protomer. Moreover, the periplasmic ionic interaction network conformationally locks the four-TM-helix bundle between the same neighbor protomers. By a combination of site-directed mutagenesis, cross-linking, and betaine uptake measurements, we demonstrate how conformational changes in individual bundle helices are transduced to the entire bundle by specific inter-helical interactions. We suggest that one purpose of bundle networking is to assist crosstalk between protomers during transport regulation by specifically modulating the transition from outward-facing to inward-facing state.  相似文献   

4.
The Na+-coupled betaine symporter BetP senses changes in the membrane state and increasing levels of cytoplasmic K+ during hyperosmotic stress latter via its C-terminal domain and regulates transport activity according to both stimuli. This intriguing sensing and regulation behavior of BetP was intensively studied in the past. It was shown by several biochemical studies that activation and regulation depends crucially on the lipid composition of the surrounding membrane. In fact, BetP is active and regulated only when negatively charged lipids are present. Recent structural studies have revealed binding of phosphatidylglycerol lipids to functional important parts of BetP, suggesting a functional role of lipid interactions. However, a regulatory role of lipid interactions could only be speculated from the snapshot provided by the crystal structure. Here, we investigate the nature of lipid-protein interactions of BetP reconstituted in closely packed two-dimensional crystals of negatively charged lipids and probed at the molecular level with Fourier transform infrared (FTIR) spectroscopy. The FTIR data indicate that K+ binding weakens the interaction of BetP especially with the anionic lipid head groups. We suggest a regulation mechanism in which lipid-protein interactions, especially with the C-terminal domain and the functional important gating helices transmembrane helice 3 (TMH3) and TMH12, confine BetP to its down-regulated transport state. As BetP is also activated by changes in the physical state of the membrane, our results point toward a more general mechanism of how active transport can be modified by dynamic lipid-protein interactions.  相似文献   

5.
In order to circumvent deleterious effects of hypo- and hyperosmotic conditions in its environment, Corynebacterium glutamicum has developed a number of mechanisms to counteract osmotic stress. The first response to an osmotic upshift is the activation of uptake mechanisms for the compatible solutes betaine, proline, or ectoine, namely BetP, EctP, ProP, LcoP and PutP. BetP, the most important uptake system responds to osmotic stress by regulation at the level of both protein activity and gene expression. BetP was shown to harbor three different properties, i.e. catalytic activity (betaine transport), sensing of appropriate stimuli (osmosensing) and signal transduction to the catalytic part of the carrier protein which adapts its activity to the extent of osmotic stress (osmoregulation). BetP is comprised of 12 transmembrane segments and carries N- and C-terminal domains, which are involved in osmosensing and/or osmoregulation. Recent results on molecular properties of these domains indicate the significance of particular amino acids within the terminal 25 amino acids of the C-terminal domain of BetP for the process of osmosensing and osmoregulation.  相似文献   

6.
The homotrimeric, secondary active betaine carrier BetP from Corynebacterium glutamicum is a model system for stress-regulated transport in bacteria. Its activity responds to hyperosmotic stress and it harbors two different functions, transport catalysis (betaine uptake) and stimulus sensing, resp. activity regulation. Structural information from 2D and 3D crystals as well as functional analysis of monomerized BetP suggested the presence of conformational crosstalk between the individual protomers. To study whether the oligomeric state is functionally significant on a mechanistic level we generated heterooligomeric complexes of BetP in which single protomers within the trimer can be addressed. By testing dominant negative effects in a trimer of one active protomer combined with two protomers in which transport and regulation were abolished, we provide experimental evidence for the absence of functionally significant conformational crosstalk between the protomers on the level of both transport and regulation. This is supported by experiments using mutant forms of putative interacting signal donor and acceptor domains of individual BetP protomers. This result has important consequences for oligomeric transport proteins in general and BetP in particular.  相似文献   

7.
8.
Halorhodopsin (HR), the light-driven chloride pump in halobacteria, was digested with various proteolytic enzymes. As expected, carboxypeptidase A removed 14 amino acids from the C-terminal tail of detergent-solubilized HR, producing a fragment of 25.2 kd in size. Membrane-associated HR could be digested as well, but not in right-side-out sealed cell envelope vesicles. We conclude, therefore, that the orientation of HR in the cytoplasmic membrane is such that the C-terminal tail faces the cytoplasmic side. Tryptic digestion of detergent-solubilized HR resulted in the removal of the same C-terminal segment, but also in the production of two more cleavage products (molecular masses of 20.9 and 16.8 kd respectively). These cleavage sites were determined by amino acid sequencing of the newly produced N termini, and they turned out to be within interhelical loops in an earlier proposed structural model for HR. Incubation with chymotrypsin and thermolysin yielded different sites of cleavage, but also in regions which were proposed to be accessible on the surface of the protein. Since the results show that three of six proposed interhelical loop segments contain proteolytic digestion sites, they support the proposed structural model for HR.  相似文献   

9.
The betaine transporter BetP from Corynebacterium glutamicum is activated by hyperosmotic stress critically depending on the presence and integrity of its sensory C-terminal domain. The conformational properties of the trimeric BetP reconstituted in liposomes in the inactive state and during osmotic activation were investigated by site-directed spin labeling and electron paramagnetic resonance (EPR) spectroscopy. Comparison of intra- and intermolecular inter spin distance distributions obtained by double electron-electron resonance (DEER) EPR with the crystal structure of BetP by means of a rotamer library analysis suggest a rotation of BetP protomers within the trimer by about 15° as compared to the X-ray structure. Furthermore, we observed conformational changes upon activation of BetP, which are reflected in changes of the distances between positions 545 and 589 of different protomers in the trimer. Introduction of proline at positions 550 and 572, both leading to BetP variants with a permanent (low level) transport activity, caused changes of the DEER data similar to those observed for the activated and inactivated state, respectively. This indicates that not only displacements of the C-terminal domain in general but also concomitant interactions of its primary structure with surrounding protein domains and/or lipids are crucial for the activity regulation of BetP.  相似文献   

10.
Bacteria act to maintain their hydration when the osmotic pressure of their environment changes. When the external osmolality decreases (osmotic downshift), mechanosensitive channels are activated to release low molecular weight osmolytes (and hence water) from the cytoplasm. Upon osmotic upshift, osmoregulatory transporters are activated to import osmolytes (and hence water). Osmoregulatory channels and transporters sense and respond to osmotic stress via different mechanisms. Mechanosensitive channel MscL senses the increasing tension in the membrane and appears to gate when the lateral pressure in the acyl chain region of the lipids drops below a threshold value. Transporters OpuA, BetP and ProP are activated when increasing external osmolality causes threshold ionic concentrations in excess of about 0.05 M to be reached in the proteoliposome lumen. The threshold activation concentrations for the OpuA transporter are strongly dependent on the fraction of anionic lipids that surround the cytoplasmic face of the protein. The higher the fraction of anionic lipids, the higher the threshold ionic concentrations. A similar trend is observed for the BetP transporter. The lipid dependence of osmotic activation of OpuA and BetP suggests that osmotic signals are transmitted to the protein via interactions between charged osmosensor domains and the ionic headgroups of the lipids in the membrane. The charged, C-terminal domains of BetP and ProP are important for osmosensing. The C-terminal domain of ProP participates in homodimeric coiled-coil formation and it may interact with the membrane lipids and soluble protein ProQ. The activation of ProP by lumenal, macromolecular solutes at constant ionic strength indicates that its structure and activity may also respond to macromolecular crowding. This excluded volume effect may restrict the range over which the osmosensing domain can electrostatically interact. A simplified version of the dissociative double layer theory is used to explain the activation of the transporters by showing how changes in ion concentration could modulate interactions between charged osmosensor domains and charged lipid or protein surfaces. Importantly, the relatively high ionic concentrations at which osmosensors become activated at different surface charge densities compare well with the predicted dependence of 'critical' ion concentrations on surface charge density. The critical ion concentrations represent transitions in Maxwellian ionic distributions at which the surface potential reaches 25.7 mV for monovalent ions. The osmosensing mechanism is qualitatively described as an "ON/OFF switch" representing thermally relaxed and electrostatically locked protein conformations.  相似文献   

11.
Numerous plasma membrane-bound receptors are coupled to various effectors via a family of guanine nucleotide regulatory proteins (G proteins). Amino acid sequences of these receptors, deduced from cDNA and genomic clones, indicate the presence of seven transmembrane-spanning domains. Alignment of the available amino acid sequences of these G protein-linked receptors reveals striking homologies in regions predicted to lie near the cytoplasmic surface of the cell membrane. As these areas are likely those which interact with G proteins, we reasoned that systematic introduction of non-native sequence into these highly conserved regions of the human beta 2-adrenergic receptor would allow resolution of loci participating directly in receptor-G protein coupling. Based on this strategy, we constructed 19 mutant receptor species comprising substitutions and deletions of native sequence in the putative cytoplasmic domains of human beta 2-adrenergic receptor. By monitoring ligand binding characteristics and receptor-mediated stimulation of adenylyl cyclase, we have determined that the C-terminal portion of the third cytoplasmic loop and the N-terminal segment of the cytoplasmic tail appear to be critical for productive receptor-coupling to G proteins. In addition, we have implicated two other areas of the receptor that possibly play supportive roles in maintaining proper orientation of the G protein binding site. These comprise the second cytoplasmic loop and a conserved cysteine residue in the cytoplasmic tail.  相似文献   

12.
The transporter BetP in C. glutamicum is essential in maintaining bacterial cell viability during hyperosmotic stress and functions by co-transporting betaine and Na+ into bacterial cells. Hyperosmotic stress leads to increased intracellular K+ concentrations which in turn promotes betaine binding. While structural details of multiple end state conformations of BetP have provided high resolution snapshots, how K+ sensing by the C-terminal domain is allosterically relayed to the betaine binding site is not well understood. In this study, we describe conformational dynamics in solution of BetP using amide hydrogen/deuterium exchange mass spectrometry. These reveal how K+ alters conformation of the disordered C- and N-terminal domains to allosterically reconfigure transmembrane helices 3, 8, and 10 to enhance betaine interactions. A map of the betaine binding site, at near single amino acid resolution, reveals a critical extrahelical H-bond mediated by TM3 with betaine.  相似文献   

13.
14.
The secondary active, Na+ coupled glycine betaine carrier BetP from Corynebacterium glutamicum BetP was shown to harbor two different functions, transport catalysis (betaine uptake) and stimulus sensing, as well as activity regulation in response to hyperosmotic stress. By analysis in a reconstituted system, the rise in the cytoplasmic K+ concentration was identified as a primary stimulus for BetP activation. We have now studied regulation of BetP in vivo by independent variation of both the cytoplasmic K+ concentration and the transmembrane osmotic gradient. The rise in internal K+ was found to be necessary but not sufficient for BetP activation in cells. In addition hyperosmotic stress is required for full transport activity in cells, but not in proteoliposomes. This second stimulus of BetP could be mimicked in cells by the addition of the amphiphile tetracaine which hints to a relationship of this type of stimulus to a change in membrane properties. Determination of the molecular activity of BetP in both cells and proteoliposomes provided experimental evidence that in proteoliposomes BetP exists in a pre-stimulated condition and reaches full activity already in response to the K+ stimulus.  相似文献   

15.
The gram-positive soil bacterium Corynebacterium glutamicum harbors four osmoregulated secondary uptake systems for compatible solutes, BetP, EctP, LcoP, and ProP. When reconstituted in proteoliposomes, BetP was shown to sense hyperosmotic conditions via the increase in luminal K(+) and to respond by instant activation. To study further putative ways of stimulus perception and signal transduction, we have investigated the responses of EctP, LcoP, and BetP, all belonging to the betaine-carnitine-choline transporter family, to chill stress at the level of activity. When fully activated by hyperosmotic stress, they showed the expected increase of activity at increasing temperature. In the absence of osmotic stress, EctP was not activated by chill and LcoP to only a very low extent, whereas BetP was significantly stimulated at low temperature. BetP was maximally activated at 10 degrees C, reaching the same transport rate as that observed under hyperosmotic conditions at this temperature. A role of cytoplasmic K(+) in chill-dependent activation of BetP was ruled out, since (i) the cytoplasmic K(+) concentration did not change significantly at lower temperatures and (ii) a mutant BetP lacking the C-terminal 25 amino acids, which was previously shown to have lost the ability to be activated by luminal K(+), was fully competent in chill sensing. When heterologously expressed in Escherichia coli, BetP did not respond to chill stress. This may indicate that the membrane in which BetP is inserted plays an important role in chill activation and thus in signal transduction by BetP, different from the previously established K(+)-mediated process.  相似文献   

16.
17.
18.
The glycine betaine carrier BetP of Corynebacterium glutamicum was recently shown to function both as an osmosensor and as an osmoregulator in proteoliposomes by sensing changes in the internal K(+) concentration as a measure of hyperosmotic stress. In vivo analysis of mutants carrying deletions at the C-terminal extension of BetP indicated that this domain participates in osmostress-dependent activity regulation. To address the question, whether a putative K(+) sensor is located within the C-terminal domain, several mutants with truncations in this domain were purified and reconstituted in proteoliposomes of Escherichia coli phospholipids, since this in vitro system allowed variation of the K(+) concentration at the lumenal side. Truncation of 12 amino acids led to a partly deregulated BetP in terms of osmoregulation; however, K(+) sensitivity was not impaired in this mutant. The deletion of 25 amino acid residues at the C-terminal end of BetP led to both deregulation of the carrier activity, i.e., high activity independent of external osmolality, and loss of K(+)-dependent transport stimulation, indicating that this region of the C-terminal domain is necessary for K(+) sensing and/or K(+)-dependent carrier activation. Immunological and proteolysis analyses showed that BetP and its recombinant forms were reconstituted in a right-side-out orientation, i.e., the C-terminal domain faces the lumen of the proteoliposomes and is thus able to detect the K(+) signal at the inside. This is the first experimental demonstration of a direct connection between an osmotic stimulus, i.e., the change in internal K(+), and a putative sensor domain.  相似文献   

19.
Apolipoprotein (apo) A-I is an unusually flexible protein whose lipid-associated structure is poorly understood. Thermal denaturation, which is used to measure the global helix stability of high-density lipoprotein (HDL)-associated apoA-I, provides no information about local helix stability. Here we report the use of temperature jump molecular dynamics (MD) simulations to scan the per-residue helix stability of apoA-I in phospholipid-rich HDL. When three 20 ns MD simulations were performed at 500 K on each of two particles created by MD simulations at 310 K, bilayers remained intact but expanded by 40%, and total apoA-I helicity decreased from 95% to 72%. Of significance, the conformations of the overlapping N- and C-terminal domains of apoA-I in the particles were unusually mobile, exposing hydrocarbon regions of the phospholipid to solvent; a lack of buried interhelical salt bridges in the terminal domains correlated with increased mobility. Nondenaturing gradient gels show that 40% expansion of the phospholipid surface of 100:2 particles by addition of palmitoyloleoylphosphatidylcholine exceeds the threshold of particle stability. As a unifying hypothesis, we propose that the terminal domains of apoA-I are phospholipid concentration-sensitive molecular triggers for fusion/remodeling of HDL particles. Since HDL remodeling is necessary for cholesterol transport, our model for remodeling has substantial biomedical implications.  相似文献   

20.
Phospholamban is a 52-residue integral membrane protein that regulates the activity of the sarcoplasmic reticulum calcium pump in cardiac muscle. Its inhibitory action is relieved when phospholamban is phosphorylated at Ser16 by cAMP-dependent protein kinase. To computationally explore all possible conformations of the phosphorylated form, and thereby to understand the structural effects of phosphorylation, replica-exchange molecular dynamics (REMD) was applied to the cytoplasmic domain that includes Ser16. The simulations showed that (i) without phosphorylation, the region from Lys3 to Ser16 takes all alpha-helical conformations; (ii) when phosphorylated, the alpha-helix is partially unwound in the C-terminal part (from Ser10 to Ala15) resulting in less extended conformations; (iii) the phosphate at Ser16 forms salt bridges with Arg9, Arg13, and/or Arg14; and (iv) the salt bridges with Arg13 and Arg14 distort the alpha-helix and induce unwinding of the C-terminal part. We then applied conventional all-atom molecular dynamics simulations to the full-length phospholamban in the phospholipid bilayer. The results were consistent with those obtained with REMD simulations, suggesting that the transmembrane part of phospholamban and the lipid bilayer itself have only minor effects on the conformational changes in the cytoplasmic domain. The distortions caused by the salt bridges involving the phosphate at Ser16 readily explain the relief of the inhibitory effect of phospholamban by phosphorylation, as they will substantially reduce the population of all helical conformations, which are presumably required for the binding to the calcium pump. This will also be the mechanism for releasing the phosphorylated phospholamban from kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号