首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 366 毫秒
1.
Amyloid fibrils, crystal-like fibrillar aggregates of proteins associated with various amyloidoses, have the potential to propagate via a prion-like mechanism. Among known methodologies to dissolve preformed amyloid fibrils, acid treatment has been used with the expectation that the acids will degrade amyloid fibrils similar to acid inactivation of protein functions. Contrary to our expectation, treatment with strong acids, such as HCl or H2SO4, of β2-microglobulin (β2m) or insulin actually promoted amyloid fibril formation, proportionally to the concentration of acid used. A similar promotion was observed at pH 2.0 upon the addition of salts, such as NaCl or Na2SO4. Although trichloroacetic acid, another strong acid, promoted amyloid fibril formation of β2m, formic acid, a weak acid, did not, suggesting the dominant role of anions in promoting fibril formation of this protein. Comparison of the effects of acids and salts confirmed the critical role of anions, indicating that strong acids likely induce amyloid fibril formation via an anion-binding mechanism. The results suggest that although the addition of strong acids decreases pH, it is not useful for degrading amyloid fibrils, but rather induces or stabilizes amyloid fibrils via an anion-binding mechanism.  相似文献   

2.
The short peptide fragment NFGAIL (IAPf) is a well-known amyloidogenic peptide (22–27), derived from human islet amyloid polypeptide(hIAPP), whose fibrillar structure is often used to better understand the wild-type hIAPP amyloid fibrils, associated with type II diabetes. Despite an extensive study, the fibrillar structure of IAPf at the amino acid residue level is still unclear. Herein, the vibrational circular dichroism(VCD) spectroscopic technique coupled with isotope labelling strategy has been used to study the site-specific local structure of IAPf amyloid fibrils. Two 13C labeled IAPfs were designed and used along with unlabelled IAPf to achieve this. The 13C labelled (on -C=O) glycine(IAPf-G) and phenylalanine (IAPf-F) residues were introduced into the IAPf sequence separately by replacing natural glycine (residue 24) and phenylalanine (residue 23), respectively. VCD spectral analysis on IAPf-G suggests that IAPf fibrils adopt parallel β-sheet conformation with glycine residues are part of β-sheet and in-register. Unlike IAPf-G, VCD analysis on IAPf-F reveals that phenylalanine residues exist in the turn/hairpin conformation rather than β-sheet region. Both VCD results thus suggest that IAPf amyloid fibril consists of a mixture of β-sheet as a major conformation involving GAIL and turn/hairpin as a minor conformation involving NF rather than an idealized β-sheet involving all the amino acids. While previous studies speculated that the full NFGAIL sequence could participate in the β-sheet formation, the present site-specific structural analysis of IAPf amyloid fibrils at residue level using isotope-edited VCD has gained significant attention. Such residue level information has important implications for understanding the role of NFGAIL sequence in the amyloid fibrillation of hIAPP.  相似文献   

3.
Structure of amyloid β (Aβ) fibrils is rigidly stacked by β-sheet conformation, and the fibril state of Aβ is profoundly related to pathogenesis of Alzheimer’s disease (AD). Although mid-infrared light has been used for various biological researches, it has not yet been known whether the infrared light changes the fibril structure of Aβ. In this study, we tested the effect of irradiation of intense mid-infrared light from a free-electron laser (FEL) targeting the amide bond on the reduction of β-sheet content in Aβ fibrils. The FEL reduced entire contents of proteins exhibiting β-sheet structure in brain sections from AD model mice, as shown by synchrotron-radiation infrared microscopy analysis. Since Aβ1-42 fibril absorbed a considerable FEL energy at amide I band (6.17 μm), we irradiated the FEL at 6.17 μm and found that β-sheet content of naked Aβ1-42 fibril was decreased using infrared microscopic analysis. Consistent with the decrease in the β-sheet content, Congo-red signal is decreased after the irradiation to Aβ1-42 fibril. Furthermore, electron microscopy analysis revealed that morphologies of the fibril and proto-fibril were largely changed after the irradiation. Thus, mid-infrared light dissociates β-sheet structure of Aβ fibrils, which justifies exploration of possible laser-based therapy for AD.  相似文献   

4.
Many proteins form amyloid-like fibrils in vitro under partially or highly unfolding conditions. Recently, we showed that the residual structure in highly unfolded state is closely related to amyloid fibril formation in hen lysozyme. Thus, to better understand the role of the residual structure on amyloid fibril formation, we focused on AL amyloidosis, which results from the extracellular deposition of monoclonal immunoglobulin light-chain variable domains (VLs) as insoluble fibrils. We examined the relationship between the residual structure and amyloid fibril formation on three λ6 recombinant VL (rVλ6) proteins, wild type, Jto, and Wil. Although rVλ6 proteins are highly unfolded in pH 2, 15N NMR transverse relaxation experiments revealed nonrandom structures in regions, which include some hydrophobic residues and a single disulfide bond, indicating the existence of residual structure in rVλ6 proteins. However, the residual structure of Wil was markedly disrupted compared with those of the other proteins, despite there being no significant differences in amino acid sequences. Fibrillation experiments revealed that Wil had a longer lag time for fibril formation than the others. When the single disulfide bond was reduced and alkylated, the residual structure was largely disrupted and fibril formation was delayed in all three rVλ6 proteins. It was suggested that the residual structure in highly unfolded state has a crucial role in amyloid fibril formation in many proteins, even pathogenic ones.  相似文献   

5.
Amyloid fibril formation is a distinctive hallmark of a number of degenerative diseases. In this process, protein monomers self-assemble to form insoluble structures that are generally referred to as amyloid fibrils. We have induced in vitro amyloid fibril formation of a PDZ domain by combining mechanical agitation and high ionic strength under conditions otherwise close to physiological (pH 7.0, 37°C, no added denaturants). The resulting aggregates enhance the fluorescence of the thioflavin T dye via a sigmoidal kinetic profile. Both infrared spectroscopy and circular dichroism spectroscopy detect the formation of a largely intermolecular β-sheet structure. Atomic force microscopy shows straight, rod-like fibrils that are similar in appearance and height to mature amyloid-like fibrils. Under these conditions, before aggregation, the protein domain adopts an essentially native-like structure and an even higher conformational stability (ΔGU-FH2O). These results show a new method for converting initially folded proteins into amyloid-like aggregates. The methodological approach used here does not require denaturing conditions; rather, it couples agitation with a high ionic strength. Such an approach offers new opportunities to investigate protein aggregation under conditions in which a globular protein is initially folded, and to elucidate the physical forces that promote amyloid fibril formation.  相似文献   

6.
Alzheimer’s disease is associated with the fibril formation of β-amyloid peptide in extracellular plaque. β-Casein is a milk protein that has shown a remarkable ability to stabilize proteins by inhibiting their protein aggregation and precipitation. The aim of this study was to test in vitro the ability of β-casein to bind the Aβ1–40, change the structure and inhibit the formation of amyloid fibrils in Aβ1–40. Results from the ThT binding assay indicated that incubation of Aβ1–40 with β-casein retarded amyloid fibril formation of Aβ1–40 in a concentration dependent manner such that at a ratio of 1:1 (w:w) led to a significant reduction in the amount of fluorescent intensity. The results from transmission electron microscopy (TEM) also showed that β-casein significantly reduced the number and size of the Aβ1–40 fibrils, suggesting that the chaperone bound to the Aβ1–40 fibrils and/or interacted with the fibrils in some way. ANS results also showed that β-casein significantly decreased the exposed hydrophobic surface in Aβ1–40. Following an ANS binding assay, CD spectroscopy results also showed that incubation of Aβ1–40 resulted in a structural transition to a β-sheet. In the presence of β-casein, however, α-helical conformation was observed which indicated stabilization of the protein. These results reveal the highly efficacious chaperone action of β-casein against amyloid fibril formation of Aβ1–40. These results suggest that in vitro, β-casein binds to the Aβ1–40 fibrils, alters the Aβ1–40 structure and prevents amyloid fibril formation. This approach may result in the identification of a chaperone mechanism for the treatment of neurological diseases.  相似文献   

7.
Insulin, a small hormone protein comprising 51 residues in two disulfide-linked polypeptide chains, adopts a predominantly α-helical conformation in its native state. It readily undergoes protein misfolding and aggregates into amyloid fibrils under a variety of conditions. Insulin is a unique model system in which to study protein fibrillization, since its three disulfide bridges are retained in the fibrillar state and thus limit the conformational space available to the polypeptide chains during misfolding and fibrillization. Taking into account this unique conformational restriction, we modeled possible monomeric subunits of the insulin amyloid fibrils using β-solenoid folds, namely, the β-helix and β-roll. Both models agreed with currently available biophysical data. We performed molecular dynamics simulations, which allowed some limited insights into the relative structural stability, suggesting that the β-roll subunit model may be more stable than the β-helix subunit model. We also constructed β-solenoid-based insulin fibril models and conducted fiber diffraction simulation to identify plausible fibril architectures of insulin amyloid. A comparison of simulated fiber diffraction patterns of the fibril models to the experimental insulin x-ray fiber diffraction data suggests that the model fibers composed of six twisted β-roll protofilaments provide the most reasonable fit to available experimental diffraction patterns and previous biophysical studies.  相似文献   

8.
Although the amyloid dye thioflavin-T (ThT) is among the most widely used tools in the study of amyloid fibrils, the mechanism by which ThT binds to fibrils and other β-rich peptide self-assemblies remains elusive. The development of the water-soluble peptide self-assembly mimic (PSAM) system has provided a set of ideal model proteins for experimentally exploring the properties and minimal dye-binding requirements of amyloid fibrils. PSAMs consist of a single-layer β-sheet (SLB) capped by two globular domains, which capture the flat, extended β-sheet features common among fibril-like surfaces. Recently, a PSAM that binds to ThT with amyloid-like affinity (low micromolar Kd) has been designed, and its crystal structure in the absence of bound ThT was determined. This PSAM thus provides a unique opportunity to examine the interactions of ThT with a β-rich structure. Here, we present molecular dynamics simulations of the binding of ThT to this PSAM β-sheet. We show that the primary binding site for ThT is along a shallow groove formed by adjacent Tyr and Leu residues on the β-sheet surface. These simulations provide an atomic-scale rationale for this PSAM's experimentally determined dye-binding properties. Together, our results suggest that an aromatic-hydrophobic groove spanning across four consecutive β-strands represents a minimal ThT binding site on amyloid fibrils. Grooves formed by aromatic-hydrophobic residues on amyloid fibril surfaces may therefore offer a generic mode of recognition for amyloid dyes.  相似文献   

9.
beta(2)-Microglobulin (beta2M), the light chain of the type I major histocompatibility complex, is a major component of dialysis-related amyloid fibrils. beta2M in the native state has a typical immunoglobulin fold with a buried intrachain disulfide bond. The conformation and stability of recombinant beta2M in which the intrachain disulfide bond was reduced were studied by CD, tryptophan fluorescence, and one-dimensional NMR. The conformation of the reduced beta2M in the absence of denaturant at pH 8.5 was similar to that of the intact protein unless the thiol groups were modified. However, reduction of the disulfide bond decreased the stability as measured by denaturation in guanidine hydrochloride. Intact beta2M formed amyloid fibrils at pH 2.5 by extension reaction using sonicated amyloid fibrils as seeds. Under the same conditions, reduced beta2M did not form typical amyloid fibrils, although it inhibited fibril extension competitively, suggesting that the conformation defined by the disulfide bond is important for amyloid fibril formation of beta2M.  相似文献   

10.
Solid-state NMR measurements have been reported for four peptides derived from β-amyloid peptide Aβ(1–42): Aβ(1–40), Aβ(10–35), Aβ(16–22), and Aβ(34–42). Of these, the first two are predicted to be amphiphilic and were reported to form parallel β-sheets, whereas the latter two peptides appear nonamphiphilic and adopt an antiparallel β-sheet organization. These results suggest that amphiphilicity may be significant in determining fibril structure. Here, we demonstrate that acylation of Aβ(16–22) with octanoic acid increases its amphiphilicity and changes the organization of fibrillar β-sheet from antiparallel to parallel. Electron microscopy, Congo Red binding, and one-dimensional 13C NMR measurements demonstrate that octanoyl-Aβ(16–22) forms typical amyloid fibrils. Based on the stability of monolayers at the air-water interface, octanoyl-Aβ(16–22) is more amphiphilic than Aβ(16–22). Measurements of 13C-13C and 15N-13C nuclear magnetic dipole-dipole couplings in isotopically labeled fibril samples, using the constant-time finite-pulse radiofrequency-driven recoupling (fpRFDR-CT) and rotational echo double resonance (REDOR) solid-state NMR techniques, demonstrate that octanoyl-Aβ(16–22) fibrils are composed of parallel β-sheets, whereas Aβ(16–22) fibrils are composed of antiparallel β-sheets. These data demonstrate that amphiphilicity is critical in determining the structural organization of β-sheets in the amyloid fibril. This work also shows that all amyloid fibrils do not share a common supramolecular structure, and suggests a method for controlling the structure of amyloid fibrils.  相似文献   

11.
A common feature of many of the most important and prominent amyloid-forming proteins is their ability to bind lipids and lipid complexes. Lipids are ubiquitous components of disease-associated amyloid plaques and deposits in humans, yet the specific roles of lipid in the process of amyloid fibril formation are poorly understood. This study investigated the effect of phospholipids on amyloid fibril formation by human apolipoprotein (apo) C-II using phosphatidylcholine derivatives comprising acyl chains of up to 14 carbon atoms. Submicellar concentrations of short-chain phospholipids increase the rate of apoC-II fibril formation in an acyl-chain-length- and concentration-dependent fashion, while high micellar concentrations of phospholipids completely inhibited amyloid formation. At lower concentrations of soluble phospholipid complexes, fibril formation by apoC-II was only partially inhibited, and under these conditions, aggregation followed a two-phase process. Electron microscopy showed that the fibrils resulting from the second phase of aggregation were straight, cablelike, and about 13 nm wide, in contrast to the homogeneous twisted-ribbon morphology of apoC-II fibrils formed under lipid-free conditions. Seeding experiments showed that this alternative fibril structure could be templated both in the presence and in the absence of lipid complex, suggesting that the two morphologies result from distinct assembly pathways. Circular dichroism spectroscopy studies indicated that the secondary structural conformation within the straight-type and ribbon-type fibrils were distinct, further suggesting divergent assembly pathways. These studies show that phospholipid complexes can change the structural architecture of mature fibrils and generate new fibril morphologies with the potential to alter the in vivo behaviour of amyloid. Such lipid interactions may play a role in defining the structural features of fibrils formed by diverse amyloidogenic proteins.  相似文献   

12.
We examined three sonicated, specific-seqiemce polydeoxynucleotides in solution over a wide range of concentrations of several salts by 13P-nmr spectroscopy, and we found that the alternating copolymer poly(dAdT)·poly(dAdT) exhibits a dinucleotide repeat unit in all five salts and at all concentrations studied, as indicated by the presence of a doubled in its 31P-nmr spectra. The two components of the doublet show selective shift effects. The upfield component is assigned to dApdT in the gauche?-gauche? conformation and shifts upfield in all four monovalent salts used, relative to a single-stranded oligonucleotide control. The downfield component is assigned to dTpdA in the trans-gauche? conformation and shifts downfield with increasing CsF concentration but remains essentially constant in LiCl, NaCl, and CsCl. These changes indicate a fast noncooperative transition for poly(dAdT)·poly-(dAdT) from a presumed right-handed dinucleotide-repeat B-form to another conformation with a dinucleotide-repeat structure, via a continuum of structures that may differ in the extent of the winding of the double helix. Ethanol causes the upfield component to collapse into the other component, indicating conversion to a structure with a mononucleotide repeat unit and a trans-gauche? conformation. Up to 1M Mg2+ appears to have no significant effect on the phosphodiester conformations of poly(dAdT)·poly(dAdT). By contrast, poly-(dGdC)·poly(dGdC) gives a slow cooperative transition from what is considered to be a right-handed regular B-form to a left-handed Z-form on increasing MgCl2 and NaCl concentrations, although we observed no changes in chemical shifts below the transition points. The homopolymer poly(dA)·poly(dT) exhibits no unusual shift effects or transitions upon the addition of salts when compared to the oligonucleotide control and is considered to be a regular B-form with a gauche?-gauche? phosphodiester backbone conformation. These differences emphasize the distinct secondary structures of DNAs of different sequences and their selective responses to changes in solution conditions.  相似文献   

13.
The ability of a single polypeptide sequence to grow into multiple stable amyloid fibrils sets these aggregates apart from most native globular proteins. The existence of multiple amyloid forms is the basis for strain effects in yeast prion biology, and might contribute to variations in Alzheimer's disease pathology. However, the structural basis for amyloid polymorphism is poorly understood. We report here five structurally distinct fibrillar aggregates of the Alzheimer's plaque peptide Aβ(1-40), as well as a non-fibrillar aggregate induced by Zn2+. Each of these conformational forms exhibits a unique profile of physical properties, and all the fibrillar forms breed true in elongation reactions under a common set of growth conditions. Consistent with their defining cross-β structure, we find that in this series the amyloid fibrils containing more extensive β-sheet exhibit greater stability. At the same time, side chain packing outside of the β-sheet regions contributes to stability, and to differences of stability between polymorphic forms. Stability comparison is facilitated by the unique feature that the free energy of the monomer (equivalent to the unfolded state in a protein folding reaction) does not vary, and hence can be ignored, in the comparison of ΔG° of elongation values for each polymorphic fibril obtained under a single set of conditions.  相似文献   

14.
研究了渗透和盐胁迫处理对转Bt基因抗虫棉(Gossypium hirsutum) 99B种子的萌发和幼苗生长的影响,以及幼苗不同器官离子吸收和分配的差异。结果表明:渗透和盐胁迫均对转Bt基因抗虫棉幼苗的生长有抑制作用,其中PEG的抑制作用最强,而3种盐的抑制程度以CaCl2>NaCl>Na2SO4,且在Na+含量相同时,Cl-的毒害大于SO42-。渗透胁迫下使根、茎和叶中的Na+和Cl-含量提高,K+、Ca2+、SO42-含量和K+/Na+、Ca2+/Na+和SO42-/Cl-比值降低,且地上部的变化幅度大于地下部的,其中以PEG的影响最为显著,其次是CaCl2,Na2SO4处理最弱。这些说明,转Bt基因抗虫棉99B的耐盐性较弱。  相似文献   

15.
Amyloid diseases, including Alzheimer's disease, are characterized by aggregation of normally functioning proteins or peptides into ordered, β-sheet rich fibrils. Most of the theories on amyloid toxicity focus on the nuclei or oligomers in the fibril formation process. The nuclei and oligomers are transient species, making their full characterization difficult. We have isolated toxic protein species that act like an oligomer and may provide the first evidence of a stable reactive species created by disaggregation of amyloid fibrils. This reactive species was isolated by dissolving amyloid fibrils at high pH and it has a mass >100 kDa and a diameter of 48 ± 15 nm. It seeds the formation of fibrils in a dose dependent manner, but using circular dichroism and deep ultraviolet resonance Raman spectroscopy, the reactive species was found to not have a β-sheet rich structure. We hypothesize that the reactive species does not decompose at high pH and maintains its structure in solution. The remaining disaggregated insulin, excluding the toxic reactive species that elongated the fibrils, returned to native structured insulin. This is the first time, to our knowledge, that a stable reactive species of an amyloid reaction has been separated and characterized by disaggregation of amyloid fibrils.  相似文献   

16.
Amyloid fibrils can be generated from proteins with diverse sequences and folds. Although amyloid fibrils assembled in vitro commonly involve a single protein precursor, fibrils formed in vivo can contain more than one protein sequence. How fibril structure and stability differ in fibrils composed of single proteins (homopolymeric fibrils) from those generated by co-polymerization of more than one protein sequence (heteropolymeric fibrils) is poorly understood. Here we compare the structure and stability of homo and heteropolymeric fibrils formed from human β2-microglobulin and its truncated variant ΔN6. We use an array of approaches (limited proteolysis, magic angle spinning NMR, Fourier transform infrared spectroscopy, and fluorescence) combined with measurements of thermodynamic stability to characterize the different fibril types. The results reveal fibrils with different structural properties, different side-chain packing, and strikingly different stabilities. These findings demonstrate how co-polymerization of related precursor sequences can expand the repertoire of structural and thermodynamic polymorphism in amyloid fibrils to an extent that is greater than that obtained by polymerization of a single precursor alone.  相似文献   

17.
We have previously shown that Congo red (CR) binds site specifically to amyloid fibrils formed by HET-s(218–289) with the long axis of the CR molecule almost parallel to the fibril axis. HADDOCK docking studies indicated that CR adopts a roughly planar conformation with the torsion angle ? characterizing the relative orientation of the two phenyl rings being a few degrees. In this study, we experimentally determine the torsion angle ? at the center of the CR molecule when bound to HET-s(218–289) amyloid fibrils using solid-state NMR tensor-correlation experiments. The method described here relies on the site-specific 13C labeling of CR and on the analysis of the two-dimensional magic-angle spinning tensor-correlation spectrum of 13C2-CR. We determined the torsion angle ? to be 19°.  相似文献   

18.
The formation of fibrils and oligomers of amyloid beta (Aβ) with 42 amino acid residues (Aβ1–42) is the most important pathophysiological event associated with Alzheimer''s disease (AD). The formation of Aβ fibrils and oligomers requires a conformational change from an α-helix to a β-sheet conformation, which is encouraged by the formation of a salt bridge between Asp 23 or Glu 22 and Lys 28. Recently, Cu2+ and various drugs used for AD treatment, such as galanthamine (Reminyl®), have been reported to inhibit the formation of Aβ fibrils. However, the mechanism of this inhibition remains unclear. Therefore, the aim of this work was to explore how Cu2+ and galanthamine prevent the formation of Aβ1–42 fibrils using molecular dynamics (MD) simulations (20 ns) and in vitro studies using fluorescence and circular dichroism (CD) spectroscopies. The MD simulations revealed that Aβ1–42 acquires a characteristic U-shape before the α-helix to β-sheet conformational change. The formation of a salt bridge between Asp 23 and Lys 28 was also observed beginning at 5 ns. However, the MD simulations of Aβ1−42 in the presence of Cu2+ or galanthamine demonstrated that both ligands prevent the formation of the salt bridge by either binding to Glu 22 and Asp 23 (Cu2+) or to Lys 28 (galanthamine), which prevents Aβ1−42 from adopting the U-characteristic conformation that allows the amino acids to transition to a β-sheet conformation. The docking results revealed that the conformation obtained by the MD simulation of a monomer from the 1Z0Q structure can form similar interactions to those obtained from the 2BGE structure in the oligomers. The in vitro studies demonstrated that Aβ remains in an unfolded conformation when Cu2+ and galanthamine are used. Then, ligands that bind Asp 23 or Glu 22 and Lys 28 could therefore be used to prevent β turn formation and, consequently, the formation of Aβ fibrils.  相似文献   

19.
A key structural component of amyloid fibrils is a highly ordered, crystalline-like cross-β-sheet core. Conformationally different amyloid structures can be formed within the same amino acid sequence. It is generally assumed that individual fibrils consist of conformationally uniform cross-β-structures. Using mammalian recombinant prion protein (PrP), we showed that, contrary to common perception, amyloid is capable of accommodating a significant conformational switching within individual fibrils. The conformational switch occurred when the amino acid sequence of a PrP variant used as a precursor substrate in a fibrillation reaction was not compatible with the strain-specific conformation of the fibrillar template. Despite the mismatch in amino acid sequences between the substrate and template, individual fibrils recruited the heterologous PrP variant; however, the fibril elongation proceeded through a conformational adaptation, resulting in a change in amyloid strain within individual fibrils. This study illustrates the high adaptation potential of amyloid structures and suggests that conformational switching within individual fibrils may account for adaptation of amyloid strains to a heterologous substrate. This work proposes a new mechanistic explanation for the phenomenon of strain conversion and illustrates the direction in evolution of amyloid structures. This study also provides a direct illustration that catalytic activity of self-replicating amyloid structures is not ultimately coupled with their templating effect.The ability to form amyloid structures is considered to be one of the most general properties of a polypeptide backbone (1). Regardless of the specific peptides or proteins involved in fibril formation, all types of amyloid fibrils share a common structural motif that consists of a cross-β-structure (2). Cross-β-structures are comprised of highly ordered, nearly anhydrous, crystalline-like β-sheets stabilized by hydrogen bonding and densely packed side chains (3, 4). Growing evidence indicates that multiple amyloid structures referred to as amyloid strains could be formed within the same amino acid sequence (57).Amyloids are capable of self-replicating (8). Self-replicating properties of amyloid fibrils are attributed to the unique arrangement of cross-β-strands that are assembled perpendicular to the fibrillar axis, where β-strands at the growing edge provide a template for recruiting and converting a monomeric precursor. The self-replicating property of the amyloid cross-β-structure consists of two activities: catalytic (i.e. the ability to convert a monomeric precursor into an amyloid state) and templating (i.e. the ability to accurately imprint the strain-specific conformation onto a newly recruited polypeptide). The templating activity is believed to be intimately coupled to the catalytic activity and accounts for the high fidelity of amyloid replication. High fidelity of replication requires identity or high homology between the amino acid sequences of a fibrillar template and a precursor substrate. The species specificity of a template-substrate interaction is believed to account for the species barrier in prion transmission and species specificity of in vitro cross-seeded fibrillation reactions. Local perturbations arising due to mismatches in packing of amino acid side chains within the crystalline-like cross-β-structures could prevent efficient replication of amyloid fibrils.It is generally assumed that individual fibrils are structurally uniform, i.e. maintain the same structure of a cross-β-core throughout the fibrillar length. In the current study, we showed that, contrary to the common perception, amyloid fibrils are capable of accommodating significant conformational switching within individual fibrils. The conformational switch occurred when the amino acid sequence of the precursor substrate was not compatible with the conformation of the template. Despite mismatched amino acid sequences, individual fibrils were able to recruit the heterologous recombinant prion protein (PrP)2 variant; however, fibril elongation proceeded through switching to a new conformational state. The implications of these studies are multifold. First, our work illustrates the high adaptation potential of amyloid structures and suggests that the conformational switch accounts for adaptation of amyloid strains to the heterologous substrate. Second, the current studies propose a new molecular explanation for the phenomenon referred to as convergence of strains. Third, this work illustrates the directionality in evolution of amyloid structures, showing that the species-specific amyloid structures (i.e. structures that exist only within a single PrP sequence) can give rise to promiscuous or indiscriminative structures (structures compatible with several PrP variants), but not vice versa. Finally, our studies provide direct illustration that catalytic activity of self-replicating amyloid structures is not ultimately coupled with their templating effect.  相似文献   

20.

Cross-β amyloid fibrils and membrane-bound β-barrels are two important classes of β-sheet proteins. To investigate whether there are systematic differences in the backbone and sidechain conformations of these two families of proteins, here we analyze the 13C chemical shifts of 17 amyloid proteins and 7 β-barrel membrane proteins whose high-resolution structures have been determined by NMR. These 24 proteins contain 373 β-sheet residues in amyloid fibrils and 521 β-sheet residues in β-barrel membrane proteins. The 13C chemical shifts are shown in 2D 13C–13C correlation maps, and the amino acid residues are categorized by two criteria: (1) whether they occur in β-strand segments or in loops and turns; (2) whether they are water-exposed or dry, facing other residues or lipids. We also examine the abundance of each amino acid in amyloid proteins and β-barrels and compare the sidechain rotameric populations. The 13C chemical shifts indicate that hydrophobic methyl-rich residues and aromatic residues exhibit larger static sidechain conformational disorder in amyloid fibrils than in β-barrels. In comparison, hydroxyl- and amide-containing polar residues have more ordered sidechains and more ordered backbones in amyloid fibrils than in β-barrels. These trends can be explained by steric zipper interactions between β-sheet planes in cross-β fibrils, and by the interactions of β-barrel residues with lipid and water in the membrane. These conformational trends should be useful for structural analysis of amyloid fibrils and β-barrels based principally on NMR chemical shifts.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号