首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 275 毫秒
1.

Background

Cisplatin is one of the most commonly used chemotherapy agent for lung cancer. The therapeutic efficacy of cisplatin is limited by the development of resistance.In this study, we test the effect of RNA interference (RNAi) targeting Fanconi anemia (FA)/BRCA pathway upstream genes on the sensitivity of cisplatin-sensitive (A549 and SK-MES-1) and -resistant (A549/DDP) lung cancer cells to cisplatin.

Result

Using small interfering RNA (siRNA), knockdown of FANCF, FANCL, or FANCD2 inhibited function of the FA/BRCA pathway in A549, A549/DDP and SK-MES-1 cells, and potentiated sensitivity of the three cells to cisplatin. The extent of proliferation inhibition induced by cisplatin after knockdown of FANCF and/or FANCL in A549/DDP cells was significantly greater than in A549 and SK-MES-1 cells, suggesting that depletion of FANCF and/or FANCL can reverse resistance of cisplatin-resistant lung cancer cells to cisplatin. Furthermore, knockdown of FANCL resulted in higher cisplatin sensitivity and dramatically elevated apoptosis rates compared with knockdown of FANCF in A549/DDP cells, indicating that FANCL play an important role in the repair of cisplatin-induced DNA damage.

Conclusion

Knockdown of FANCF, FANCL, or FANCD2 by RNAi could synergize the effect of cisplatin on suppressing cell proliferation in cisplatin-resistant lung cancer cells through inhibition of FA/BRCA pathway.  相似文献   

2.

Background

Clinical use of chemotherapeutic drug, cisplatin is limited by its toxicity and drug resistance. Therefore, efforts continue for the discovery of novel combination therapies with cisplatin, to increase efficacy and reduce its toxicity. Here, we screened 16 medicinal plant extracts from Northeast part of India and found that leaf extract of Zanthoxylumarmatum DC. (ZALE) induced cytotoxicity as well as an effect on the increasing of the efficiency of chemotherapeutic drugs (cisplatin, mitomycin C and camptothecin). This work shows detail molecular mechanism of anti-cancer activity of ZALE and its potential for combined treatment regimens to enhance the apoptotic response of chemotherapeutic drugs.

Results

ZALE induced cytotoxicity, nuclear blebbing and DNA fragmentation in HeLA cells suggesting apoptosis induction in human cervical cell line. However, the apoptosis induced was independent of caspase 3 activation and poly ADP ribose polymerase (PARP) cleavage. Further, ZALE activated Mitogen-activated protein kinases (MAPK) pathway as revealed by increased phosphorylation of extracellular-signal-regulated kinases (ERK), p38 and c-Jun N-terminal kinase (JNK). Inhibition of ERK activation but not p38 or JNK completely blocked the ZALE induced apoptosis suggesting an ERK dependent apoptosis. Moreover, ZALE generated DNA double strand breaks as suggested by the induction γH2AX foci formation. Interestingly, pretreatment of certain cancer cell lines with ZALE, sensitized the cancer cells to cisplatin and other chemotherapeutic drugs. Enhanced caspase activation was observed in the synergistic interaction among chemotherapeutic drugs and ZALE.

Conclusion

Purification and identification of the bio-active molecules from the ZALE or as a complementary treatment for a sequential treatment of ZALE with chemotherapeutic drugs might be a new challenger to open a new therapeutic window for the novel anti-cancer treatment.

Electronic supplementary material

The online version of this article (doi:10.1186/s40659-015-0037-4) contains supplementary material, which is available to authorized users.  相似文献   

3.

Aims

XRCC3 and RAD51 are two important members in homologous recombination repair pathway. This study was performed to detect the expressions of these two molecules in breast cancer and explore their correlations with clinicopathological factors.

Methods and Results

Immunohistochemistry was used to detect protein expressions of XRCC3 and RAD51 in 248 cases of breast cancer tissue and 78 cases of adjacent non-cancerous tissue. Data showed that expressions for both XRCC3 and RAD51 were significantly increased in breast cancer. High XRCC3 expression was associated with large tumor size and positive PR and HER2 status, while high RAD51 expression was associated with axillary lymph node metastasis and positive PR and HER2 status. The result of multivariate analysis demonstrated that HER2, PR and RAD51 were significantly association with XRCC3. And besides XRCC3, axillary lymph node metastasis and PR were significantly correlated with RAD51.

Conclusions

XRCC3 and RAD51 were significantly associated with clinicopathological factors and they might play important roles in the development and progress of breast cancer.  相似文献   

4.
The DNA damage response kinase ATR may be a useful cancer therapeutic target. ATR inhibition synergizes with loss of ERCC1, ATM, XRCC1 and DNA damaging chemotherapy agents. Clinical trials have begun using ATR inhibitors in combination with cisplatin. Here we report the first synthetic lethality screen with a combination treatment of an ATR inhibitor (ATRi) and cisplatin. Combination treatment with ATRi/cisplatin is synthetically lethal with loss of the TLS polymerase ζ and 53BP1. Other DNA repair pathways including homologous recombination and mismatch repair do not exhibit synthetic lethal interactions with ATRi/cisplatin, even though loss of some of these repair pathways sensitizes cells to cisplatin as a single-agent. We also report that ATRi strongly synergizes with PARP inhibition, even in homologous recombination-proficient backgrounds. Lastly, ATR inhibitors were able to resensitize cisplatin-resistant cell lines to cisplatin. These data provide a comprehensive analysis of DNA repair pathways that exhibit synthetic lethality with ATR inhibitors when combined with cisplatin chemotherapy, and will help guide patient selection strategies as ATR inhibitors progress into the cancer clinic.  相似文献   

5.

Background

Previous studies on the association of X-ray repair cross-complementing group 1 (XRCC1) Arg194Trp, Arg399Gln, and Arg280His polymorphisms with head and neck cancer (HNC) have produced inconsistent results. The aim of the present study was to evaluate the effects of these three polymorphic variants on HNC risk.

Methods

The PubMed and EMBASE databases were searched for genetic association studies on the XRCC1 Arg194Trp, Arg399Gln, and Arg280His polymorphisms and HNC risk. (The most recent search was conducted on 20 August, 2013.) Twenty-six studies were identified and meta-analysis was performed to evaluate the association between the polymorphism and HNC by calculating combined odds ratios and 95% confidence intervals.

Results

No significant association was found under the allelic, homozygous, heterozygote, and dominant genetic models in the overall comparison. Further, no significant association between the XRCC1 Arg399Gln and Arg280His polymorphisms and HNC risk was detected under the four genetic models in subgroup analyses based on ethnicity, cancer site, and whether or not the studies had been adjusted for cigarette smoking and alcohol. However, in stratified analyses based on cancer site, a significant association was found between the XRCC1 Arg194Trp polymorphism and oral cancer under the allelic, heterozygote, and dominant models. The XRCC1 Arg194Trp polymorphism was significantly associated with HNC risk in studies that were adjusted for smoking and alcohol under the homozygous and heterozygote models.

Conclusion

The meta-analysis results suggest that the XRCC1 Arg399Gln and Arg280His polymorphisms are probably not associated with the risk of HNC, but the XRCC1 Arg194Trp polymorphism was associated with increased risk of HNC in the subgroup analysis of studies adjusted for smoking and alcohol and with increased risk of oral cancer in the stratified analyses based on cancer site. Further studies with larger samples are needed to confirm these findings.  相似文献   

6.
HH Baydoun  XT Bai  S Shelton  C Nicot 《PloS one》2012,7(8):e42226

Background

Appropriate responses to damaged DNA are indispensible for preserving genome stability and preventing cancer. Tumor viruses often target DNA repair machinery to achieve transformation. The Human T-cell leukemia virus type I (HTLV-I) is the only known transforming human retrovirus and the etiological agent of Adult T-cell Leukemia (ATLL). Although HTLV-I-transformed leukemic cells have numerous genetic lesions, the precise role of the viral tax gene in this process is not fully understood.

Results

Our results show a novel function of HTLV-I oncoprotein Tax as an inducer of genomic DNA double strand breaks (DDSB) during DNA replication. We also found that Tax acts as a potent inhibitor of homologous recombination (HR) DNA repair through the activation of the NF-kB pathway. These results were confirmed using HTLV-I molecular clones expressing Tax at physiological levels in a natural context. We further found that HTLV-I- and Tax-transformed cells are not more susceptible to DNA damaging agents and repair DNA lesions at a rate similar to that of normal cells. Finally, we demonstrated that during S phase, Tax-associated DDSB are preferentially repaired using the error-prone non-homologous end joining (NHEJ) pathway.

Conclusions

This study provides new insights in Tax effects on DNA repair and genome instability. Although it may not be self sufficient, the creation of DNA breaks and subsequent abnormal use of the non-conservative NHEJ DNA repair during the S phase in HTLV-I-infected Tax-expressing cells may cooperate with other factors to increase genetic and genome instability and favor transformation.  相似文献   

7.

Objective

Aldehyde dehydrogenase (ALDH) expressing cells have been characterized as possessing stem cell-like properties. We evaluated ALDH+ ovarian cancer stem cell-like properties and their role in platinum resistance.

Methods

Isogenic ovarian cancer cell lines for platinum sensitivity (A2780) and platinum resistant (A2780/CP70) as well as ascites from ovarian cancer patients were analyzed for ALDH+ by flow cytometry to determine its association to platinum resistance, recurrence and survival. A stable shRNA knockdown model for ALDH1A1 was utilized to determine its effect on cancer stem cell-like properties, cell cycle checkpoints, and DNA repair mediators.

Results

ALDH status directly correlated to platinum resistance in primary ovarian cancer samples obtained from ascites. Patients with ALDHHIGH displayed significantly lower progression free survival than the patients with ALDHLOW cells (9 vs. 3 months, respectively p<0.01). ALDH1A1-knockdown significantly attenuated clonogenic potential, PARP-1 protein levels, and reversed inherent platinum resistance. ALDH1A1-knockdown resulted in dramatic decrease of KLF4 and p21 protein levels thereby leading to S and G2 phase accumulation of cells. Increases in S and G2 cells demonstrated increased expression of replication stress associated Fanconi Anemia DNA repair proteins (FANCD2, FANCJ) and replication checkpoint (pS317 Chk1) were affected. ALDH1A1-knockdown induced DNA damage, evidenced by robust induction of γ-H2AX and BAX mediated apoptosis, with significant increases in BRCA1 expression, suggesting ALDH1A1-dependent regulation of cell cycle checkpoints and DNA repair networks in ovarian cancer stem-like cells.

Conclusion

This data suggests that ovarian cancer cells expressing ALDH1A1 may maintain platinum resistance by altered regulation of cell cycle checkpoint and DNA repair network signaling.  相似文献   

8.
W Xu  Q Chen  Q Wang  Y Sun  S Wang  A Li  S Xu  O D R?e  M Wang  R Zhang  L Yang  J Zhou 《Cell death & disease》2014,5(12):e1551
Gastric cancer is the third most common malignancy in China, with a median 5-year survival of only 20%. Cisplatin has been used in first-line cancer treatment for several types of cancer including gastric cancer. However, patients are often primary resistant or develop acquired resistance resulting in relapse of the cancer and reduced survival. Recently, we demonstrated that the reduced expression of base excision repair protein XRCC1 and its upstream regulator JWA in gastric cancerous tissues correlated with a significant survival benefit of adjuvant first-line platinum-based chemotherapy as well as XRCC1 playing an important role in the DNA repair of cisplatin-resistant gastric cancer cells. In the present study, we demonstrated the role of JWA in cisplatin-induced DNA lesions and aquired cisplatin resistance in five cell-culture models: gastric epithelial cells GES-1, cisplatin-sensitive gastric cancer cell lines BGC823 and SGC7901, and the cisplatin-resistant gastric cancer cell lines BGC823/DDP and SGC7901/DDP. Our results indicated that JWA is required for DNA repair following cisplatin-induced double-strand breaks (DSBs) via XRCC1 in normal gastric epithelial cells. However, in gastric cancer cells, JWA enhanced cisplatin-induced cell death through regulation of DNA damage-induced apoptosis. The protein expression of JWA was significantly decreased in cisplatin-resistant cells and contributed to cisplatin resistance. Interestingly, as JWA upregulated XRCC1 expression in normal cells, JWA downregulated XRCC1 expression through promoting the degradation of XRCC1 in cisplatin-resistant gastric cancer cells. Furthermore, the negative regulation of JWA to XRCC1 was blocked due to the mutation of 518S/519T/523T residues of XRCC1, and indicating that the CK2 activated 518S/519T/523T phosphorylation is a key point in the regulation of JWA to XRCC1. In conclusion, we report for the first time that JWA regulated cisplatin-induced DNA damage and apoptosis through the CK2—P-XRCC1—XRCC1 pathway, indicating a putative drug target for reversing cisplatin resistance in gastric cancer.Gastric cancer (GC) is the fifth most common human malignant tumor worldwide but third cause of cancer death.1 In 2012, there were 405 000 new GC cases diagnosed and 325 000 deaths in China.1 Current strategy for treatment of GC includes surgery with chemotherapy for potentially curable disease and chemotherapy only for advanced disease. Unfortunately, owing to intrinsic or acquired drug resistance, relapse and metastasis are common and result in high mortality of GC.2Cisplatin is a widely used chemotherapeutic drug for treating various tumors including GC.3 Cisplatin triggers apoptosis by inducing DNA damage through crosslinking of the DNA.4 However, cancer cells often develop multiple mechanisms to overcome cisplatin-induced DNA damage and apoptosis, and lead to cisplatin resistance.5, 6 Two of the major systems activated are enhanced capability of DNA repair and anti-apoptosis signaling pathways.7, 8XRCC1 is a key mediator of single-strand break DNA repair, and is involved in the process of cisplatin-induced DNA damage repair in various tumors.9, 10, 11 XRCC1 was found to identify and bind to DNA interstrand crosslinks induced by cisplatin.12 Moreover casein kinase 2 (CK2) phosphorylates XRCC1 and is required for its stability and efficient DNA repair.13 A selective small molecule inhibitor of CK2, CX-4945, was found to block the cisplatin-induced DNA repair response by decreasing the phosphorylation of XRCC1 at CK2-specific phosphorylation sites.14 This body of evidence indicates a critical role of XRCC1 and CK2 in cisplatin resistance.The JWA gene, also known as ARL6ip5, was initially cloned from human tracheal bronchial epithelial cells after treatment with all-trans retinoic acid.15 Subsequent studies indicated that JWA is involved in the cellular responses to heat shock and chemical-mediated oxidative stresses.16, 17 Moreover, JWA functions as a base excision repair protein in oxidative-stress-induced DNA single-strand breaks in NIH-3T3 and HELF cells, as evidenced by the positive regulation of XRCC1 levels through MAPK signal pathway and protecting XRCC1 protein from ubiquitination and degradation by proteasome.18, 19 However, JWA is also a structurally novel microtubule-binding protein, which regulates cancer cell migration via MAPK cascades and mediates differentiation of leukemic cells.20, 21, 22 JWA significantly inhibits melanoma adhesion, invasion and metastasis via integrin aVb3 signaling.23 More recent data have shown that JWA is required for As2O3-induced apoptosis in HeLa and MCF-7 cells via reactive oxygen species and mitochondria-linked signal pathway or promoted p38 MAPK-linked tubulin polymerization.24, 25 These reports indicate that the JWA functions as a tumor suppressor for tumor initiation and development.Recently, we reported the prognostic and predictive role of JWA and XRCC1 expression in GC. JWA and XRCC1 protein levels are significantly downregulated in GC lesions compared with adjacent noncancerous tissues, whereas platinum-based chemotherapy significantly improved overall survival in GC patients with low levels of tumoral JWA or XRCC1 expression.26 Subsequent studies indicated that overexpression of XRCC1 contributed to cisplatin resistance in GC cells and showed that XRCC1 protein was important for effective repair of cisplatin-induced DSBs in GC cells.27 However, the contribution of JWA to cisplatin resistance in GC and underlying mechanisms are not fully understood.The objectives of the present study were to investigate the role of JWA in cisplatin resistance of GC cells and elucidate the underlying mechanisms of action. Our results demonstrated that JWA negatively regulated XRCC1 through the CK2—p-XRCC1 pathway in cisplatin-resistant GC cells. The JWA could be a valuable target for reversal of cisplatin resistance in human GC.  相似文献   

9.

Background

In the X-ray repair cross-complementing group 1 (XRCC1) gene, a polymorphism, Arg399Gln (rs25487), has been shown to change neoconservative amino acid and thus result in alternation of DNA repair capacity. Numerous studies have investigated the association between Arg399Gln and breast cancer risk in the American population, but yielding inconsistent results. This study aimed to clarify the role of this polymorphism in susceptibility to breast cancer.

Methods

Literatures were searched in multiple databases including PubMed, Springer Link, Ovid, EBSCO and ScienceDirect databases up to April 2013. A comprehensive meta-analysis was conducted to estimate the overall odds ratio (OR), by integrating data from 18 case control studies of 10846 cases and 11723 controls in the American population.

Results

Overall, significant association was observed between the Arg399Gln polymorphism and breast cancer risk under the random-effects model (OR for dominant model = 1.12, 95% CI: 1.02–1.24, P heterogeneity = 0.003; OR for additive model = 1.07, 95% CI: 1.01–1.14, P heterogeneity = 0.017). Further sensitivity analysis supported the robust stability of this current result by showing similar ORs before and after removal of a single study.

Conclusions

This meta-analysis suggests that the XRCC1 Arg399Gln polymorphism may significantly contribute to susceptibility of breast cancer in the American population.  相似文献   

10.

Introduction

X-ray repair cross-complementing protein 3 (XRCC3) is an essential gene involved in the double-strand break repair pathway. Published evidence has shown controversial results about the relationship between XRCC3 Thr241Met polymorphism and clinical outcomes of non-small cell lung cancer (NSCLC) patients receiving platinum-based chemotherapy.

Methods

A systematic review and meta-analysis was performed to evaluate the predictive value of XRCC3 Thr241Met polymorphism on clinical outcomes of advanced NSCLC receiving platinum-based chemotherapy. Response to chemotherapy, overall survival (OS) and progression-free survival (PFS) were analyzed.

Results

A number of 11 eligible studies were identified according to the inclusion criteria. Carriers of the variant XRCC3 241Met allele were significantly associated with good response to platinum-based chemotherapy (ThrMet/MetMet vs. ThrThr: OR  = 1.509, 95% CI: 1.099–2.072, Pheterogeneity  = 0.618). The XRCC3 Thr241Met polymorphism was not associated with OS (MetMet vs. ThrThr, HR  = 0.939, 95% CI:0.651–1.356, Pheterogeneity  = 0.112) or PFS (MetMet vs. ThrThr, HR  = 0.960, 95% CI: 0.539–1.710, Pheterogeneity  = 0.198). Additionally, no evidence of publication bias was observed.

Conclusions

This systematic review and meta-analysis shows that carriers of the XRCC3 241Met allele are associated with good response to platinum-based chemotherapy in advanced NSCLC, while the XRCC3 Thr241Met polymorphism is not associated with OS or PFS.  相似文献   

11.
12.

Background

Nimotuzumab is a humanized IgG1 monoclonal antibody specifically targeting EGFR. In this study, we aimed to investigate the molecular mechanisms of nimotuzumab in its effects of enhancing cancer cell radiosensitivity.

Principal Finding

Lung cancer A549 cells and breast cancer MCF-7 cells were pretreated with or without nimotuzumab for 24 h before radiation to perform the clonogenic survival assay and to analyze the cell apoptosis by flow ctyometry. γ-H2AX foci were detected by confocal microscopy to assess the effect of nimotuzumab on radiation induced DNA repair. EGFR activation was examined and the levels of DNA damage repair related proteins in A549 cells at different time point and at varying doses exposure after nimotuzumab and radiation treatment were examined by Western blot. Pretreatment with nimotuzumab reduced clonogenic survival after radiation, inhibited radiation-induced EGFR activation and increased the radiation-induced apoptosis in both A549 cells and MCF-7 cells. The foci of γ-H2AX 24 h after radiation significantly increased in nimotuzumab pretreated cells with different doses. The phosphorylation of AKT and DNA-PKcs were remarkably inhibited in the combination group at each dose point as well as time point.

Conclusions

Our results revealed that the possible mechanism of nimotuzumab enhancing the cancer radiosensitivity is that nimotuzumab inhibited the radiation-induced activation of DNA-PKcs through blocking the PI3K/AKT pathway, which ultimately affected the DNA DSBs repair.  相似文献   

13.

Background

DNA repair is a cellular defence mechanism responding to DNA damage caused in large part by oxidative stress. There is a controversy with regard to the effect of red blood cells on DNA damage and cellular response.

Aim

To investigate the effect of red blood cells on H2O2-induced DNA damage and repair in human peripheral blood mononuclear cells.

Methods

DNA breaks were induced in peripheral blood mononuclear cells by H2O2 in the absence or presence of red blood cells, red blood cells hemolysate or hemoglobin. DNA repair was measured by 3H-thymidine uptake, % double-stranded DNA was measured by fluorometric assay of DNA unwinding. DNA damage was measured by the comet assay and by the detection of histone H2AX phosphorylation.

Results

Red blood cells and red blood cells hemolysate reduced DNA repair in a dose-dependent manner. Red blood cells hemolysate reduced % double-stranded DNA, DNA damage and phosphorylation of histone H2AX. Hemoglobin had the same effect as red blood cells hemolysate on % double-stranded DNA.

Conclusion

Red blood cells, via red blood cells hemolysate and hemoglobin, reduced the effect of oxidative stress on peripheral blood mononuclear cell DNA damage and phosphorylation of histone H2AX. Consequently, recruitment of DNA repair proteins diminished with reduction of DNA repair. This suggests that anemia predisposes to increased oxidative stress induced DNA damage, while a higher hemoglobin level provides protection against oxidative-stress-induced DNA damage.  相似文献   

14.

Background

Mismatch repair deficient colorectal adenomas are composed of transformed cells that descend from a common founder and progressively accumulate genomic alterations. The proliferation history of these tumors is still largely unknown. Here we present a novel approach to rebuild the proliferation trees that recapitulate the history of individual colorectal adenomas by mapping the progressive acquisition of somatic point mutations during tumor growth.

Results

Using our approach, we called high and low frequency mutations acquired in the X chromosome of four mismatch repair deficient colorectal adenomas deriving from male individuals. We clustered these mutations according to their frequencies and rebuilt the proliferation trees directly from the mutation clusters using a recursive algorithm. The trees of all four lesions were formed of a dominant subclone that co-existed with other genetically heterogeneous subpopulations of cells. However, despite this similar hierarchical organization, the growth dynamics varied among and within tumors, likely depending on a combination of tumor-specific genetic and environmental factors.

Conclusions

Our study provides insights into the biological properties of individual mismatch repair deficient colorectal adenomas that may influence their growth and also the response to therapy. Extended to other solid tumors, our novel approach could inform on the mechanisms of cancer progression and on the best treatment choice.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-014-0437-8) contains supplementary material, which is available to authorized users.  相似文献   

15.

Background

We have previously used the ATAD5-luciferase high-throughput screening assay to identify genotoxic compounds with potential chemotherapeutic capabilities. The successful identification of known genotoxic agents, including the histone deacetylase inhibitor (HDACi) trichostatin A (TSA), confirmed the specificity of the screen since TSA has been widely studied for its ability to cause apoptosis in cancer cells. Because many cancers have acquired mutations in DNA damage checkpoints or repair pathways, we hypothesized that these cancers may be susceptible to treatments that target compensatory pathways. Here, we used a panel of isogenic chicken DT40 B lymphocyte mutant and human cell lines to investigate the ability of TSA to define selective pathways that promote HDACi toxicity.

Results

HDACi induced a DNA damage response and reduced viability in all repair deficient DT40 mutants although ATM-nulls were least affected. The most dramatic sensitivity was observed in mutants lacking the homology dependent repair (HDR) factor BLM or the non-homologous end-joining (NHEJ) and HDR factors, KU/RAD54, suggesting an involvement of either HDR or NHEJ in HDACi-induced cell death. To extend these findings, we measured the frequencies of HDR and NHEJ after HDACi treatment and monitored viability in human cell lines comparably deficient in HDR or NHEJ. Although no difference in HDR frequency was observed between HDACi treated and untreated cells, HDR-defective human cell lines were clearly more sensitive than wild type. Unexpectedly, cells treated with HDACis showed a significantly elevated NHEJ frequency.

Conclusions

HDACi targeting drugs induced significant increases in NHEJ activity in human cell lines but did not alter HDR frequency. Moreover, HDR is required for cellular resistance to HDACi therapy; therefore, NHEJ does not appear to be a critical axis for HDACi resistance. Rather, HDACi compounds induced DNA damage, most likely double strand breaks (DSBs), and HDR proficiency is correlated with cell survival.  相似文献   

16.
17.

Background

The major established etiologic risk factor for bladder cancer is cigarette smoking and one of the major antineoplastic agents used for the treatment of advanced bladder cancer is cisplatin. A number of reports have suggested that cancer patients who smoke while receiving treatment have lower rates of response and decreased efficacy of cancer therapies.

Methodology/Principal Findings

In this study, we investigated the effect of cigarette smoke condensate (CSC) vapor on cisplatin toxicity in urothelial cell lines SV-HUC-1 and SCaBER cells. We showed that chronic exposure to CSC vapor induced cisplatin resistance in both cell lines. In addition, we found that the expression of mitochondrial-resident protein adenylate kinase-3 (AK3) is decreased by CSC vapor. We further observed that chronic CSC vapor-exposed cells displayed decreased cellular sensitivity to cisplatin, decreased mitochondrial membrane potential (ΔΨm) and increased basal cellular ROS levels compared to unexposed cells. Re-expression of AK3 in CSC vapor-exposed cells restored cellular sensitivity to cisplatin. Finally, CSC vapor increased the growth of the tumors and also curtail the response of tumor cells to cisplatin chemotherapy in vivo.

Conclusions/Significance

The current study provides evidence that chronic CSC vapor exposure affects AK3 expression and renders the cells resistant to cisplatin.  相似文献   

18.

Background

Nucleotide excision repair (NER) and base excision repair (BER) are the primary mechanisms for repair of bulky adducts caused by chemical agents, such as PAHs. It is expected that polymorphisms in NER or BER genes may modulate individual susceptibility to PAHs exposure. Here, we evaluate the effects of PAHs exposure and polymorphisms in NER and BER pathway, alone or combined, on polycyclic aromatic hydrocarbon-DNA (PAH–DNA) adducts in human sperm.

Methodology/Principal Findings

Sperm PAH-DNA adducts were measured by immunofluorescent assay using flow cytometry in a sample of 465 infertile adults. Polymorphisms of XPA, XPD, ERCC1, XPF, and XRCC1 were determined by polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) techniques. The PAHs exposure was detected as urinary 1-hydroxypyrene (1-OHP) levels. In multivariate models adjusted for potential confounders, we observed that XRCC1 5′pUTR -T/C, Arg194Trp, Arg399Gln polymorphisms were associated with increased sperm adduct levels. Furthermore, the stratified analysis indicated that adverse effects of XRCC1 Arg194Trp, Arg399Gln polymorphisms on PAH-DNA adducts were detected only in the high PAHs exposure group.

Conclusions/Significance

These findings provided the first evidence that polymorphisms of XRCC1 may modify sperm PAH-DNA adduct levels and may be useful biomarkers to identify individuals susceptible to DNA damage resulting from PAHs exposure.  相似文献   

19.

Introduction

Inherent and acquired cisplatin resistance reduces the effectiveness of this agent in the management of non-small cell lung cancer (NSCLC). Understanding the molecular mechanisms underlying this process may result in the development of novel agents to enhance the sensitivity of cisplatin.

Methods

An isogenic model of cisplatin resistance was generated in a panel of NSCLC cell lines (A549, SKMES-1, MOR, H460). Over a period of twelve months, cisplatin resistant (CisR) cell lines were derived from original, age-matched parent cells (PT) and subsequently characterized. Proliferation (MTT) and clonogenic survival assays (crystal violet) were carried out between PT and CisR cells. Cellular response to cisplatin-induced apoptosis and cell cycle distribution were examined by FACS analysis. A panel of cancer stem cell and pluripotent markers was examined in addition to the EMT proteins, c-Met and β-catenin. Cisplatin-DNA adduct formation, DNA damage (γH2AX) and cellular platinum uptake (ICP-MS) was also assessed.

Results

Characterisation studies demonstrated a decreased proliferative capacity of lung tumour cells in response to cisplatin, increased resistance to cisplatin-induced cell death, accumulation of resistant cells in the G0/G1 phase of the cell cycle and enhanced clonogenic survival ability. Moreover, resistant cells displayed a putative stem-like signature with increased expression of CD133+/CD44+cells and increased ALDH activity relative to their corresponding parental cells. The stem cell markers, Nanog, Oct-4 and SOX-2, were significantly upregulated as were the EMT markers, c-Met and β-catenin. While resistant sublines demonstrated decreased uptake of cisplatin in response to treatment, reduced cisplatin-GpG DNA adduct formation and significantly decreased γH2AX foci were observed compared to parental cell lines.

Conclusion

Our results identified cisplatin resistant subpopulations of NSCLC cells with a putative stem-like signature, providing a further understanding of the cellular events associated with the cisplatin resistance phenotype in lung cancer.  相似文献   

20.

Background

The etiology of secondary cancer in childhood cancer survivors is largely unclear. Exposure of normal somatic cells to radiation and/or chemotherapy can damage DNA and if not all DNA lesions are properly fixed, the mis-repair may lead to pathological consequences. It is plausible to assume that genetic differences, i.e. in the pathways responsible for cell cycle control and DNA repair, play a critical role in the development of secondary cancer.

Methodology/Findings

To identify factors that may influence the susceptibility for second cancer formation, we recruited 20 individuals who survived a childhood malignancy and then developed a second cancer as well as 20 carefully matched control individuals with childhood malignancy but without a second cancer. By antibody microarrays, we screened primary fibroblasts of matched patients for differences in the amount of representative DNA repair-associated proteins. We found constitutively decreased levels of RAD9A and several other DNA repair proteins in two-cancer patients, compared to one-cancer patients. The RAD9A protein level increased in response to DNA damage, however to a lesser extent in the two-cancer patients. Quantification of mRNA expression by real-time RT PCR revealed lower RAD9A mRNA levels in both untreated and 1 Gy γ-irradiated cells of two-cancer patients.

Conclusions/Significance

Collectively, our results support the idea that modulation of RAD9A and other cell cycle arrest and DNA repair proteins contribute to the risk of developing a second malignancy in childhood cancer patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号