首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Titin is a giant protein with multiple functions in cardiac and skeletal muscles. Rat cardiac titin undergoes developmental isoform transition from the neonatal 3.7 MDa N2BA isoform to primarily the adult 2.97 MDa N2B isoform. An autosomal dominant mutation dramatically altered this transformation. Titins from eight skeletal muscles: Tibialis Anterior (TA), Longissimus Dorsi (LD) and Gastrocnemius (GA), Extensor Digitorum Longus (ED), Soleus (SO), Psoas (PS), Extensor Oblique (EO), and Diaphram (DI) were characterized in wild type and in homozygous mutant (Hm) rats with a titin splicing defect. Results showed that the developmental reduction in titin size is eliminated in the mutant rat so that the titins in all investigated skeletal muscles remain large in the adult. The alternative splicing of titin mRNA was found repressed by this mutation, a result consistent with the large titin isoform in the mutant. The developmental pattern of titin mRNA alternative splicing differs between heart and skeletal muscles. The retention of intron 49 reveals a possible mechanism for the absence of the N2B unique region in the expressed titin protein of skeletal muscle.  相似文献   

2.
3.
4.
《Mutation Research Letters》1994,323(4):159-165
The molecular analysis of mutations affecting mRNA processing may contribute to a better understanding of the splicing mechanism through the identification of genomic sequences necessary for the recognition of splice sites. In this paper we report the sequence analysis of 14 splice mutants induced by 4-nitroquinoline 1-oxide (4NQO) at the hamster hypoxanthine-guanine-phosphoribosyltransferase (hprt) locus. We show that mutations at the 3′ acceptor splice site or at the first or fifth base of the 5′ donor splice site are responsible for exon skipping. In addition, mutations in exon sequences also determine the skipping of one or more exons. Our data indicate that point mutations in intron regions at either side of an internal exon may induce the skipping of the same exon, supporting a model where the exon is the unit of early spliceosome assembly. Furthermore, they suggest that the splicing of hprt mRNA precursors may proceed through a clustering of exons 2, 3 and 4 which are then spliced in a concerted way.  相似文献   

5.
6.
We examine here the roles of cellular splicing factors and virus regulatory proteins in coordinately regulating alternative splicing of the tat/rev mRNA of equine infectious anemia virus (EIAV). This bicistronic mRNA contains four exons; exons 1 and 2 encode Tat, and exons 3 and 4 encode Rev. In the absence of Rev expression, the four-exon mRNA is synthesized exclusively, but when Rev is expressed, exon 3 is skipped to produce an mRNA that contains only exons 1, 2, and 4. We identify a purine-rich exonic splicing enhancer (ESE) in exon 3 that promotes exon inclusion. Similar to other cellular ESEs that have been identified by other laboratories, the EIAV ESE interacted specifically with SR proteins, a group of serine/arginine-rich splicing factors that function in constitutive and alternative mRNA splicing. Substitution of purines with pyrimidines in the ESE resulted in a switch from exon inclusion to exon skipping in vivo and abolished binding of SR proteins in vitro. Exon skipping was also induced by expression of EIAV Rev. We show that Rev binds to exon 3 RNA in vitro, and while the precise determinants have not been mapped, Rev function in vivo and RNA binding in vitro indicate that the RNA element necessary for Rev responsiveness overlaps or is adjacent to the ESE. We suggest that EIAV Rev promotes exon skipping by interfering with SR protein interactions with RNA or with other splicing factors.  相似文献   

7.
Alternative splicing of α-tropomyosin (α-TM) involves mutually exclusive selection of exons 2 and 3. Selection of exon 2 in smooth muscle (SM) cells is due to inhibition of exon 3, which requires both binding sites for polypyrimidine tract-binding protein as well as UGC (or CUG) repeat elements on both sides of exon 3. Point mutations or substitutions of the UGC-containing upstream regulatory element (URE) with other UGC elements disrupted the α-TM splicing pattern in transfected cells. Multimerisation of the URE caused enhanced exon skipping in SM and various non-SM cells. In the presence of multiple UREs the degree of splicing regulation was decreased due to the high levels of exon skipping in non-SM cell lines. These results suggest that the URE is not an intrinsically SM- specific element, but that its functional strength is fine tuned to exploit differences in the activities of regulatory factors between SM and other cell types. Co-transfection of tropomyosin reporters with members of the CUG-binding protein family, which are candidate URE-binding proteins, indicated that these factors do not mediate repression of tropomyosin exon 3.  相似文献   

8.
9.
The Fox proteins are a family of regulators that control the alternative splicing of many exons in neurons, muscle, and other tissues. Each of the three mammalian paralogs, Fox-1 (A2BP1), Fox-2 (RBM9), and Fox-3 (HRNBP3), produces proteins with a single RNA-binding domain (RRM) flanked by N- and C-terminal domains that are highly diversified through the use of alternative promoters and alternative splicing patterns. These genes also express protein isoforms lacking the second half of the RRM (FoxΔRRM), due to the skipping of a highly conserved 93-nt exon. Fox binding elements overlap the splice sites of these exons in Fox-1 and Fox-2, and the Fox proteins themselves inhibit exon inclusion. Unlike other cases of splicing autoregulation by RNA-binding proteins, skipping the RRM exon creates an in-frame deletion in the mRNA to produce a stable protein. These FoxΔRRM isoforms expressed from cDNA exhibit highly reduced binding to RNA in vivo. However, we show that they can act as repressors of Fox-dependent splicing, presumably by competing with full-length Fox isoforms for interaction with other splicing factors. Interestingly, the Drosophila Fox homolog contains a nearly identical exon in its RRM domain that also has flanking Fox-binding sites. Thus, rather than autoregulation of splicing controlling the abundance of the regulator, the Fox proteins use a highly conserved mechanism of splicing autoregulation to control production of a dominant negative isoform.  相似文献   

10.
The essential splicing factor SF2/ASF and the heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) modulate alternative splicing in vitro of pre-mRNAs that contain 5' splice sites of comparable strengths competing for a common 3' splice site. Using natural and model pre-mRNAs, we have examined whether the ratio of SF2/ASF to hnRNP A1 also regulates other modes of alternative splicing in vitro. We found that an excess of SF2/ASF effectively prevents inappropriate exon skipping and also influences the selection of mutually exclusive tissue-specific exons in natural beta-tropomyosin pre-mRNA. In contrast, an excess of hnRNP A1 does not cause inappropriate exon skipping in natural constitutively or alternatively spliced pre-mRNAs. Although hnRNP A1 can promote alternative exon skipping, this effect is not universal and is dependent, e.g., on the size of the internal alternative exon and on the strength of the polypyrimidine tract in the preceding intron. With appropriate alternative exons, an excess of SF2/ASF promotes exon inclusion, whereas an excess of hnRNP A1 causes exon skipping. We propose that in some cases the ratio of SF2/ASF to hnRNP A1 may play a role in regulating alternative splicing by exon inclusion or skipping through the antagonistic effects of these proteins on alternative splice site selection.  相似文献   

11.
Splicing of fibroblast growth factor receptor 2 (FGFR2) alternative exons IIIb and IIIc is regulated by the auxiliary RNA cis-element ISE/ISS-3 that promotes splicing of exon IIIb and silencing of exon IIIc. Using RNA affinity chromatography, we have identified heterogeneous nuclear ribonucleoprotein M (hnRNP M) as a splicing regulatory factor that binds to ISE/ISS-3 in a sequence-specific manner. Overexpression of hnRNP M promoted exon IIIc skipping in a cell line that normally includes it, and association of hnRNP M with ISE/ISS-3 was shown to contribute to this splicing regulatory function. Thus hnRNP M, along with other members of the hnRNP family of RNA-binding proteins, plays a combinatorial role in regulation of FGFR2 alternative splicing. We also determined that hnRNP M can affect the splicing of several other alternatively spliced exons. This activity of hnRNP M included the ability not only to induce exon skipping but also to promote exon inclusion. This is the first report demonstrating a role for this abundant hnRNP family member in alternative splicing in mammals and suggests that this protein may broadly contribute to the fidelity of splice site recognition and alternative splicing regulation.  相似文献   

12.
Cis-acting short sequence motifs play important roles in alternative splicing. It is now possible to identify such sequence motifs as conserved sequence patterns in genome sequence alignments. Here, we report the systematic search for motifs in the neighboring introns of alternatively spliced exons by using comparative analysis of mammalian genome alignments. We identified 11 conserved sequence motifs that might be involved in the regulation of alternative splicing. These motifs are not only significantly overrepresented near alternatively spliced exons, but they also co-occur with each other, thus, forming a network of cis-elements, likely to be the basis for context-dependent regulation. Based on this finding, we applied the motif co-occurrence to predict alternatively skipped exons. We verified exon skipping in 29 cases out of 118 predictions (25%) by EST and mRNA sequences in the databases. For the predictions not verified by the database sequences, we confirmed exon skipping in 10 additional cases by using both RT–PCR experiments and the publicly available RNA-Seq data. These results indicate that even more alternative splicing events will be found with the progress of large-scale and high-throughput analyses for various tissue samples and developmental stages.  相似文献   

13.
14.
Silencer elements as possible inhibitors of pseudoexon splicing   总被引:8,自引:5,他引:3       下载免费PDF全文
Human pre-mRNAs contain a definite number of exons and several pseudoexons which are located within intronic regions. We applied a computational approach to address the question of how pseudoexons are neglected in favor of exons and to possibly identify sequence elements preventing pseudoexon splicing. A search for possible splicing silencers was carried out on a pseudoexon selection that resembled exons in terms of splice site strength and exon splicing enhancer (ESE) representation; three motifs were retrieved through hexamer composition comparisons. One of these functions as a powerful silencer in transfection-based splicing assays and matches a previously identified silencer sequence with hnRNP H binding ability. The other two motifs are novel and failed to induce skipping of a constitutive exon, indicating that they might act as weak repressors or in synergy with other unidentified elements. All three motifs are enriched in pseudoexons compared with intronic regions and display higher frequencies in intronless gene-coding sequences compared with exons. We consider that a subpopulation of pseudoexons might rely on negative regulators for splicing repression; this hypothesis, if experimentally verified, might improve our understanding of exonic splicing regulatory sequences and provide the identification of a novel mutation target for human genetic diseases.  相似文献   

15.
Alternative splicing contributes to both gene regulation and protein diversity. To discover broad relationships between regulation of alternative splicing and sequence conservation, we applied a systems approach, using oligonucleotide microarrays designed to capture splicing information across the mouse genome. In a set of 22 adult tissues, we observe differential expression of RNA containing at least two alternative splice junctions for about 40% of the 6,216 alternative events we could detect. Statistical comparisons identify 171 cassette exons whose inclusion or skipping is different in brain relative to other tissues and another 28 exons whose splicing is different in muscle. A subset of these exons is associated with unusual blocks of intron sequence whose conservation in vertebrates rivals that of protein-coding exons. By focusing on sets of exons with similar regulatory patterns, we have identified new sequence motifs implicated in brain and muscle splicing regulation. Of note is a motif that is strikingly similar to the branchpoint consensus but is located downstream of the 5′ splice site of exons included in muscle. Analysis of three paralogous membrane-associated guanylate kinase genes reveals that each contains a paralogous tissue-regulated exon with a similar tissue inclusion pattern. While the intron sequences flanking these exons remain highly conserved among mammalian orthologs, the paralogous flanking intron sequences have diverged considerably, suggesting unusually complex evolution of the regulation of alternative splicing in multigene families.  相似文献   

16.
17.
The 240-bp alpha exon of the tight junction (TJ) protein ZO-1 pre-mRNA is alternatively spliced. Expression of both ZO-1alpha+/ZO-1alpha- isoforms results in hermetic TJs, and these become leaky when ZO-1alpha- expression prevails. The alpha exon inclusion/skipping mechanism was studied by in vivo RT-PCR splicing assays in neural and epithelial cells, utilizing a canine minigene construct containing the alpha exon, and the flanking introns and exons. Inclusion of the alpha exon always occurs in wild-type MDCK cells and it is detectable in transfected HeLa cells. However, the alpha exon is skipped in transfected neural cells. Accordingly, both 5' and 3' splice sites surrounding the alpha exon appear to be suboptimal and no cis-acting splicing control elements were found in this exon. Deletion analysis revealed an 83-bp splicing enhancer in the downstream exon and a 35-bp splicing silencer at the beginning of the upstream exon. In epithelial cells all constructs rendered alpha exon inclusion. We conclude that, in neural cells, skipping of the alpha exon depends on two antagonistic exonic elements located in the flanking constitutive exons.  相似文献   

18.
In this study, we demonstrate the ability of the polypyrimidine tract binding protein PTB to function as a coordinator of splicing regulation for a trio of neuron-specific exons that are subject to developmental splicing changes in the rat cerebellum. Three neuron-specific exons that show positive regulation are derived from the GABA(A) receptor gamma2 subunit 24 nucleotide exon, clathrin light chain B exon EN, and N-methyl-D-aspartate receptor NR1 subunit exon 5 pre-mRNAs. The functional activity of splicing repressor signals located in the 3' splice site regions adjacent to the neural exons is shown using an alternative splicing switch assay, in which these short RNA sequences function in trans to switch splicing to the neural pathway in HeLa splicing reactions. Parallel UV crosslinking/competition assays demonstrate selective binding of PTB in comparison to substantially lower binding at adjacent, nonneural 3' splice sites. Substantially lower PTB binding and splicing switch activity is also observed for the 3' splice site of NMDA exon 21, which is subject to negative regulation in cerebellum tissue in the same time frame. In splicing active neural extracts, the balance of control shifts to positive regulation, and this shift correlates with a PTB status that is predominantly the neural form. In this context, the addition of recombinant PTB is sufficient to switch splicing to the nonneural pathway. The neural extracts also reveal specific binding of the CUG triplet repeat binding protein to a subset of regulatory 3' splice site regions. These interactions may interfere with PTB function or modulate splicing levels in a substrate-specific manner within neural tissue. Together these results strengthen the evidence that PTB is a splicing regulator with multiple targets and demonstrate its ability to discriminate among neural and nonneural substrates. Thus, a variety of mechanisms that counterbalance the splicing repressor function of PTB in neural tissue are capable of mediating developmental splicing control. Altered expression of PTB isoforms during cerebellar development, as documented by Western blot analysis, is proposed to be a contributing mechanism.  相似文献   

19.
Alternative splicing is altered in myotonic dystrophy of type 1 (DM1), a syndrome caused by an increase of CTG triplet repeats in the 3' untranslated region of the myotonic dystrophy protein kinase gene. Previously, we reported the preferential skipping of Tau exon 2 in DM1 brains. In this study, we analyze the alternative splicing of Tau exon 6 which can be inserted in three different forms (c, p and d) depending on the 3' splice site used. In fact, inclusion of exon 6c decreases in DM1 brains compared to control brains whereas inclusion of 6d increases. Alteration of exon 6 splicing was not observed in DM1 muscle although this exon was inserted in RNAs from normal muscle and DM1 splicing alterations were first described in this organ. In contrast, alteration of exon 2 of Tau mRNA was observed in both muscle and brain. However, co-transfections of a minigene containing exon 6 with CELF or MBNL1 cDNAs, two splicing factor families suspected to be involved in DM1, showed that they influence exon 6 splicing. Altogether, these results show the importance of determining all the exons and organs targeted by mis-splicing to determine the dysregulation mechanisms of mis-splicing in DM1.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号