首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Bar-headed geese migrate over the Himalayas at up to 9000 m elevation, but it is unclear how they sustain the high metabolic rates needed for flight in the severe hypoxia at these altitudes. To better understand the basis for this physiological feat, we compared the flight muscle phenotype of bar-headed geese with that of low altitude birds (barnacle geese, pink-footed geese, greylag geese and mallard ducks). Bar-headed goose muscle had a higher proportion of oxidative fibres. This increased muscle aerobic capacity, because the mitochondrial volume densities of each fibre type were similar between species. However, bar-headed geese had more capillaries per muscle fibre than expected from this increase in aerobic capacity, as well as higher capillary densities and more homogeneous capillary spacing. Their mitochondria were also redistributed towards the subsarcolemma (cell membrane) and adjacent to capillaries. These alterations should improve O2 diffusion capacity from the blood and reduce intracellular O2 diffusion distances, respectively. The unique differences in bar-headed geese were much greater than the minor variation between low altitude species and existed without prior exercise or hypoxia exposure, and the correlation of these traits to flight altitude was independent of phylogeny. In contrast, isolated mitochondria had similar respiratory capacities, O2 kinetics and phosphorylation efficiencies across species. Bar-headed geese have therefore evolved for exercise in hypoxia by enhancing the O2 supply to flight muscle.  相似文献   

2.
Bar-headed geese (Anser indicus) migrate over the Himalayan mountains, at altitudes up to 9000 m above sea level, where air density and oxygen availability are extremely low. This study determined whether alterations in wing morphology or wingbeat frequency during free flight have evolved in this species to facilitate extreme high altitude migration, by comparing it to several closely related goose species. Wingspan and wing loading scaled near isometrically with body mass across all species (with power scaling exponents of 0.22 and 0.47, respectively), and wingbeat frequency scaled negatively to mass (scaling exponent of -0.167). Bar-headed geese had the largest wingspan residual and smallest wing loading residual from these allometric relationships, suggesting that they are at the top end of the wing size distribution. These morphological characters of bar-headed geese were not outside the normal variation exhibited by low altitude species, however, being within the prediction intervals of the regression. This was particularly true after the data were corrected for phylogeny using the independent contrasts method. Wingbeat frequencies of bar-headed geese during steady flight were the same as low altitude geese, both with and without correcting for phylogeny. Without adjusting other kinematic features (e.g., wing motion and generated wake structure) to supplement lift generation in low air densities, the metabolic costs of flight in bar-headed geese at high altitude could exceed the already high costs at sea level. The apparent lack of morphological and kinematic adaptation emphasizes the importance of physiological adaptations for enhancing oxygen transport and utilization in this species.  相似文献   

3.
While bar-headed geese are renowned for migration at high altitude over the Himalayas, previous work on captive birds suggested that these geese are unable to maintain rates of oxygen consumption while running in severely hypoxic conditions. To investigate this paradox, we re-examined the running performance and heart rates of bar-headed geese and barnacle geese (a low altitude species) during exercise in hypoxia. Bar-headed geese (n = 7) were able to run at maximum speeds (determined in normoxia) for 15 minutes in severe hypoxia (7% O2; simulating the hypoxia at 8500 m) with mean heart rates of 466±8 beats min−1. Barnacle geese (n = 10), on the other hand, were unable to complete similar trials in severe hypoxia and their mean heart rate (316 beats.min−1) was significantly lower than bar-headed geese. In bar-headed geese, partial pressures of oxygen and carbon dioxide in both arterial and mixed venous blood were significantly lower during hypoxia than normoxia, both at rest and while running. However, measurements of blood lactate in bar-headed geese suggested that anaerobic metabolism was not a major energy source during running in hypoxia. We combined these data with values taken from the literature to estimate (i) oxygen supply, using the Fick equation and (ii) oxygen demand using aerodynamic theory for bar-headed geese flying aerobically, and under their own power, at altitude. This analysis predicts that the maximum altitude at which geese can transport enough oxygen to fly without environmental assistance ranges from 6,800 m to 8,900 m altitude, depending on the parameters used in the model but that such flights should be rare.  相似文献   

4.
The behaviour of sharp-shinned hawks (Accipiter striatus) confronted by water barriers was examined during fall migration at Cape May Point, new Jersey (Delaware Bay) and during spring migration at Whitefish Point, Michigan (Lake Suerior). Both study sites were at the end of long peninsulas where hawks must either cross approximately 18–24 km of water or fly hundreds of kilometres around the water barriers. Sharp-shinned hawks readily crossed at both sites when winds lateral (perpendicular) to crossing directions were light, but rarely when winds were strong, suggesting that the preferred to cross when the potential for being blown off course was minimal. A greater proportion of hawks also crossed when flight at the shoreline was at high as opposed to low altitudes, and when land on the opposite side of the water barrier was visible. At Cape May, hawks compensated for lateral winds of up to 6 m/s during flights over water, although very few birds attempted to cross when lateral winds exceeded 5 m/s. At Whitefish, hawks compensated only partially for lateral winds. The difference in realized flight direction between sites was attributable to differing topographies, not to a difference in the hawks' ability to compensate for lateral wind. It was hypothesized that there is a threshold for drift at lateral winds between 5 and 8 m/s for sharp-shinned hawks using powered flight over water.  相似文献   

5.
The bar-headed goose flies over the Himalayan mountains on its migratory route between South and Central Asia, reaching altitudes of up to 9,000 m. We compared control of breathing in this species with that of low-altitude waterfowl by exposing birds to step decreases in inspired O(2) under both poikilocapnic and isocapnic conditions. Bar-headed geese breathed substantially more than both greylag geese and pekin ducks during severe environmental (poikilocapnic) hypoxia (5% inspired O(2)). This was entirely due to an enhanced tidal volume response to hypoxia, which would have further improved parabronchial (effective) ventilation. Consequently, O(2) loading into the blood and arterial Po(2) were substantially improved. Because air convection requirements were similar between species at 5% inspired O(2), it was the enhanced tidal volume response (not total ventilation per se) that improved O(2) loading in bar-headed geese. Other observations suggest that bar-headed geese depress metabolism less than low-altitude birds during hypoxia and also may be capable of generating higher inspiratory airflows. There were no differences between species in ventilatory sensitivities to isocapnic hypoxia, the hypoxia-induced changes in blood CO(2) tensions or pH, or hypercapnic ventilatory sensitivities. Overall, our results suggest that evolutionary changes in the respiratory control system of bar-headed geese enhance O(2) loading into the blood and may contribute to this species' exceptional ability to fly high.  相似文献   

6.
This paper examines the influence of atmospheric structure andmotion (principally winds aloft) on the flight behavior andaltitudinal distribution of migrating songbirds. Bird migrationdata that I gathered using surveillance radars operated by theUnited States National Weather Service and the Federal AviationAdministration and a vertically directed fixed-beam marine radarmounted on a mobile laboratory are analyzed in relation to windsaloft. Migrating birds appear to fly at altitudes where windswill minimize the cost of transport and assist movements inseasonally appropriate directions. When migratory flights occurat altitudes that are higher than usual, a significant correlationexists between the altitude of densest migration and the altitudeof most favorable wind. Lower altitudes may be favored overslightly more favorable winds at much higher altitudes. Radardata on the flight behavior of migrating birds in the vicinityof frontal systems is also examined. The flight strategies ofmigrants (fly over the front, change the direction of flight,or land and terminate the flight) differ depending on seasonand the "thickness" of the front. Recent migration studies thatare related to atmospheric structure and motion are summarizedand related to atmospheric processes operating simultaneouslyat vastly different spatial and temporal scales.  相似文献   

7.
Radar observations on the altitude of bird migration and altitudinal profiles of meteorological conditions over the Sahara desert are presented for the autumn migratory period. Migratory birds fly at an average altitude of 1016 m (a.s.l.) during the day and 571 m during the night. Weather data served to calculate flight range using two models: an energy model (EM) and an energy-and-water model (EWM). The EM assumes that fuel supply limits flight range whereas the EWM assumes that both fuel and water may limit flight range. Flight ranges estimated with the EM were generally longer than those with the EWM. This indicates that trans-Sahara migrants might have more problems balancing their water than their energy budget. However, if we assume fuel stores to consist of 70% instead of 100% fat (the remainder consisting of 9% protein and 21% water), predicted flight ranges of the EM and EWM largely overlap. Increased oxygen extraction, reduced flight costs, reduced exhaled air temperature, reduced cutaneous water loss and increased tolerance to water loss are potential physiological adaptations that would improve the water budget in migrants. Both the EM and EWM predict optimal flight altitudes in agreement with radar observations in autumn. Optimal flight altitudes are differently predicted by the EM and EWM for nocturnal spring migration. During spring, the EWM predicts moderately higher and the EM substantially higher flight altitudes than during autumn. EWM predictions are therefore in better agreement with radar observations on flight altitude of migrants over the Negev desert in spring than EM predictions.  相似文献   

8.
In order to fully understand the orientation behaviour of migrating birds, it is important to understand when birds set their travel direction. Departure directions of migratory passerines leaving stopover sites are often assumed to reflect the birds'' intended travel directions, but this assumption has not been critically tested. We used data from an automated radiotelemetry system and a tracking radar at Falsterbo peninsula, Sweden, to compare the initial orientation of departing songbirds (recorded by radiotelemetry) with the orientation of songbird migrants in climbing and level flight (recorded by radar). We found that the track directions of birds at high altitudes and in level flight were more concentrated than the directions of departing birds and birds in climbing flight, which indicates that the birds adjust their travelling direction once aloft. This was further supported by a wide scatter of vanishing bearings in a subsample of radio-tracked birds that later passed an offshore radio receiver station 50 km southeast of Falsterbo. Track directions seemed to be more affected by winds in climbing compared with level flights, which may be explained by birds not starting to partially compensate for wind drift until they have reached cruising altitudes.  相似文献   

9.
The movements of animals are limited by evolutionary constraints and ecological processes and are strongly influenced by the medium through which they travel. For flying animals, variation in atmospheric conditions is critically influential in movement. Obligate soaring birds depend on external sources of updraft more than do other flying species, as without that updraft they are unable to sustain flight for extended periods. These species are therefore good models for understanding how the environment can influence decisions about movement. We used meteorological and topographic variables to understand the environmental influences on the decision to engage in flight by obligate soaring and critically endangered California Condors Gymnogyps californianus. Condors were more likely to fly, soared at higher altitudes and flew over smoother terrain when weather conditions promoted either thermal or orographic updrafts, for example when turbulence and solar radiation were higher and when winds from the east and north were stronger. However, increased atmospheric stability, which is inconsistent with thermal development but may be associated with orographic updrafts, was correlated with a somewhat higher probability of being in flight at lower altitudes and over rougher terrain. The close and previously undescribed linkages between Condor flight and conditions that support development of thermal and orographic updrafts provide important insight into the behaviour of obligate soaring birds and into the environmental parameters that may define the currently expanding distribution of Condors within and outside the state of California.  相似文献   

10.
Birds: blowin’ by the wind?   总被引:1,自引:0,他引:1  
Migration is a task that implies a route, a goal and a period of time. To achieve this task, it requires orientation abilities to find the goal and energy to cover the distance. Completing such a journey by flying through a moving airspace makes this relatively simple task rather complex. On the one hand birds have to avoid wind drift or have to compensate for displacements to reach the expected goal. On the other hand flight costs make up a large proportion of energy expenditure during migration and, consequently, have a decisive impact on the refuelling requirements and the time needed for migration. As wind speeds are of the same order of magnitude as birds’ air speeds, flight costs can easily be doubled or, conversely, halved by wind effects. Many studies have investigated how birds should or actually do react to winds aloft, how they avoid additional costs or how they profit from the winds for their journeys. This review brings together numerous theoretical and empirical studies investigating the flight behaviour of migratory birds in relation to the wind. The results of these studies corroborate that birds select for favourable wind conditions both at departure and aloft to save energy and that for some long-distance migrants a tail-wind is an indispensable support to cover large barriers. Compensation of lateral wind drift seems to vary between age classes, depending on their orientation capacities, and probably between species or populations, due to the variety of winds they face en route. In addition, it is discussed how birds might measure winds aloft, and how flight behaviour with respect to wind shall be tested with field data.  相似文献   

11.
Vast numbers of insects and passerines achieve long-distance migrations between summer and winter locations by undertaking high-altitude nocturnal flights. Insects such as noctuid moths fly relatively slowly in relation to the surrounding air, with airspeeds approximately one-third of that of passerines. Thus, it has been widely assumed that windborne insect migrants will have comparatively little control over their migration speed and direction compared with migrant birds. We used radar to carry out the first comparative analyses of the flight behaviour and migratory strategies of insects and birds under nearly equivalent natural conditions. Contrary to expectations, noctuid moths attained almost identical ground speeds and travel directions compared with passerines, despite their very different flight powers and sensory capacities. Moths achieved fast travel speeds in seasonally appropriate migration directions by exploiting favourably directed winds and selecting flight altitudes that coincided with the fastest air streams. By contrast, passerines were less selective of wind conditions, relying on self-powered flight in their seasonally preferred direction, often with little or no tailwind assistance. Our results demonstrate that noctuid moths and passerines show contrasting risk-prone and risk-averse migratory strategies in relation to wind. Comparative studies of the flight behaviours of distantly related taxa are critically important for understanding the evolution of animal migration strategies.  相似文献   

12.
In seabirds a broad variety of morphologies, flight styles and feeding methods exist as an adaptation to optimal foraging in contrasted marine environments for a wide variety of prey types. Because of the low productivity of tropical waters it is expected that specific flight and foraging techniques have been selected there, but very few data are available. By using five different types of high-precision miniaturized logger (global positioning systems, accelerometers, time depth recorders, activity recorders, altimeters) we studied the way a seabird is foraging over tropical waters. Red-footed boobies are foraging in the day, never foraging at night, probably as a result of predation risks. They make extensive use of wind conditions, flying preferentially with crosswinds at median speed of 38 km h(-1), reaching highest speeds with tail winds. They spent 66% of the foraging trip in flight, using a flap-glide flight, and gliding 68% of the flight. Travelling at low costs was regularly interrupted by extremely active foraging periods where birds are very frequently touching water for landing, plunge diving or surface diving (30 landings h(-1)). Dives were shallow (maximum 2.4 m) but frequent (4.5 dives h(-1)), most being plunge dives. While chasing for very mobile prey like flying fishes, boobies have adopted a very active and specific hunting behaviour, but the use of wind allows them to reduce travelling cost by their extensive use of gliding. During the foraging and travelling phases birds climb regularly to altitudes of 20-50 m to spot prey or congeners. During the final phase of the flight, they climb to high altitudes, up to 500 m, probably to avoid attacks by frigatebirds along the coasts. This study demonstrates the use by boobies of a series of very specific flight and activity patterns that have probably been selected as adaptations to the conditions of tropical waters.  相似文献   

13.
A bird's ground speed is influenced by the wind conditions it encounters. Wind conditions, although variable, are not entirely random. Instead, wind exhibits persistent spatial and temporal dynamics described by the general circulation of the atmosphere. As such, in certain geographical areas wind's assistance (or hindrance) on migratory flight is also persistent, being dependent upon the bird's migratory direction in relation to prevailing wind conditions. We propose that, considering the western migration route of nocturnal migrants through Europe, winds should be more supportive in spring than in autumn. Thus, we expect higher ground speeds, contributing to higher overall migration speeds, in spring. To test whether winds were more supportive in spring than autumn, we quantified monthly wind conditions within western Europe relative to the seasonal direction of migration using 30 years (1978–2008) of wind data from the NCEP/NCAR Reanalysis dataset. We found that supporting winds were significantly more frequent for spring migration compared to autumn and up to twice as frequent at higher altitudes. We then analyzed three years (2006–2008) of nocturnal migratory ground speeds measured with radar in the Netherlands which confirmed higher ground speeds in spring than autumn. This seasonal difference in ground speed suggests a 16.9% increase in migration speed from autumn to spring. These results stress the importance of considering the specific wind conditions experienced by birds when interpreting migration speed. We provide a simple methodological approach enabling researchers to quantify regional wind conditions for any geographic area and time period of interest.  相似文献   

14.
By altering its flight altitude, a bird can change the atmospheric conditions it experiences during migration. Although many factors may influence a bird's choice of altitude, wind is generally accepted as being the most influential. However, the influence of wind is not clearly understood, particularly outside the trade‐wind zone, and other factors may play a role. We used operational weather radar to measure the flight altitudes of nocturnally migrating birds during spring and autumn in the Netherlands. We first assessed whether the nocturnal altitudinal distribution of proportional bird density could be explained by the vertical distribution of wind support using three different methods. We then used generalized additive models to assess which atmospheric variables, in addition to altitude, best explained variability in proportional bird density per altitudinal layer each night. Migrants generally remained at low altitudes, and flight altitude explained 52 and 73% of the observed variability in proportional bird density in spring and autumn, respectively. Overall, there were weak correlations between altitudinal distributions of wind support and proportional bird density. Improving tailwind support with height increased the probability of birds climbing to higher altitude, but when birds did fly higher than normal, they generally concentrated around the lowest altitude with acceptable wind conditions. The generalized additive model analysis also indicated an influence of temperature on flight altitudes, suggesting that birds avoided colder layers. These findings suggested that birds increased flight altitudes to seek out more supportive winds when wind conditions near the surface were prohibitive. Thus, birds did not select flight altitudes only to optimize wind support. Rather, they preferred to fly at low altitudes unless wind conditions there were unsupportive of migration. Overall, flight altitudes of birds in relation to environmental conditions appear to reflect a balance between different adaptive pressures.  相似文献   

15.
Because energy reserves limit flight range, wind assistance may be of crucial importance for migratory birds. We tracked eight Bewicks swans Cygnus columbianus bewickii, using 95-g satellite transmitters with altimeters and activity sensors, during their spring migration from Denmark to northern Russia in 1996. During the 82 occasions where a swans location was recorded in flight, average flight altitude was 165 m a.s.l. with a maximum of 759 m a.s.l., despite winds often being more favourable at higher altitudes. We also counted Bewicks swans departing from the Gulf of Finland and subsequently passing an observatory in the next major stop-over area 800 km further north in the White Sea, northern Russia, during the springs of 1994, 1995 and 1996. A comparison of these counts with wind data provided evidence for Bewicks swans using favourable changes in wind conditions to embark on migration. Changes in the numbers of birds arriving in the White Sea correlated best with favourable changes in winds in the Gulf of Finland 1 day earlier. Again, migratory volume showed a correlation with winds at low altitudes only, despite wind conditions for the swans being more favourable at high altitudes. We conclude that the relatively large Bewicks swan tends to gear its migration to wind conditions at low altitude only. We argue that Bewicks swans do not climb to high altitudes because of mechanical and physiological limitations with respect to the generation of power for flight and to avoid rapid dehydration.Communicated by F. Bairlein  相似文献   

16.
Detours in bird migration   总被引:1,自引:0,他引:1  
Bird migration routes often follow detours where passages across ecological barriers are reduced in extent. This occurs in spite of the fact that long barrier crossings are within the birds' potential flight range capacity. Long-distance flights are associated with extra energy costs for transport of the heavy fuel loads required. This paper explores how important the fuel transport costs, estimated on the basis of flight mechanics, may be to explain detours for birds migrating by flapping flight. Maximum detours in relation to expanse of the barrier are predicted for cases where birds travel along the detour by numerous short flights and small fuel reserves, divide the detour into a limited number of flight steps, and where a reduced barrier passage is included in the detour. The principles for determining the optimum route, often involving a shortcut across part of the barrier, are derived. Furthermore, the effects of differences in fuel deposition rates and in transport costs for the profitability of detours are briefly considered. An evaluation of a number of observed and potential detours in relation to the general predictions of maximum detours, indicates that reduction of fuel transport costs may well be a factor of widespread importance for the evolution of detours in bird migration at wide ecological barriers.  相似文献   

17.
Unmanned aircraft systems (UAS) are relatively new technologies gaining popularity among wildlife biologists. As with any new tool in wildlife science, operating protocols must be developed through rigorous protocol testing. Few studies have been conducted that quantify the impacts UAS may have on unhabituated individuals in the wild using standard aerial survey protocols. We evaluated impacts of unmanned surveys by measuring UAS‐induced behavioral responses during the nesting phase of lesser snow geese (Anser caerulescens caerulescens) in Wapusk National Park, Manitoba, Canada. We conducted surveys with a fixed‐wing Trimble UX5 and monitored behavioral changes via discreet surveillance cameras at 25 nests. Days with UAS surveys resulted in decreased resting and increased nest maintenance, low scanning, high scanning, head‐cocking and off‐nest behaviors when compared to days without UAS surveys. In the group of birds flown over, head‐cocking for overhead vigilance was rarely seen prior to launch or after landing (mean estimates 0.03% and 0.02%, respectively) but increased to 0.56% of the time when the aircraft was flying overhead suggesting that birds were able to detect the aircraft during flight. Neither UAS survey altitude nor launch distance alone in this study was strong predictors of nesting behaviors, although our flight altitudes (≥75 m above ground level) were much higher than previously published behavioral studies. Synthesis and applications: The diversity of UAS models makes generalizations on behavioral impacts difficult, and we caution that researchers should design UAS studies with knowledge that some minimal disturbance is likely to occur. We recommend flight designs take potential behavioral impacts into account by increasing survey altitude where data quality requirements permit. Such flight designs should consider a priori knowledge of focal species’ behavioral characteristics. Research is needed to determine whether any such disturbance is a result of visual or auditory stimuli.  相似文献   

18.
Swifts, Apus apus, spend the night aloft and this offers an opportunity to test the degree of adaptability of bird orientation and flight to different ecological situations. We predicted the swifts' behaviour by assuming that they are adapted to minimize energy expenditure during the nocturnal flight and during a compensatory homing flight if they become displaced by wind. We tested the predictions by recording the swifts' altitudes, speeds and directions under different wind conditions with tracking radar; we found an agreement between predictions and observations for orientation behaviour, but not for altitude and speed regulation. The swifts orientated consistently into the head wind, with angular concentration increasing with increasing wind speed. However, contrary to our predictions, they did not select altitudes with slow or moderate winds, nor did they increase their airspeed distinctly when flying into strong head winds. A possible explanation is that their head-wind orientation is sufficient to keep nocturnal displacement from their home area within tolerable limits, leaving flight altitude to be determined by other factors (correlated with temperature), and airspeed to show only a marginal increase in strong winds. The swifts were often moving "backwards", heading straight into the wind but being overpowered by wind speeds exceeding their airspeed. The regular occurrence of such flights is probably uniquely associated with the swifts' remarkable habit of roosting on the wing.  相似文献   

19.
Recent advances in tracking technology are based on the use of miniature sensors for recording new aspects of individual migratory behaviour. In this study, we have used activity data loggers with barometric and temperature sensors to record the flight altitudes as well as ground elevations during stationary periods of migratory songbirds. We tracked one individual of red‐backed shrike and one great reed warbler along their autumn migration from Europe to Africa. Both individuals performed their migration stepwise in travel segments and climbed most metres during the passage across the Mediterranean Sea and the Sahara Desert and least metres during the first flight segment in Europe. The great reed warbler reached its highest flight altitude of 3950 m a.s.l. during the travel segment from Europe to west Africa, while the red‐backed shrike reached 3650 m a.s.l as maximum flight altitude during its travel segment from Sahel to southern Africa. Both individuals used both lowlands and highlands for resting periods along their migrations. Furthermore, temperature decreased with increasing altitude during migratory flights for both individuals, highlighting the potential to determine flight duration from temperature measurements. Finally, we discuss how barometric data could be used to investigate birds’ responses to changes in air pressure as a cue for departures on migratory flights. This new technique, i.e. using a miniature data logger with barometric pressure sensor to estimate flight altitudes and ground elevations, will open up new avenues for research and importantly advance our understanding on how small birds behave during migratory flights.  相似文献   

20.
于2009年4 11月,对西藏夯错的水鸟资源状况进行了调查,旨在了解该地区水鸟资源状况的了解,并为禽流感的防控提供了科学依据。在夯错全年共记录到水鸟26种,隶属于6目10科。夯错也是斑头雁和棕头鸥重要的繁殖地。水鸟春秋季迁徙高峰期在4月份和10月份,这也是水鸟多样性较高的2个月,其主要原因是由于迁徙鸭类数量和种类的增加。卫星跟踪研究表明,在繁殖前期,斑头雁活动区面积较大,主要在夯错及其周围的湿地取食;进入繁殖中期,斑头雁的活动范围减少了许多;繁殖后期,随着幼鸟陆续出壳,父母随即带领幼鸟离开夯错,到其它湿地取食和育雏,因此此期的活动区面积较大。由于夯错面积较小,不能满足斑头雁对食物的需求,因此部分斑头雁选择其它湿地作为主要的取食地,但部分扩散到其它湿地的斑头雁在迁徙前期重新返回夯错,使得该时期斑头雁的数量有呈上升趋势。通过与青海湖水鸟资源状况的比较发现,夯错水鸟种类较少,这可能主要是由于两个湖泊所处地理区划的不同,并由此带来的气候环境的差异,以及植被条件的不同所造成的。这种差异主要是由于夯错海拔较高,紫外线很强,气候干燥,植被单一,栖息地类型多样性较低,因此水鸟的种数也相对较少一些。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号