首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
In vertebrates, hyaluronan is produced in the plasma membrane from cytosolic UDP-sugar substrates by hyaluronan synthase 1–3 (HAS1–3) isoenzymes that transfer N-acetylglucosamine (GlcNAc) and glucuronic acid (GlcUA) in alternative positions in the growing polysaccharide chain during its simultaneous extrusion into the extracellular space. It has been shown that HAS2 immunoprecipitates contain functional HAS2 homomers and also heteromers with HAS3 (Karousou, E., Kamiryo, M., Skandalis, S. S., Ruusala, A., Asteriou, T., Passi, A., Yamashita, H., Hellman, U., Heldin, C. H., and Heldin, P. (2010) The activity of hyaluronan synthase 2 is regulated by dimerization and ubiquitination. J. Biol. Chem. 285, 23647–23654). Here we have systematically screened in live cells, potential interactions among the HAS isoenzymes using fluorescence resonance energy transfer (FRET) and flow cytometric quantification. We show that all HAS isoenzymes form homomeric and also heteromeric complexes with each other. The same complexes were detected both in Golgi apparatus and plasma membrane by using FRET microscopy and the acceptor photobleaching method. Proximity ligation assays with HAS antibodies confirmed the presence of HAS1-HAS2, HAS2-HAS2, and HAS2-HAS3 complexes between endogenously expressed HASs. C-terminal deletions revealed that the enzymes interact mainly via uncharacterized N-terminal 86-amino acid domain(s), but additional binding site(s) probably exist in their C-terminal parts. Of all the homomeric complexes HAS1 had the lowest and HAS3 the highest synthetic activity. Interestingly, HAS1 transfection reduced the synthesis of hyaluronan obtained by HAS2 and HAS3, suggesting functional cooperation between the isoenzymes. These data indicate a general tendency of HAS isoenzymes to form both homomeric and heteromeric complexes with potentially important functional consequences on hyaluronan synthesis.  相似文献   

2.
Hyaluronan (HA) is a glycosaminoglycan present in most tissue microenvironments that can modulate many cell behaviors, including proliferation, migration, and adhesive proprieties. In contrast with other glycosaminoglycans, which are synthesized in the Golgi, HA is synthesized at the plasma membrane by one or more of the three HA synthases (HAS1–3), which use cytoplasmic UDP-glucuronic acid and UDP-N-acetylglucosamine as substrates. Previous studies revealed the importance of UDP-sugars for regulating HA synthesis. Therefore, we analyzed the effect of UDP-GlcNAc availability and protein glycosylation with O-linked N-acetylglucosamine (O-GlcNAcylation) on HA and chondroitin sulfate synthesis in primary human aortic smooth muscle cells. Glucosamine treatment, which increases UDP-GlcNAc availability and protein O-GlcNAcylation, increased synthesis of both HA and chondroitin sulfate. However, increasing O-GlcNAcylation by stimulation with O-(2-acetamido-2-deoxy-d-glucopyranosylidene)amino-N-phenylcarbamate without a concomitant increase of UDP-GlcNAc increased only HA synthesis. We found that HAS2, the main synthase in aortic smooth muscle cells, can be O-GlcNAcylated on serine 221, which strongly increased its activity and its stability (t½ >5 h versus ∼17 min without O-GlcNAcylation). S221A mutation prevented HAS2 O-GlcNAcylation, which maintained the rapid turnover rate even in the presence of GlcN and increased UDP-GlcNAc. These findings could explain the elevated matrix HA observed in diabetic vessels that, in turn, could mediate cell dedifferentiation processes critical in vascular pathologies.  相似文献   

3.
4.
In many cancers hyaluronan content is increased, either by tumor cells or the surrounding stromal cells and this increased hyaluronan content correlates with unfavorable clinical prognosis. In the present work, we studied the effects of melanoma cell (aggressive melanoma cell line C8161)-derived factors on fibroblast hyaluronan synthesis, intracellular signaling, MMP expression and invasion. Treatment of the fibroblast cultures with melanoma cell conditioned medium (CM) caused accumulation of hyaluronan in the culture medium and formation of thick pericellular hyaluronan coat and hyaluronan cables. The expression of Has2 was increased approximately 20-fold by the C8161 melanoma cell CM, while Has1 and Has3 were increased twofold. Knock-down of Has2 expression with siRNA showed that Has2 was responsible for the increased hyaluronan synthesis induced by the melanoma cell CM. To find out the signaling routes, which led to Has2 upregulation, the phosphorylation profiles of 46 kinases were screened with phosphokinase array kit. Melanoma cell CM treatment strongly induced a rapid phosphorylation of p38, JNK, AKT, CREB, HSP27, STAT3 and cJUN. Treatment of the fibroblasts with specific inhibitors of PI3K, AKT and p38 reduced the melanoma cell CM-induced hyaluronan secretion, while the inhibitor of PDGFR totally blocked it. In addition, siRNA for PDGFRα/β inhibited Has2 upregulation in melanoma cell CM-treated fibroblasts. In parallel with the increased hyaluronan synthesis the melanoma cell CM-treated fibroblasts showed spindle shape, numerous long cell protrusions, enhanced MMP expression and increased invasion into collagen-Cultrex matrix. siRNA blocking of Has2 or PDGFRα/β expression reversed the stimulatory effect of melanoma cell CM on fibroblast invasion. PDGF secreted by melanoma cells thus mediated fibroblasts activation, with HAS2 upregulation as a major factor in the fibroblast response. This effect on stromal matrix is suggested to favor tumor growth.  相似文献   

5.
Hyaluronan is a ubiquitous glycosaminoglycan involved in embryonic development, inflammation and cancer. In mammals, three hyaluronan synthase isoenzymes (HAS1-3) inserted in the plasma membrane produce hyaluronan directly on cell surface. The mRNA level and enzymatic activity of HAS1 are lower than those of HAS2 and HAS3 in many cells, obscuring the importance of HAS1. Here we demonstrate using immunocytochemistry and transfection of fluorescently tagged HAS1 that its enzymatic activity depends on the ER–Golgi–plasma membrane traffic, like reported for HAS2 and HAS3. When cultured in 5 mM glucose, HAS1-transfected MCF-7 cells show very little cell surface hyaluronan, detected with a fluorescent hyaluronan binding probe. However, a large hyaluronan coat was seen in cells grown in 20 mM glucose and 1 mM glucosamine, or treated with IL-1β, TNF-α, or TGF-β. The coats were mostly removed by the presence of hyaluronan hexasaccharides, or Hermes1 antibody, indicating that they depended on the CD44 receptor, which is in a contrast to the coat produced by HAS3, remaining attached to HAS3 itself. The findings suggest that HAS1-dependent coat is induced by inflammatory agents and glycemic stress, mediated by altered presentation of either CD44 or hyaluronan, and can offer a rapid cellular response to injury and inflammation.  相似文献   

6.
1. The tissue contents of hexose monophosphate, N-acetylglucosamine 6-phosphate, UDP-glucose, UDP-galactose, UDP-N-acetylglucosamine, UDP-N-acetylgalactosamine and UDP-glucuronic acid were determined in the skin of young rats less than 1 day post partum. Tissue-space determinations were used to calculate their average cellular concentrations. 2. The incorporation of [U-14C]-glucose into the intermediates was recorded with time and their rates of turnover were calculated. The results demonstrated product–precursor relationships along the pathway of hexosamine synthesis and that of hexuronic acid synthesis. The rates of synthesis of UDP-N-acetylhexosamine and UDP-glucuronic acid were 1·5±0·3 and 0·24±0·03mμmoles/min./g. of tissue respectively. These results indicated the average turnover time of the total tissue glycosaminoglycans to be about 5 days.  相似文献   

7.
We have identified an operon and characterized the functions of two genes from the severe food-poisoning bacterium, Bacillus cereus subsp. cytotoxis NVH 391-98, that are involved in the synthesis of a unique UDP-sugar, UDP-2-acetamido-2-deoxyxylose (UDP-N-acetyl-xylosamine, UDP-XylNAc). UGlcNAcDH encodes a UDP-N-acetyl-glucosamine 6-dehydrogenase, converting UDP-N-acetylglucosamine (UDP-GlcNAc) to UDP-N-acetyl-glucosaminuronic acid (UDP-GlcNAcA). The second gene in the operon, UXNAcS, encodes a distinct decarboxylase not previously described in the literature, which catalyzes the formation of UDP-XylNAc from UDP-GlcNAcA in the presence of exogenous NAD+. UXNAcS is specific and cannot utilize UDP-glucuronic acid and UDP-galacturonic acid as substrates. UXNAcS is active as a dimer with catalytic efficiency of 7 mm−1 s−1. The activity of UXNAcS is completely abolished by NADH but unaffected by UDP-xylose. A real-time NMR-based assay showed unambiguously the dual enzymatic conversions of UDP-GlcNAc to UDP-GlcNAcA and subsequently to UDP-XylNAc. From the analyses of all publicly available sequenced genomes, it appears that UXNAcS is restricted to pathogenic Bacillus species, including Bacillus anthracis and Bacillus thuringiensis. The identification of UXNAcS provides insight into the formation of UDP-XylNAc. Understanding the metabolic pathways involved in the utilization of this amino-sugar may allow the development of drugs to combat and eradicate the disease.  相似文献   

8.
9.
1. Glucosamine 6-phosphate deaminase [2-amino-2-deoxy-d-glucose 6-phosphate ketol-isomerase (deaminating), EC 5.3.1.10] of Bacillus subtilis has been partially purified. Its Km is 3·0mm. 2. Extracts of B. subtilis contain N-acetylglucosamine 6-phosphate deacetylase (Km 1·4mm), glucosamine 1-phosphate acetylase and amino sugar kinases (EC 2.7.1.8 and 2.7.1.9). 3. Glucosamine 6-phosphate synthetase (l-glutamine–d-fructose 6-phosphate aminotransferase, EC 2.6.1.16) is repressed by growth of B. subtilis in the presence of glucosamine, N-acetylglucosamine, N-propionylglucosamine or N-formylglucosamine. Glucosamine 6-phosphate deaminase and N-acetylglucosamine 6-phosphate deacetylase are induced by N-acetylglucosamine. Amino sugar kinases are induced by glucose, glucosamine and N-acetylglucosamine. The synthesis of glucosamine 1-phosphate acetylase is unaffected by amino sugars. 4. Glucose in the growth medium prevents the induction of glucosamine 6-phosphate deaminase and of N-acetylglucosamine 6-phosphate deacetylase caused by N-acetylglucosamine; glucose also alleviates the repression of glucosamine 6-phosphate synthetase caused by amino sugars. 5. Glucosamine 6-phosphate deaminase increases in bacteria incubated beyond the exponential phase of growth. This increase is prevented by glucose.  相似文献   

10.
The incorporation of labelled amino sugars by Bacillus subtilis   总被引:1,自引:1,他引:0  
1. Glucosamine 6-phosphate deaminase [2-amino-2-deoxy-d-glucose 6-phosphate ketol-isomerase (deaminating), EC 5.3.1.10] of Bacillus subtilis has been partially purified. Its Km is 3·0mm. 2. Extracts of B. subtilis contain N-acetylglucosamine 6-phosphate deacetylase (Km 1·4mm), glucosamine 1-phosphate acetylase and amino sugar kinases (EC 2.7.1.8 and 2.7.1.9). 3. Glucosamine 6-phosphate synthetase (l-glutamine–d-fructose 6-phosphate aminotransferase, EC 2.6.1.16) is repressed by growth of B. subtilis in the presence of glucosamine, N-acetylglucosamine, N-propionylglucosamine or N-formylglucosamine. Glucosamine 6-phosphate deaminase and N-acetylglucosamine 6-phosphate deacetylase are induced by N-acetylglucosamine. Amino sugar kinases are induced by glucose, glucosamine and N-acetylglucosamine. The synthesis of glucosamine 1-phosphate acetylase is unaffected by amino sugars. 4. Glucose in the growth medium prevents the induction of glucosamine 6-phosphate deaminase and of N-acetylglucosamine 6-phosphate deacetylase caused by N-acetylglucosamine; glucose also alleviates the repression of glucosamine 6-phosphate synthetase caused by amino sugars. 5. Glucosamine 6-phosphate deaminase increases in bacteria incubated beyond the exponential phase of growth. This increase is prevented by glucose.  相似文献   

11.
12.
Hyaluronan synthases (HAS1–3) are integral plasma membrane proteins that synthesize hyaluronan, a cell surface and extracellular matrix polysaccharide necessary for many biological processes. It has been shown that HAS is partly localized in cholesterol-rich lipid rafts of MCF-7 cells, and cholesterol depletion with methyl-β-cyclodextrin (MβCD) suppresses hyaluronan secretion in smooth muscle cells. However, the mechanism by which cholesterol depletion inhibits hyaluronan production has remained unknown. We found that cholesterol depletion from MCF-7 cells by MβCD inhibits synthesis but does not decrease the molecular mass of hyaluronan, suggesting no major influence on HAS stability in the membrane. The inhibition of hyaluronan synthesis was not due to the availability of HAS substrates UDP-GlcUA and UDP-GlcNAc. Instead, MβCD specifically down-regulated the expression of HAS2 but not HAS1 or HAS3. Screening of signaling proteins after MβCD treatment revealed that phosphorylation of Akt and its downstream target p70S6 kinase, both members of phosphoinositide 3-kinase-Akt pathway, were inhibited. Inhibitors of this pathway suppressed hyaluronan synthesis and HAS2 expression in MCF-7 cells, suggesting that the reduced hyaluronan synthesis by MβCD is due to down-regulation of HAS2, mediated by the phosphoinositide 3-kinase-Akt-mTOR-p70S6K pathway.  相似文献   

13.
The metabolism of d-galactosamine and N-acetyl-d-galactosamine in rat liver   总被引:3,自引:3,他引:0  
d-[1-14C]Galactosamine appears to be utilized mainly by the pathway of galactose metabolism in rat liver, as evidenced by the products isolated from the acid-soluble fraction of perfused rat liver. These products were eluted in the following order from a Dowex 1 (formate form) column and were characterized as galactosamine 1-phosphate, sialic acid, UDP-glucosamine, UDP-galactosamine, N-acetylgalactosamine 1-phosphate, N-acetylglucosamine 6-phosphate, UDP-N-acetylglucosamine, UDP-N-acetylgalactosamine and an unidentified galactosamine-containing compound. In addition, [1-14C]glucosamine was found in the glycogen, an incorporation previously shown to result from the substitution of UDP-glucosamine for UDP-glucose in the glycogen synthetase reaction. Analysis of the [1-14C]glucosamine-containing disaccharides released from glycogen by β-amylase provided additional evidence that they consist of a mixture of glucose and glucosamine in a 1:1 ratio, but with glucose predominating on the reducing end. UDP-N-acetylgalactosamine was shown to result from the reaction of UTP with N-acetylgalactosamine 1-phosphate in the presence of a rat liver extract.  相似文献   

14.
1. When pig ear skin slices were cultured for 18h in the presence of 1μg of tunicamycin/ml the incorporation of d-[3H]glucosamine into the epidermis, solubilized with 8m-urea/5% (w/v) sodium dodecyl sulphate, was inhibited by 45–55%. This degree of inhibition was not increased by using up to 5μg of tunicamycin/ml or by treating the skin slices with tunicamycin for up to 8 days. The incorporation of (U-14C)-labelled l-amino acids under these conditions was not affected by tunicamycin. Polyacrylamide-gel electrophoresis indicated that the labelling of the major glycosaminoglycan peak with d-[3H]glucosamine was unaffected, whereas that of the faster migrating glycoprotein components was considerably decreased in the presence of tunicamycin. 2. Subcellular fractionation indicated that tunicamycin specifically inhibited the incorporation of d-[3H]glucosamine but not of (U-14C)-labelled l-amino acids into particulate (mainly plasma-membrane) glycoproteins by about 70%. The labelling of soluble glycoproteins was hardly affected. Polyacrylamide-gel electrophoresis of the plasma-membrane fraction showed decreased d-[3H]glucosamine incorporation into all glycoprotein components, indicating that the plasma-membrane glycoproteins contained mainly N-asparagine-linked oligosaccharides. 3. Cellulose acetate electrophoresis of both cellular and extracellular glycosaminoglycans showed that tunicamycin had no significant effect on the synthesis of the major component, hyaluronic acid. However, the incorporation of both d-[3H]glucosamine and 35SO42− into sulphated glycosaminoglycans was inhibited by about 50%. This inhibition was partially overcome, at least in the cellular fraction, by 2mm-p-nitrophenyl β-d-xyloside indicating that tunicamycin-treated epidermis retained the ability to synthesize sulphated glycosaminoglycan chains. Tunicamycin may affect the synthesis and/or degradation of proteoglycan core proteins or the xylosyltransferase. 4. Electron-microscopic examination of epidermis treated with tunicamycin for up to 4 days revealed no significant changes in cell-surface morphology or in epidermal-cell adhesion. Either N-asparagine-linked carbohydrates play little role in epidermal-cell adhesion or more probably there is little turnover of these components in epidermal adhesive structures such as desmosomes and hemidesmosomes during organ culture.  相似文献   

15.
Tsai CM  Hassid WZ 《Plant physiology》1973,51(6):998-1001
UDP-d-glucose, at a micromolar level in the presence of MgCl2 and oat (Avena sativa) coleoptile particulate enzyme which contains both β-(1 → 3) and β-(1 → 4) glucan synthetases, produces glucan with mainly β-(1 → 4) glucosyl linkages. An activation of β-(1 → 3) glucan synthetase by UDP-d-glucose and a decrease in the formation of β-(1 → 3) glucan in the presence of MgCl2 have been observed. However, at high substrate concentration (≥ 10−4m), the activation of β-(1 → 3) glucan synthetase is so pronounced that the formation of β-(1 → 3) glucosyl linkage predominates in synthesized glucan regardless of the presence of MgCl2. These observations may explain the striking shift in the composition of glucan of particulate enzyme from a β-(1 → 4) to β-(1 → 3) glucosyl linkage when UDP-d-glucose concentration is raised from a low concentration (≤ 10−5m) to a higher concentration (≥ 10−4m).  相似文献   

16.
17.
A complete procedure for the synthesis of 1-14C-glucosamine-labeled UDP-N-acetylglucosamine is described. Glucosamine is first phosphorylated with ATP and hexokinase to form glucosamine 6-phosphate. This is N-acetylated with acetic anhydride, and the product is converted to UDP-N-acetylglucosamine by incubation with a crude yeast extract. The sugar nucleotide is isolated from the incubation mixture by paper electrophoresis, and purified by paper chromatography.  相似文献   

18.
We found that d-mannose dose-dependently decreases hyaluronan synthesis in cultured epidermal keratinocytes to approximately 50%, whereas glucose, galactose, and fructose up to 20 mm concentration had no effect. The full inhibition occurred within 3 h following introduction of mannose and did not involve down-regulation of hyaluronan synthase (Has1-3) mRNA. Following introduction of mannose, there was an approximately 50% reduction in the cellular concentration of UDP-N-acetylhexosamines (UDP-HexNAc, i.e. UDP-N-acetylglucosamine and UDP-N-acetylgalactosamine). On the other hand, 2 mm glucosamine in the culture medium increased UDP-HexNAc content, stimulated hyaluronan secretion, and negated the effect of mannose, supporting the notion that the inhibition by mannose on hyaluronan synthesis was because of down-regulated UDP-HexNAc content. The content of UDP-glucuronic acid, the other building block for hyaluronan synthesis, was not reduced by mannose but declined from 39 to 14% of controls by 0.2-1.0 mm 4-methylumbelliferone, another compound that inhibits hyaluronan synthesis. Applying 4-methylumbelliferone and mannose together produced the expected reductions in both UDP sugars but no additive reduction in hyaluronan production, indicating that the concentration of each substrate alone can limit hyaluronan synthesis. Mannose is a potentially useful tool in studies on hyaluronan-dependent cell functions, as demonstrated by reduced rates of keratinocyte proliferation and migration, functions known to depend on hyaluronan synthesis.  相似文献   

19.
20.
Hyaluronan accumulation on cancer cells and their surrounding stroma predicts an unfavourable disease outcome, suggesting that hyaluronan enhances tumor growth and spreading. 4-Methylumbelliferone (4-MU) inhibits hyaluronan synthesis and retards cancer spreading in experimental animals through mechanisms not fully understood. These mechanisms were studied in A2058 melanoma cells, MCF-7 and MDA-MB-361 breast, SKOV-3 ovarian and UT-SCC118 squamous carcinoma cells by analysing hyaluronan synthesis, UDP-glucuronic acid (UDP-GlcUA) content, and hyaluronan synthase (HAS) mRNA levels. The maximal inhibition in hyaluronan synthesis ranged 22-80% in the cell lines tested. Active glucuronidation of 4-MU produced large quantities of 4-MU-glucuronide, depleting the cellular UDP-GlcUA pool. The maximal reduction varied between 38 and 95%. 4-MU also downregulated HAS mRNA levels: HAS3 was 84-60% lower in MDA-MB-361, A2058 and SKOV-3 cells. HAS2 was the major isoenzyme in MCF-7 cells and lowered by 81%, similar to 88% in A2058 cells. These data indicate that both HAS substrate and HAS2 and/or HAS3 mRNA are targeted by 4-MU. Despite different target point sensitivities, the reduction of hyaluronan caused by 4-MU was associated with a significant inhibition of cell migration, proliferation and invasion, supporting the importance of hyaluronan synthesis in cancer, and the therapeutic potential of hyaluronan synthesis inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号