首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
The Syk tyrosine kinase family plays an essential role in immunoreceptor tyrosine-based activation motif (ITAM) signaling. The binding of Syk to tyrosine-phosphorylated ITAM subunits of immunoreceptors, such as FcϵRI on mast cells, results in a conformational change, with an increase of enzymatic activity of Syk. This conformational change exposes the COOH-terminal tail of Syk, which has three conserved Tyr residues (Tyr-623, Tyr-624, and Tyr-625 of rat Syk). To understand the role of these residues in signaling, wild-type and mutant Syk with these three Tyr mutated to Phe was expressed in Syk-deficient mast cells. There was decreased FcϵRI-induced degranulation, nuclear factor for T cell activation and NFκB activation with the mutated Syk together with reduced phosphorylation of MAP kinases p38 and p42/44 ERK. In non-stimulated cells, the mutated Syk was more tyrosine phosphorylated predominantly as a result of autophosphorylation. In vitro, there was reduced binding of mutated Syk to phosphorylated ITAM due to this increased phosphorylation. This mutated Syk from non-stimulated cells had significantly reduced kinase activity toward an exogenous substrate, whereas its autophosphorylation capacity was not affected. However, the kinase activity and the autophosphorylation capacity of this mutated Syk were dramatically decreased when the protein was dephosphorylated before the in vitro kinase reaction. Furthermore, mutation of these tyrosines in the COOH-terminal region of Syk transforms it to an enzyme, similar to its homolog ZAP-70, which depends on other tyrosine kinases for optimal activation. In testing Syk mutated singly at each one of the tyrosines, Tyr-624 but especially Tyr-625 had the major role in these reactions. Therefore, these results indicate that these tyrosines in the tail region play a critical role in regulating the kinase activity and function of Syk.  相似文献   

2.
Syk is an important protein-tyrosine kinase in immunoreceptor signaling. FcepsilonRI aggregation in mast cells induces tyrosine phosphorylation and increased enzymatic activity of Syk. The two adjacent tyrosines in the Syk activation loop are thought to be important for the propagation of FcepsilonRI signaling. To evaluate the phosphorylation of these tyrosines in vivo and further understand the relationship of Syk tyrosine phosphorylation with its function, an antibody was developed specific for phosphorylated tyrosines in the activation loop of Syk. FcepsilonRI aggregation on mast cells induced the phosphorylation of both tyrosine residues of the activation loop. The kinase activity of Syk played the major role in phosphorylating its activation loop tyrosines both in vivo and in vitro. In FcepsilonRI-stimulated mast cells, the total Syk tyrosine phosphorylation paralleled the phosphorylation of its activation loop tyrosines and downstream propagation of signals for histamine release. In contrast, the cell surface binding of anti-ganglioside monoclonal antibody AA4 induced only strong general tyrosine phosphorylation of Syk and minimal histamine release and weak phosphorylation of activation loop tyrosines. These results demonstrate that phosphorylation of the activation loop tyrosines is important for mediating receptor signaling and is a better marker of Syk function than is total Syk tyrosine phosphorylation.  相似文献   

3.
The linker for activation of T-cells (LAT) is a palmitoylated integral membrane adaptor protein that resides in lipid membrane rafts and contains nine consensus putative tyrosine phosphorylation sites, several of which have been shown to serve as SH2 binding sites. Upon T-cell antigen receptor (TCR/CD3) engagement, LAT is phosphorylated by protein tyrosine kinases (PTK) and binds to the adaptors Gads and Grb2, as well as to phospholipase Cgamma1 (PLCgamma1), thereby facilitating the recruitment of key signal transduction components to drive T-cell activation. The LAT tyrosine residues Y(132), Y(171), Y(191), and Y(226) have been shown previously to be critical for binding to Gads, Grb2, and PLCgamma1. In this report, we show by generation of LAT truncation mutants that the Syk-family kinase ZAP-70 and the Tec-family kinase Itk favor phosphorylation of carboxy-terminal tyrosines in LAT. By direct binding studies using purified recombinant proteins or phosphopeptides and by mutagenesis of individual tyrosines in LAT to phenylalanine residues, we demonstrate that Y(171) and potentially Y(226) are docking sites for the Vav guanine nucleotide exchange factor. Further, overexpression of a kinase-deficient mutant of Itk in T-cells reduced both the tyrosine phosphorylation of endogenous LAT and the recruitment of Vav to LAT complexes. These data indicate that kinases from distinct PTK families are likely responsible for LAT phosphorylation following T-cell activation and that Itk kinase activity promotes recruitment of Vav to LAT.  相似文献   

4.
Apoptosis-associated tyrosine kinase 1 (AATYK1), a novel serine/threonine kinase that is highly expressed in the brain, is involved in neurite extension and apoptosis of cerebellar granule neurons; however, its precise function remains unknown. In this study, we investigated the interaction of AATYK1A with Cyclin-dependent kinase 5 (Cdk5)/p35, a proline-directed protein kinase that is predominantly expressed in neurons. AATYK1A bound to the p35 activation subunit of Cdk5 in cultured cells and in mouse brains and colocalized with p35 on endosomes in COS-7 cells. AATYK1A was phosphorylated at Ser34 by Cdk5/p35 in vitro, in cultured neurons and in mouse brain. In PC12D cells, Ser34 phosphorylation increased after treatment with nerve growth factor and phosphorylated AATYK1A accumulated in growth cones of PC12D cells. Ser34 phosphorylation suppressed the tyrosine phosphorylation of AATYK1A by Src family kinases. These results suggest a possibility that AATYK1A plays a role in early to recycling endosomes and its function is regulated by phosphorylation with Cdk5 or Src-family kinases.  相似文献   

5.
Focal adhesion kinase (FAK) is a nonreceptor protein tyrosine kinase involved in integrin-mediated control of cell behavior. Following cell adhesion to components of the extracellular matrix, FAK becomes phosphorylated at multiple sites, including tyrosines 397, 576, and 577. Tyr-397 is an autophosphorylation site that promotes interaction with c-Src or Fyn. Tyr-576 and Tyr-577 lie in the putative activation loop of the kinase domain, and FAK catalytic activity may be elevated through phosphorylation of these residues by associated Src family kinase. Recent studies have implicated FAK as a positive regulator of cell spreading and migration. To further study the mechanism of adhesion-induced FAK activation and the possible role and signaling requirements for FAK in cell spreading and migration, we utilized the tetracycline repression system to achieve inducible expression of either wild-type FAK or phosphorylation site mutants in fibroblasts derived from FAK-null mouse embryos. Using these Tet-FAK cells, we demonstrated that both the FAK autophosphorylation and activation loop sites are critical for maximum adhesion-induced FAK activation and FAK-enhanced cell spreading and migration responses. Negative effects on cell spreading and migration, as well as decreased phosphorylation of the substrate p130(Cas), were observed upon induced expression of the FAK autophosphorylation site mutant. These negative effects appear to result from an inhibition of integrin-mediated signaling by the FAK-related kinase Pyk2/CAKbeta/RAFTK/CadTK.  相似文献   

6.
Integrin-mediated cell adhesion stimulates a cascade of signaling pathways that control cell proliferation, migration, and survival, mostly through tyrosine phosphorylation of signaling molecules. p130Cas, originally identified as a major substrate of v-Src, is a scaffold molecule that interacts with several proteins and mediates multiple cellular events after cell adhesion and mitogen treatment. Here, we describe a novel p130Cas-associated protein named p140Cap (Cas-associated protein) as a new tyrosine phosphorylated molecule involved in integrin- and epidermal growth factor (EGF)-dependent signaling. By affinity chromatography of human ECV304 cell extracts on a MBP-p130Cas column followed by mass spectrometry matrix-assisted laser desorption ionization/time of flight analysis, we identified p140Cap as a protein migrating at 140 kDa. We detected its expression in human, mouse, and rat cells and in different mouse tissues. Endogenous and transfected p140Cap proteins coimmunoprecipitate with p130Cas in ECV304 and in human embryonic kidney 293 cells and associate with p130Cas through their carboxy-terminal region. By immunofluorescence analysis, we demonstrated that in ECV304 cells plated on fibronectin, the endogenous p140Cap colocalizes with p130Cas in the perinuclear region as well as in lamellipodia. In addition p140Cap codistributes with cortical actin and actin stress fibers but not with focal adhesions. We also show that p140Cap is tyrosine phosphorylated within 15 min of cell adhesion to integrin ligands. p140Cap tyrosine phosphorylation is also induced in response to EGF through an EGF receptor dependent-mechanism. Interestingly expression of p140Cap in NIH3T3 and in ECV304 cells delays the onset of cell spreading in the early phases of cell adhesion to fibronectin. Therefore, p140Cap is a novel protein associated with p130Cas and actin cytoskeletal structures. Its tyrosine phosphorylation by integrin-mediated adhesion and EGF stimulation and its involvement in cell spreading on matrix proteins suggest that p140Cap plays a role in controlling actin cytoskeleton organization in response to adhesive and growth factor signaling.  相似文献   

7.
R A Feldman  T Hanafusa  H Hanafusa 《Cell》1980,22(3):757-765
Fujinami sarcoma virus (FSV), a newly characterized avian sarcoma virus, produces a protein of 140,000 daltons (p140) in infected cells. p140 is the product of a fused gene consisting of a part of the gag gene of avian retrovirus and FSV-unique sequences which are not related to the src sequences of Rous sarcoma virus. In vivo, p140 was found to be phosphorylated at both serine and tyrosine residues. Immunoprecipitates of p140 with antiserum against gag gene-coded proteins had a cyclic nucleotide-independent protein kinase activity which phosphorylated p140 itself, rabbit IgG of the immune complex and alpha-casein, an externally added soluble protein substrate. The phosphorylation was specific to tyrosine of the substrate proteins. p140 was phosphorylated in vitro at the same two tyrosine residues that were phosphorylated in vivo. The phosphate transferred to tyrosine residues of p140 forms a stable bond: it does not turn over during the kinase reaction, and the 32P-phosphate of p140 labeled in vitro or in vivo is not transferred to alpha-casein. FSV-p140 differs from p60src, the transforming protein of Rous sarcoma virus, in its marked preference of Mn2+ to Mg2+ ions, and in its inability to use GTP instead of ATP as the donor of gamma-phosphate.  相似文献   

8.
The translocated actin recruiting phosphoprotein (Tarp) is injected into the cytosol shortly after Chlamydia trachomatis attachment to a target cell and subsequently phosphorylated by an unidentified tyrosine kinase. A role for Tarp phosphorylation in bacterial entry is unknown. In this study, recombinant C. trachomatis Tarp was employed to identify the host cell kinase(s) required for phosphorylation. Each tyrosine rich repeat of L2 Tarp harbors a sequence similar to a Src and Abl kinase consensus target. Furthermore, purified p60-src, Yes, Fyn, and Abl kinases were able to phosphorylate Tarp. Mutagenesis of potential tyrosines within a single tyrosine rich repeat peptide indicated that both Src and Abl kinases phosphorylate the same residues suggesting that C. trachomatis Tarp may serve as a substrate for multiple host cell kinases. Surprisingly, chemical inhibition of Src and Abl kinases prevented Tarp phosphorylation in culture and had no measurable effect on bacterial entry into host cells.  相似文献   

9.
The ubiquitously expressed family of α-actinins bridges actin filaments to stabilize adhesions, a process disrupted during growth factor-induced migration of cells. During the dissolution of the actin cytoskeleton, actinins are phosphorylated on tyrosines, although the consequences of this are unknown. We expressed the two isoforms of human α-actinin in murine fibroblasts that express human epidermal growth factor receptor (EGFR) and found that both α-actinin 1 (ACTN1) and α-actinin 4 (ACTN4) were phosphorylated on tyrosine residues after stimulation with EGF, although ACTN4 was phosphorylated to the greater extent. This required the activation of Src protein-tyrosine kinase and p38-MAPK (and phosphoinositide trisphosphate kinase in part) but not MEK/ERK or Rac1, as determined by inhibitors. The EGF-induced phosphorylation sites of ACTN4 were mapped to tyrosine 4, the major site, and tyrosine 31, the minor one. Truncation mutagenesis showed that the C-terminal domains of ACTN4 (amino acids 300–911), which cross-link the actin binding head domains, act as an inhibitory domain for both actin binding and EGF-mediated phosphorylation. These two properties were mutually exclusive; removal of the C terminus enhanced actin binding of ACTN4 mutants while limiting EGF-induced phosphorylation, and conversely EGF-stimulated phosphorylation of ACTN4 decreased its affinity to actin. Interestingly, a phosphomimetic of tyrosine 265 (which can be found in carcinoma cells and lies near the K255E mutation that causes focal segmental glomerulosclerosis) demonstrated increased actin binding activity and susceptibility of ACTN4 to calpain-mediated cleavage; this variant also retarded cell spreading. Remarkably, either treatment of cells with low concentrations of latrunculin A, which has been shown to depolymerize F-actin, or the deletion of the actin binding domain (100–252 amino acids) of ACTN4Y265E restored EGF-induced phosphorylation. An F-actin binding assay in vitro showed that Y4E/Y31E, a mimetic of diphosphorylated ACTN4, bound F-actin slightly compared with wild type (WT). Importantly, the EGF-mediated phosphorylation of ACTN4 at tyrosine 4 and 31 significantly inhibited multinucleation of proliferating NR6WT fibroblasts that overexpress ACTN4. These results suggest that EGF regulates the actin binding activity of ACTN4 by inducing tyrosyl-directed phosphorylation.  相似文献   

10.
The mechanism underlying the important role of protein kinase Cdelta (PKCdelta) in the apoptotic effect of etoposide in glioma cells is incompletely understood. Here, we examined the role of PKCdelta in the activation of Erk1/2 by etoposide. We found that etoposide induced persistent activation of Erk1/2 and nuclear translocation of phospho-Erk1/2. MEK1 inhibitors decreased the apoptotic effect of etoposide, whereas inhibitors of p38 and JNK did not. The activation of Erk1/2 by etoposide was downstream of PKCdelta since the phosphorylation of Erk1/2 was inhibited by a PKCdelta-KD mutant and PKCdelta small interfering RNA. We recently reported that phosphorylation of PKCdelta on tyrosines 64 and 187 was essential for the apoptotic effect of etoposide. Using PKCdeltatyrosine mutants, we found that the phosphorylation of PKCdeltaon these tyrosine residues, but not on tyrosine 155, was also essential for the activation of Erk1/2 by etoposide. In contrast, nuclear translocation of PKCdelta was independent of its tyrosine phosphorylation and not necessary for the phosphorylation of Erk1/2. Etoposide induced down-regulation of kinase phosphatase-1 (MKP-1), which correlated with persistent phosphorylation of Erk1/2 and was dependent on the tyrosine phosphorylation of PKCdelta. Moreover, silencing of MKP-1 increased the phosphorylation of Erk1/2 and the apoptotic effect of etoposide. Etoposide induced polyubiquitylation and degradation of MKP-1 that was dependent on PKCdelta and on its tyrosine phosphorylation. These results indicate that distinct phosphorylation of PKCdeltaon tyrosines 64 and 187 specifically activates the Erk1/2 pathway by the down-regulation of MKP-1, resulting in the persistent phosphorylation of Erk1/2 and cell apoptosis.  相似文献   

11.
We have previously reported a direct in vivo interaction between the activated insulin receptor and protein-tyrosine phosphatase-1B (PTP1B), which leads to an increase in PTP1B tyrosine phosphorylation. In order to determine if PTP1B is a substrate for the insulin receptor tyrosine kinase, the phosphorylation of the Cys 215 Ser, catalytically inactive mutant PTP1B (CS-PTP1B) was measured in the presence of partially purified and activated insulin receptor. In vitro, the insulin receptor tyrosine kinase catalyzed the tyrosine phosphorylation of PTP1B. 53% of the total cellular PTP1B became tyrosine phosphorylated in response to insulin in vivo. Tyrosine phosphorylation of PTP1B by the insulin receptor was absolutely dependent upon insulin-stimulated receptor autophosphorylation and required an intact kinase domain, containing insulin receptor tyrosines 1146, 1150 and 1151. Tyrosine phosphorylation of wild type PTP1B by the insulin receptor kinase increased phosphatase activity of the protein. Intermolecular transdephosphorylation was demonstrated both in vitro and in vivo, by dephosphorylation of phosphorylated CS-PTP1B by the active wild type enzyme either in a cell-free system or via expression of the wild type PTP1B into Hirc-M cell line, which constitutively overexpress the human insulin receptor and CS-PTP1B. These results suggest that PTP1B is a target protein for the insulin receptor tyrosine kinase and PTP1B can regulate its own phosphatase activity by maintaining the balance between its phosphorylated (the active form) and dephosphorylated (the inactive form) state.  相似文献   

12.
The breast tumor kinase (BRK) is a growth promoting non-receptor tyrosine kinase overexpressed in the majority of human breast tumors. BRK is known to potentiate the epidermal growth factor (EGF) response in these cells. Although BRK is known to phosphorylate the RNA-binding protein Sam68, the specific tyrosines phosphorylated and the exact role of this phosphorylation remains unknown. Herein, we have generated Sam68 phospho-specific antibodies against C-terminal phosphorylated tyrosine residues within the Sam68 nuclear localization signal. We show that BRK phosphorylates Sam68 on all three tyrosines in the nuclear localization signal. By indirect immunofluorescence we observed that BRK and EGF treatment not only phosphorylates Sam68 but also induces its relocalization. Tyrosine 440 was identified as a principal modulator of Sam68 localization and this site was phosphorylated in response to EGF treatment in human breast tumor cell lines. Moreover, this phosphorylation event was inhibited by BRK small interfering RNA treatment, consistent with Sam68 being a physiological substrate of BRK downstream of the EGF receptor in breast cancer cells. Finally, we observed that Sam68 suppressed BRK-induced cell proliferation, suggesting that Sam68 does indeed contain anti-proliferative properties that may be neutralized in breast cancer cells by phosphorylation.  相似文献   

13.
Focal adhesion kinase (FAK) mediates signal transduction in response to multiple extracellular inputs, via tyrosine phosphorylation at specific residues. We recently reported that FAK Tyr-407 phosphorylation negatively regulates the enzymatic and biological activities of FAK, unlike phosphorylation of other tyrosine residues. In this study, we further investigated the effect of FAK Tyr-407 phosphorylation on cell transformation. We found that FAK Tyr-407 phosphorylation was lower in H-Ras transformed NIH3T3 and K-Ras transformed rat-2 fibroblasts than in the respective untransformed control cells. Consistently, FAK Tyr-407 phosphorylation was decreased in parallel with cell transformation in H-Ras-inducible NIH3T3 cells and increased during trichostatin A-induced detransformation of both K-Ras transformed rat-2 fibroblasts and H-Ras transformed NIH3T3 cells. In addition, overexpression of a phosphorylation-mimicking FAK Tyr-407 mutant inhibited morphological transformation of H-Ras-inducible NIH3T3 cells and inhibited invasion activity and anchorage-independent growth of H-Ras-transformed NIH3T3 cells. Taken together, these data strongly suggest that FAK Tyr-407 phosphorylation negatively regulates transformation of fibroblasts.  相似文献   

14.
The linker region of Syk and ZAP70 tyrosine kinases plays an important role in regulating their function. There are three conserved tyrosines in this linker region; Tyr317 of Syk and its equivalent residue in ZAP70 were previously shown to negatively regulate the function of Syk and ZAP70. Here we studied the roles of the other two tyrosines, Tyr342 and Tyr346 of Syk, in Fc epsilon RI-mediated signaling. Antigen stimulation resulted in Tyr342 phosphorylation in mast cells. Syk with Y342F mutation failed to reconstitute Fc epsilon RI-initiated histamine release. In the Syk Y342F-expressing cells there was dramatically impaired receptor-induced phosphorylation of multiple signaling molecules, including LAT, SLP-76, phospholipase C-gamma2, but not Vav. Compared to wild-type Syk, Y342F Syk had decreased binding to phosphorylated immunoreceptor tyrosine-based activation motifs and reduced kinase activity. Surprisingly, mutation of Tyr346 had much less effect on Fc epsilon RI-dependent mast cell degranulation. An anti-Syk-phospho-346 tyrosine antibody indicated that antigen stimulation induced only a very minor increase in the phosphorylation of this tyrosine. Therefore, Tyr342, but not Tyr346, is critical for regulating Syk in mast cells and the function of these tyrosines in immune receptor signaling appears to be different from what has been previously reported for the equivalent residues of ZAP70.  相似文献   

15.
To elucidate the rapid events in signal transduction of human granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin 3 (IL 3), we examined phosphorylation of proteins on both serine and tyrosine residues in a cytokine-stimulated human myeloid cell line. We found increases in tyrosine phosphorylation within 30 s of stimulation with GM-CSF or IL 3, with peak responses occurring within 2 min. IL 3 and GM-CSF also induced serine phosphorylation, though 10 min of stimulation was required for maximum phosphate incorporation. Interestingly, both IL 3 and GM-CSF stimulated phosphate incorporation in identical substrates, a 68 kDa seryl-phosphoprotein (p68) and a 140 kDa tyrosyl-phosphoprotein (p140). Treatment of AML 193 cells with phorbol myristate acetate resulted in serine phosphorylation of p68; however, p140 was not phosphorylated on tyrosine. Depletion of protein kinase C isoenzymes with high concentrations of phorbol myristate acetate resulted in p68 phosphorylation, which was not further increased by IL 3 or GM-CSF. In contrast, cytokine-induced phosphorylation on tyrosine of p140 was observed after protein kinase C depletion. These data demonstrate the co-ordinate yet independent serine and tyrosine phosphorylation in IL 3- and GM-CSF-treated human myeloid cells, and thus suggest a common set of protein kinases stimulated by each separate ligand.  相似文献   

16.
Fujinami sarcoma virus (FSV) and PRCII are avian sarcoma viruses which share cellularly derived v-fps transforming sequences. The FSV P140gag-fps gene product is phosphorylated on three distinct tyrosine residues in transformed cells or in an in vitro kinase reaction. Three variants of FSV, and the related virus PRCII which lacks about half of the v-fps sequence found in FSV, encode gene products which are all phosphorylated at tyrosine residues contained within identical tryptic peptides. This indicates a stringent conservation of amino acid sequence at the tyrosine phosphorylation sites which presumably reflects the importance of these sites for the biologic activity of the transforming proteins. Under suitable conditions the proteolytic enzymes p15 and V8 protease each introduce one cut into FSV P140, p15 in the N-terminal gag-encoded region and V8 protease in the middle of the fps-encoded region. Using these enzymes we have mapped the major site of tyrosine phosphorylation to the C-terminal end of the fps region of FSV P140gag-fps. A second tyrosine phosphorylation site is found in the fps region of FSV P140 isolated from transformed cells, and a minor tyrosine phosphorylation site is found in the N-terminal gag-encoded region. Our results suggest that the C-terminal fps-encoded region is required for expression of the tyrosine-specific protein kinase activity.  相似文献   

17.
Zhai L  Kumar N  Panebra A  Zhao P  Parrill AL  Khurana S 《Biochemistry》2002,41(39):11750-11760
We have previously shown that villin, an epithelial cell actin-binding protein, is tyrosine phosphorylated both in vitro and in vivo and that villin's actin-modifying functions are regulated by phosphorylation. Here as a first step toward understanding the role of villin tyrosine phosphorylation, we sought to identify the major phosphorylation site(s) in human villin and study its role in actin filament assembly. We generated a series of carboxyl-terminal truncation mutants of villin and cloned them in the prokaryotic expression vector pGEX-2T. Full-length villin and the truncation mutants were expressed in TKX1 cells, which carry an inducible tyrosine kinase gene. Using this approach, we identified a region in the amino-terminal actin-severing domain of villin as the site of phosphorylation (amino acids 1-261). Five phosphorylation sites were identified by direct mutation of candidate tyrosines (Y) to phenylalanine (F), namely, Y46, -60, -64, -81, and -256. Changing all of these sites to phenylalanine resulted in a villin mutant that neither was phosphorylated in TKX1 cells nor was a substrate for c-src kinase in an in vitro kinase assay. Using a pyrene actin-based fluorescence assay, we mapped the various phosphorylated tyrosine residues with the actin-nucleating and -depolymerizing functions of villin. Phosphorylation of any one of the identified sites inhibited the actin-nucleating function of villin, whereas phosphorylation at Y46 and/or Y60 increased the actin-severing activity of villin. Since there is significant homology between the amino-terminal end of villin and other actin-severing proteins, the results provide a structural basis for the actin-severing mechanism and help understand the relationship of phosphorylation with this function.  相似文献   

18.
To investigate the mechanism of tyrosine phosphorylation by the insulin receptor protein-tyrosine kinase, we utilized a synthetic dodecapeptide substrate (RRDIYETDYYRK; amino acids 1155-1165) containing the three major insulin receptor autophosphorylation sites. (1) We show that all three tyrosines on this peptide are rapidly phosphorylated and that phosphorylation is probably initiated at tyrosine 9. This peptide thus serves as a useful tool to study the mechanism of transphosphorylation by the insulin receptor. (2) A proteolytic activity was detected in purified receptor preparations that removed basic residues from the peptide and prevented it binding to phosphocellulose paper. Such activity could pose a serious problem when using peptide substrates to assay for protein kinases in other acellular systems.  相似文献   

19.
The phosphorylation sites of the P140gag-fps gene product of Fujinami avian sarcoma virus have been identified and localized to different regions of this transforming protein. FSV P140gag-fps isolated from transformed cells is phosphorylated on at least three distinct tyrosine residues and one serine residue, in addition to minor phosphorylation sites shared with Pr76gag. Partial proteolysis with virion protease p15 or with Staphylococcus aureus V8 protease has been used to generate defined peptide fragments of P140gag-fps and thus to map its phosphorylation sites. The amino-terminal gag-encoded region of P140gag-fps contains a phosphotyrosine residue in addition to normal gag phosphorylation sites. The two major phosphotyrosine residues and the major phosphorserine residue are located in the carboxy-terminal portion of the fps-encoded region of P140gag-fps. P140gag-fps radiolabeled in vitro in an immune complex kinase reaction is phosphorylated at only one of the two C-terminal tyrosine residues phosphorylated in vivo and weakly phosphorylated at the gag-encoded tyrosine and at a tyrosine site not detectably phosphorylated in vivo. Thus, the in vitro tyrosine phosphorylation of P140gag-fps is distinct from that seen in the transformed cell. A comparative tryptic phosphopeptide analysis of the gag-fps proteins of three Fujinami avian sarcoma virus variants showed that the phosphotyrosine-containing peptides are invariant, and this high degree of sequence conservation suggests that these sites are functionally important or lie within important regions. The P105gag-fps transforming protein of PRCII avian sarcoma virus lacks one of the C-terminal phosphotyrosine sites found in Fujinami avian sarcoma virus P140gag-fps. Partial trypsin cleavage of FSV P140gag-fps immunoprecipitated with anti-gag serum releases C-terminal fragments of 45K and 29K from the immune complex that retain an associated tyrosine-specific protein kinase activity. This observation, and the localization of the major P140gag-fps phosphorylation sites to the C-terminal fps region, indicate that the kinase domain of P140gag-fps is located at its C terminus. The phosphorylation of P140gag-fps itself is complex, suggesting that it may itself interact with several protein kinases in the transformed cell.  相似文献   

20.
Phosphorylation of Hrs downstream of the epidermal growth factor receptor.   总被引:2,自引:0,他引:2  
The hepatocyte growth factor-regulated tyrosine kinase substrate Hrs is an early endosomal protein that is thought to play a regulatory role in the trafficking of growth factor/receptor complexes through early endosomes. Stimulation of cells with epidermal growth factor (EGF) rapidly leads to phosphorylation of Hrs, raising the question whether the receptor tyrosine kinase phosphorylates Hrs directly. Here, we present evidence that a downstream kinase, rather than the active receptor kinase is responsible. We show that the nonreceptor tyrosine kinase Src is able to phosphorylate Hrs in vitro and in vivo, but that Hrs is nevertheless phosphorylated in Src-, Yes- and Fyn-negative cells. Moreover, we show that only 10-20% of Hrs is phosphorylated following EGF stimulation, and that phosphorylation occurs at multiple tyrosines located in different parts of Hrs. These results suggest that Hrs is a substrate for several kinases downstream of the EGF receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号