首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecular mechanics of cardiac titin's PEVK and N2B spring elements.   总被引:3,自引:0,他引:3  
Titin is a giant elastic protein that is responsible for the majority of passive force generated by the myocardium. Titin's force is derived from its extensible I-band region, which, in the cardiac isoform, comprises three main extensible elements: tandem Ig segments, the PEVK domain, and the N2B unique sequence (N2B-Us). Using atomic force microscopy, we characterized the single molecule force-extension curves of the PEVK and N2B-Us spring elements, which together are responsible for physiological levels of passive force in moderately to highly stretched myocardium. Stretch-release force-extension curves of both the PEVK domain and N2B-Us displayed little hysteresis: the stretch and release data nearly overlapped. The force-extension curves closely followed worm-like chain behavior. Histograms of persistence length (measure of chain bending rigidity) indicated that the single molecule persistence lengths are approximately 1.4 and approximately 0.65 nm for the PEVK domain and N2B-Us, respectively. Using these mechanical characteristics and those determined earlier for the tandem Ig segment (assuming folded Ig domains), we modeled the cardiac titin extensible region in the sarcomere and calculated the extension of the various spring elements and the forces generated by titin, both as a function of sarcomere length. In the physiological sarcomere length range, predicted values and those obtained experimentally were indistinguishable.  相似文献   

2.
BACKGROUND: The giant muscle protein titin contributes to the filament system in skeletal and cardiac muscle cells by connecting the Z disk and the central M line of the sarcomere. One of the physiological functions of titin is to act as a passive spring in the sarcomere, which is achieved by the elastic properties of its central I band region. Titin contains about 300 domains of which more than half are folded as immunoglobulin-like (Ig) domains. Ig domain segments of the I band of titin have been extensively used as templates to investigate the molecular basis of protein elasticity. RESULTS: The structure of the Ig domain I1 from the I band of titin has been determined to 2.1 A resolution. It reveals a novel, reversible disulphide bridge, which is neither required for correct folding nor changes the chemical stability of I1, but it is predicted to contribute mechanically to the elastic properties of titin in active sarcomeres. From the 92 Ig domains in the longest isoform of titin, at least 40 domains have a potential for disulphide bridge formation. CONCLUSIONS: We propose a model where the formation of disulphide bridges under oxidative stress conditions could regulate the elasticity of the I band in titin by increasing sarcomeric resistance. In this model, the formation of the disulphide bridge could refrain a possible directed motion of the two beta sheets or other mechanically stable entities of the I1 Ig domain with respect to each other when exposed to mechanical forces.  相似文献   

3.
Mutations in the lamin A/C gene (LMNA) were associated with dilated cardiomyopathy (DCM) and, recently, were related to severe forms of arrhythmogenic right ventricular cardiomyopathy (ARVC). Both genetic and phenotypic overlap between DCM and ARVC was observed; molecular pathomechanisms leading to the cardiac phenotypes caused by LMNA mutations are not yet fully elucidated. This study involved a large Italian family, spanning 4 generations, with arrhythmogenic cardiomyopathy of different phenotypes, including ARVC, DCM, system conduction defects, ventricular arrhythmias, and sudden cardiac death. Mutation screening of LMNA and ARVC-related genes PKP2, DSP, DSG2, DSC2, JUP, and CTNNA3 was performed. We identified a novel heterozygous mutation (c.418_438dup) in LMNA gene exon 2, occurring in a highly conserved protein domain across several species. This newly identified variant was not found in 250 ethnically-matched control subjects. Genotype-phenotype correlation studies suggested a co-segregation of the LMNA mutation with the disease phenotype and an incomplete and age-related penetrance. Based on clinical, pedigree, and molecular genetic data, this mutation was considered likely disease-causing. To clarify its potential pathophysiologic impact, functional characterization of this LMNA mutant was performed in cultured cardiomyocytes expressing EGFP-tagged wild-type and mutated LMNA constructs, and indicated an increased nuclear envelope fragility, leading to stress-induced apoptosis as the main pathogenetic mechanism. This study further expands the role of the LMNA gene in the pathogenesis of cardiac laminopathies, suggesting that LMNA should be included in mutation screening of patients with suspected arrhythmogenic cardiomyopathy, particularly when they have ECG evidence for conduction defects. The combination of clinical, genetic, and functional data contribute insights into the pathogenesis of this form of life-threatening arrhythmogenic cardiac laminopathy.  相似文献   

4.
5.
The small heat shock protein αB-crystallin interacts with N2B-Us, a large unique sequence found in the N2B element of cardiac titin. Using single molecule force spectroscopy, we studied the effect of αB-crystallin on the N2B-Us and its flanking Ig-like domains. Ig domains from the proximal tandem Ig segment of titin were also studied. The effect of wild type αB-crystallin on the single molecule force-extension curve was determined as well as that of mutant αB-crystallins harboring the dilated cardiomyopathy missense mutation, R157H, or the desmin-related myopathy mutation, R120G. Results revealed that wild type αB-crystallin decreased the persistence length of the N2B-Us (from ∼0.7 to ∼0.2 nm) but did not alter its contour length. αB-crystallin also increased the unfolding force of the Ig domains that flank the N2B-Us (by 51 ± 3 piconewtons); the rate constant of unfolding at zero force was estimated to be ∼17-fold lower in the presence of αB-crystallin (1.4 × 10-4 s-1 versus 2.4 × 10-3 s-1). We also found that αB-crystallin increased the unfolding force of Ig domains from the proximal tandem Ig segment by 28 ± 6 piconewtons. The effects of αB-crystallin were attenuated by the R157H mutation (but were still significant) and were absent when using the R120G mutant. We conclude that αB-crystallin protects titin from damage by lowering the persistence length of the N2B-Us and reducing the Ig domain unfolding probability. Our finding that this effect is either attenuated (R157H) or lost (R120G) in disease causing αB-crystallin mutations suggests that the interaction between αB-crystallin and titin is important for normal heart function.αB-crystallin is a member of the small heat shock protein family that by inhibiting denaturation and aggregation of proteins functions as a molecular chaperone (1). Although αB-crystallin has been most intensively studied in the vertebrate eye lens, it is also found in many other tissues (2) with cardiac muscle expressing αB-crystallin at 3-5% of the total soluble protein (3). Up-regulation of αB-crystallin occurs in a number of cardiac disorders, including familial cardiac hypertrophy, and overexpression appears to protect the cardiac cell from ischemia reperfusion injury (for a review see Ref. 4). An important binding partner of αB-crystallin in cardiac muscle is titin (5, 6). Titin is a large filamentous protein that forms a continuous filament along the myofibril, with single titin molecules spanning from the edge to the middle of the sarcomere, a distance of ∼1 μm (7). The I-band region of titin is extensible and functions as a molecular spring that, when extended, develops force (8, 9). This force is an important determinant of the passive stiffness of the heart that determines the filling characteristics during the diastolic part of the heart cycle (10). The interaction between αB-crystallin and titin could be important for maintaining heart function, especially when stressed, such as during ischemia (5), warranting studies of the effect of αB-crystallin on the biomechanical properties of titin.The molecular spring region of titin contains three distinct spring elements (7). The first element is the tandem Ig segment, consisting of serially linked Ig domains that form the so-called proximal tandem Ig segment (15 Ig domains) near the Z-disk of the sarcomere and a distal segment (22 Ig domains) near the A-band (11). The second spring element is the PEVK, a unique sequence that contains largely prolines, glutamates, valines, and lysines (11). The third element consists of a large unique sequence (in human 572 residues in size) named the N2B-Us; it is heart-specific and dominates the extension of titin near the upper limit of the physiological sarcomere length range (12). αB-crystallin appears to preferentially bind to the N2B-Us, although weak binding to Ig domains has also been detected (6). Previous studies have shown that αB-crystallin increases the unfolding force of Ig 91-98, a fragment that contains eight Ig domains from the distal tandem Ig segment of titin (6). However, the mechanical effect of αB-crystallin on the N2B-Us (its main binding partner in titin) has not been investigated.The association between αB-crystallin and titin has prompted a search for disease causing mutations in αB-crystallin. This revealed in patients with dilated cardiomyopathy (DCM),2 a missense mutation, R157H, that affects an evolutionarily conserved amino acid residue; the mutation decreases the binding to the N2B domain without affecting distribution of the mutant crystallin protein in cardiomyocytes (13). In another disease, the desmin-related myopathy mutation R120G (14) decreases the binding of αB-crystallin to the N2B element and causes intracellular aggregates of the mutant protein (13).In the present study, we used single molecule force spectroscopy and determined the contour length (CL; end-to-end length when stretched with infinite force) and persistence length (PL; a measure of the bending rigidity) of the N2B-Us. We also studied the unfolding force of Ig domains, those that flank the N2B-Us and those that make up the proximal tandem Ig segment. In addition, we investigated the effect of wild type and R157H and R120G αB-crystallin on the molecular mechanics of the N2B-Us, its flanking Ig domains, and the Ig domains in the proximal tandem Ig segment. Findings support that αB-crystallin functions as a chaperone that lowers the probability of Ig domain unfolding and the persistence length of the titin N2B-Us spring region. Importantly, this chaperone function is significantly reduced by the R157H mutation and abolished by the R120G mutation.  相似文献   

6.
Titin isoform changes in rat myocardium during development   总被引:3,自引:0,他引:3  
Developmental changes in the alternative splicing patterns of titin were observed in rat cardiac muscle. Titin from 16-day fetal hearts consisted of a single 3710 kDa band on SDS agarose gels, and it disappeared by 10 days after birth. The major adult N2B isoform (2990 kDa) first appeared in 18-day fetal hearts and its proportion in the ventricle increased to approximately 85% from 20 days of age and older. Changes in three other intermediate-sized N2BA isoform bands also occurred during this same time period. The cDNA sequences of fetal cardiac, adult ventricle, and adult soleus were different in the PEVK and alternatively spliced middle Ig domain. Extensive heterogeneity in splice patterns was found in the N2BA PEVK region. The extra length of the fetal titin isoforms appeared to be due to both a greater number of middle Ig domains expressed plus the inclusion of more PEVK exons. Passive tension measurements on myocyte-sized fragments indicated a significantly lower tension in neonate versus adult ventricles at sarcomere lengths greater than 2.1 microm, consistent with the protein and cDNA sequence results. The time course of the titin isoform switching was similar to that occurring with myosin and troponin I during development.  相似文献   

7.
Titin is a large filamentous protein that spans half a sarcomere, from Z‐disk to M‐line. The N2A region within the titin molecule exists between the proximal immunoglobulin (Ig) region and the PEVK region and protein–protein interactions involving this region are required for normal muscle function. The N2A region consists of four Ig domains (I80–I83) with a 105 amino acid linker region between I80 and I81 that has a helical nature. Using chemical stability measurements, we show that predicted differences between the adjacent Ig domains (I81–I83) correlate with experimentally determined differences in chemical stability and refolding kinetics. Our work further shows that I83 has the lowest ΔGunfolding, which is increased in the presence of calcium (pCa 4.3), indicating that Ca2+ plays a role in stabilizing this immunoglobulin domain. The characteristics of N2A's three Ig domains provide insight into the stability of the binding sites for proteins that interact with the N2A region. This work also provides insights into how Ca2+ might influence binding events involving N2A.  相似文献   

8.
Titin, a 1-microm-long protein found in striated muscle myofibrils, possesses unique elastic and extensibility properties in its I-band region, which is largely composed of a PEVK region (70% proline, glutamic acid, valine, and lysine residue) and seven-strand beta-sandwich immunoglobulin-like (Ig) domains. The behavior of titin as a multistage entropic spring has been shown in atomic force microscope and optical tweezer experiments to partially depend on the reversible unfolding of individual Ig domains. We performed steered molecular dynamics simulations to stretch single titin Ig domains in solution with pulling speeds of 0.5 and 1.0 A/ps. Resulting force-extension profiles exhibit a single dominant peak for each Ig domain unfolding, consistent with the experimentally observed sequential, as opposed to concerted, unfolding of Ig domains under external stretching forces. This force peak can be attributed to an initial burst of backbone hydrogen bonds, which takes place between antiparallel beta-strands A and B and between parallel beta-strands A' and G. Additional features of the simulations, including the position of the force peak and relative unfolding resistance of different Ig domains, can be related to experimental observations.  相似文献   

9.
肥厚型和扩张型心肌病中,基因缺陷分别占发病的50%和35%,其病理生理机制,主要包括肌小节蛋白基因突变引起的收缩力产生缺陷,细胞骨架蛋白基因突变引起的收缩力传递缺陷等。心肌肌钙蛋白T将肌钙蛋白C和肌钙蛋白I连接到肌动蛋白和原肌球蛋白上,在心肌细胞收缩和舒张过程中发挥重要作用。在肥厚型和扩张型心肌病中发现了多种心肌肌钙蛋白T的基因突变,围绕心肌肌钙蛋白T的研究有助于阐明心肌病的发病机制。本文总结了心肌肌钙蛋白T基因突变在心肌病发病机制中的研究情况。  相似文献   

10.
Mutations in cardiac myosin binding protein C (cMyBPC) are a major cause of hypertrophic cardiomyopathy (HCM). In particular, a single amino acid substitution of tyrosine to serine at residue 237 in humans (residue 235 in mice) has been linked to HCM with strong disease association. Although cMyBPC truncations, deletions and insertions, and frame shift mutations have been studied, relatively little is known about the functional consequences of missense mutations in cMyBPC. In this study, we characterized the functional and structural effects of the HCM-causing Y235S mutation by performing mechanical experiments and molecular dynamics simulations (MDS). cMyBPC null mouse myocardium was virally transfected with wild-type (WT) or Y235S cMyBPC (KOY235S). We found that Y235S cMyBPC was properly expressed and incorporated into the cardiac sarcomere, suggesting that the mechanism of disease of the Y235S mutation is not haploinsufficiency or poison peptides. Mechanical experiments in detergent-skinned myocardium isolated from KOY235S hearts revealed hypercontractile behavior compared to KOWT hearts, evidenced by accelerated cross-bridge kinetics and increased Ca2+ sensitivity of force generation. In addition, MDS revealed that the Y235S mutation causes alterations in important intramolecular interactions, surface conformations, and electrostatic potential of the C1 domain of cMyBPC. Our combined in vitro and in silico data suggest that the Y235S mutation directly disrupts internal and surface properties of the C1 domain of cMyBPC, which potentially alters its ligand-binding interactions. These molecular changes may underlie the mechanism for hypercontractile cross-bridge behavior, which ultimately results in the development of cardiac hypertrophy and in vivo cardiac dysfunction.  相似文献   

11.
Titin is a giant elastic protein responsible for passive force generated by the stretched striated-muscle sarcomere. Passive force develops in titin's extensible region which consists of the PEVK segment in series with tandemly arranged immunoglobulin (Ig)-like domains. Here we studied the mechanics of tandem Ig segments from the differentially spliced (I65-70) and constitutive (I91-98) regions by using an atomic force microscope specialized for stretching single molecules. The mechanical stability of I65-70 domains was found to be different from that of I91-98 domains. In the range of stretch rates studied (0.05-1.00 microm/s) lower average domain unfolding forces for I65-70 were associated with a weaker stretch-rate dependence of the unfolding force, suggesting that the differences in the mechanical stabilities of the segments derive from differences in the zero force unfolding rate (K(0)(u)) and the characteristic distance (location of the barrier) along the unfolding reaction coordinate (DeltaX(u)). No effect of calcium was found on unfolding forces and persistence length of unfolded domains. To explore the structural basis of the differences in mechanical stabilities of the two fragment types, we compared the amino acid sequence of I65-70 domains with that of I91-98 domains and by using homology modeling analyzed how sequence variations may affect folding free energies. Simulations suggest that differences in domain stability are unlikely to be caused by variation in the number of hydrogen bonds between the force-bearing beta-strands at the domain's N- and C-termini. Rather, they may be due to differences in hydrophobic contacts and strand orientations.  相似文献   

12.
In relatives of index patients with dilated cardiomyopathy and arrhythmogenic cardiomyopathy, early detection of disease onset is essential to prevent sudden cardiac death and facilitate early treatment of heart failure. However, the optimal screening interval and combination of diagnostic techniques are unknown. The clinical course of disease in index patients and their relatives is variable due to incomplete and age-dependent penetrance. Several biomarkers, electrocardiographic and imaging (echocardiographic deformation imaging and cardiac magnetic resonance imaging) techniques are promising non-invasive methods for detection of subclinical cardiomyopathy. However, these techniques need optimisation and integration into clinical practice. Furthermore, determining the optimal interval and intensity of cascade screening may require a personalised approach. To address this, the CVON-eDETECT (early detection of disease in cardiomyopathy mutation carriers) consortium aims to integrate electronic health record data from long-term follow-up, diagnostic data sets, tissue and plasma samples in a multidisciplinary biobank environment to provide personalised risk stratification for heart failure and sudden cardiac death. Adequate risk stratification may lead to personalised screening, treatment and optimal timing of implantable cardioverter defibrillator implantation. In this article, we describe non-invasive diagnostic techniques used for detection of subclinical disease in relatives of index patients with dilated cardiomyopathy and arrhythmogenic cardiomyopathy.  相似文献   

13.
Titin is the third most abundant protein in sarcomeres and fulfills a number of mechanical and signaling functions. Specifically, titin is responsible for most of the passive forces in sarcomeres and the passive visco-elastic behaviour of myofibrils and muscles. It has been suggested, based on mechanical testing of isolated titin molecules, that titin is an essentially elastic spring if Ig domain un/refolding is prevented either by working at short titin lengths, prior to any unfolding of Ig domains, or at long sarcomere (and titin) lengths when Ig domain un/refolding is effectively prevented. However, these properties of titin, and by extension of muscles, have not been tested with titin in its natural structural environment within a sarcomere. The purpose of this study was to gain insight into the Ig domain un/refolding kinetics and test the idea that titin could behave essentially elastically at any sarcomere length by preventing Ig domain un/refolding during passive stretch-shortening cycles. Although not completely successful, we demonstrate here that titin’s visco-elastic properties appear to depend on the Ig domain un/refolding kinetics and that indeed, titin (and thus myofibrils) can become virtually elastic when Ig domain un/refolding is prevented.  相似文献   

14.
The LMNA gene, which encodes the nuclear envelope protein lamin A/C, is considered to be the most common autosomal disease gene associated with familial dilated cardiomyopathy. To date, each mutation of the LMNA gene has been associated with a specific disease phenotype. Clinical data, family histories, and blood samples were collected from 27 biological members of a family with dilated cardiomyopathy, prominently occurring as heart failure and conduction system disease with a high incidence of sudden cardiac death in young females. Twelve exons of the LMNA gene were screened for nucleotide alterations. A novel insertion mutation (nucleotide 1526insA, amino acid T510Y) in exon nine of the LMNA gene was identified in seven subjects (7/27, 25.9 %). This reveals that the LMNA gene insertion mutation (T510Y frameshift mutation) can cause dilated cardiomyopathy, conduction system disease, and sudden cardiac death without skeletal myopathy, clinically manifested with early onset, severe symptoms, and poor prognosis.  相似文献   

15.
The giant proteins titin and obscurin are important for sarcomeric organization, stretch response, and sarcomerogenesis in myofibrils. The extreme C-terminus of titin (the M10 domain) binds to the N-terminus of obscurin (the Ig1 domain) in the M-band. The high-resolution structure of human M10 has been solved, along with M10 bound to one of its two known molecular targets, the Ig1 domain of obscurin-like. Multiple M10 mutations are linked to limb-girdle muscular dystrophy type 2J (LGMD2J) and tibial muscular dystrophy (TMD). The effect of the M10 mutations on protein structure and function has not been thoroughly characterized. We have engineered all four of the naturally occurring human M10 missense mutants and biophysically characterized them in vitro. Two of the four mutated constructs are severely misfolded, and cannot bind to the obscurin Ig1 domain. One mutation, H66P, is folded at room temperature but unfolds at 37°C, rendering it binding incompetent. The I57N mutation shows no significant structural, dynamic, or binding differences from the wild-type domain. We suggest that this mutation is not directly responsible for muscle wasting disease, but is instead merely a silent mutation found in symptomatic patients. Understanding the biophysical basis of muscle wasting disease can help streamline potential future treatments.  相似文献   

16.
Aberrant myofilament Ca(2+) sensitivity is commonly observed with multiple cardiac diseases, especially familial cardiomyopathies. Although the etiology of the cardiomyopathies remains unclear, improving cardiac muscle Ca(2+) sensitivity through either pharmacological or genetic approaches shows promise of alleviating the disease-related symptoms. Due to its central role as the Ca(2+) sensor for cardiac muscle contraction, troponin C (TnC) stands out as an obvious and versatile target to reset disease-associated myofilament Ca(2+) sensitivity back to normal. To test the hypothesis that aberrant myofilament Ca(2+) sensitivity and its related function can be corrected through rationally engineered TnC constructs, three thin filament protein modifications representing different proteins (troponin I or troponin T), modifications (missense mutation, deletion, or truncation), and disease subtypes (familial or acquired) were studied. A fluorescent TnC was utilized to measure Ca(2+) binding to TnC in the physiologically relevant biochemical model system of reconstituted thin filaments. Consistent with the pathophysiology, the restrictive cardiomyopathy mutation, troponin I R192H, and ischemia-induced truncation of troponin I (residues 1-192) increased the Ca(2+) sensitivity of TnC on the thin filament, whereas the dilated cardiomyopathy mutation, troponin T ΔK210, decreased the Ca(2+) sensitivity of TnC on the thin filament. Rationally engineered TnC constructs corrected the abnormal Ca(2+) sensitivities of the thin filament, reconstituted actomyosin ATPase activity, and force generation in skinned trabeculae. Thus, the present study provides a novel and versatile therapeutic strategy to restore diseased cardiac muscle Ca(2+) sensitivity.  相似文献   

17.
Titin is a giant filamentous protein of the muscle sarcomere in which stretch induces the unfolding of its globular domains. However, the mechanisms of how domains are progressively selected for unfolding and which domains eventually unfold have for long been elusive. Based on force-clamp optical tweezers experiments we report here that, in a paradoxical violation of mechanically driven activation kinetics, neither the global domain unfolding rate, nor the folded-state lifetime distributions of full-length titin are sensitive to force. This paradox is reconciled by a gradient of mechanical stability so that domains are gradually selected for unfolding as the magnitude of the force field increases. Atomic force microscopic screening of extended titin molecules revealed that the unfolded domains are distributed homogenously along the entire length of titin, and this homogeneity is maintained with increasing overstretch. Although the unfolding of domains with progressively increasing mechanical stability makes titin a variable viscosity damper, the spatially randomized variation of domain stability ensures that the induced structural changes are not localized but are distributed along the molecule''s length. Titin may thereby provide complex safety mechanims for protecting the sarcomere against structural disintegration under excessive mechanical conditions.  相似文献   

18.
Hypertrophic cardiomyopathy (HCM) is a familial myocardial disease with a prevalence of 1 in 500. More than 400 causative mutations have been identified in 13 sarcomeric and myofilament related genes, 350 of these are substitution mutations within eight sarcomeric genes. Within a population, examples of recurring identical disease causing mutations that appear to have arisen independently have been noted as well as those that appear to have been inherited from a common ancestor. The large number of novel HCM mutations could suggest a mechanism of increased mutability within the sarcomeric genes. The objective of this study was to evaluate the most commonly reported HCM genes, beta myosin heavy chain (MYH7), myosin binding protein C, troponin I, troponin T, cardiac regulatory myosin light chain, cardiac essential myosin light chain, alpha tropomyosin and cardiac alpha-actin for sequence patterns surrounding the substitution mutations that may suggest a mechanism of increased mutability. The mutations as well as the 10 flanking nucleotides were evaluated for frequency of di-, tri- and tetranucleotides containing the mutation as well as for the presence of certain tri- and tetranculeotide motifs. The most common substitutions were guanine (G) to adenine (A) and cytosine (C) to thymidine (T). The CG dinucleotide had a significantly higher relative mutability than any other dinucleotide (p<0.05). The relative mutability of each possible trinucleotide and tetranucleotide sequence containing the mutation was calculated; none were at a statistically higher frequency than the others. The large number of G to A and C to T mutations as well as the relative mutability of CG may suggest that deamination of methylated CpG is an important mechanism for mutation development in at least some of these cardiac genes.  相似文献   

19.
Titin (connectin) based passive force regulation has been an important physiological mechanism to adjust to varying muscle stretch conditions. Upon stretch, titin behaves as a spring capable of modulating its elastic response in accordance with changes in muscle biochemistry. One such mechanism has been the calcium-dependent stiffening of titin domains that renders the spring inherently more resistant to stretch. This transient titin-calcium interaction may serve a protective function in muscle, which could preclude costly unfolding of select domains when muscles elongate to great lengths. To test this idea, fluorescence spectroscopy was performed revealing a change in the microenvironment of the investigated immunoglobulin domain 27 (I27) of titin with calcium. Additionally, an atomic force microscope was used to evaluate the calcium-dependent regulation of passive force by stretching eight linked titin I27 domains until they unfolded. When stretching in the presence of calcium, the I27 homopolymer chain became stabilized, displaying three novel properties: (1) higher stretching forces were needed to unfold the domains, (2) the stiffness, measured as a persistence length (PL), increased and (3) the peak-to-peak distance between adjacent I27 domains increased. Furthermore, a peak order dependence became apparent for both force and PL, reflecting the importance of characterizing the dynamic unfolding history of a polymer with this approach. Together, this novel titin Ig-calcium interaction may serve to stabilize the I27 domain permitting titin to tune passive force within stretched muscle in a calcium-dependent manner.  相似文献   

20.
The molecular interactions of the sarcomeric proteins are essential in the regulation of various cardiac functions. Mutations in the gene MYBPC3 coding for cardiac myosin-binding protein-C (cMyBP-C), a multi-domain protein, are the most common cause of hypertrophic cardiomyopathy (HCM). The N-terminal complex, C1-motif-C2 is a central region in cMyBP-C for the regulation of cardiac muscle contraction. However, the mechanism of binding/unbinding of this complex during health and disease is unknown. Here, we study possible mechanisms of unbinding using steered molecular dynamics simulations for the complex in the wild type, in single mutations (E258K in C1, E441K in C2), as well as in a double mutation (E258K in C1 + E441K in C2), which are associated with severe HCM. The observed molecular events and the calculation of force utilized for the unbinding suggest the following: (i) double mutation can encourage the formation of rigid complex that required large amount of force and long-time to unbind, (ii) C1 appears to start to unbind ahead of C2 regardless of the mutation, and (iii) unbinding of C2 requires larger amount of force than C1. This molecular insight suggests that key HCM-causing mutations might significantly modify the native affinity required for the assembly of the domains in cMyBP-C, which is essential for normal cardiac function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号