首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stem rust caused by Puccinia graminis f. sp. tritici was historically one of the most destructive diseases of wheat worldwide. The evolution and rapid migration of race TTKSK (Ug99) and derivatives, first detected in Uganda in 1999, are of international concern due to the virulence of these races to widely used stem rust resistance genes. In attempts to identify quantitative trait loci (QTL) linked with resistance to stem rust race Ug99, 95 recombinant inbred lines that were developed from a cross between two durum wheat varieties, Kristal and Sebatel, were evaluated for reaction to stem rust. Seven field trials at two locations were carried out in main and off seasons. In addition to the natural infection, the nursery was also artificially inoculated with urediniospores of stem rust race Ug99 and a mixture of locally collected stem rust urediniospores. A genetic map was constructed based on 207 simple sequence repeat (SSR) and two sequence tagged site loci. Using composite interval mapping, nine QTL for resistance to stem rust were identified on chromosomes 1AL, 2AS, 3BS, 4BL, 5BL, 6AL 7A, 7AL and 7BL. These results suggest that durum wheat resistance to stem rust is oligogenic and that there is potential to identify previously uncharacterized resistance genes with minor effects. The SSR markers that are closely linked to the QTL can be used for marker-assisted selection for stem rust resistance in durum wheat.  相似文献   

2.
Brachypodium distachyon (Brachypodium) is not only a monocot grass species, but also a promising model organism of crop research. In this study, the drought resistance of four Brachypodium varieties was identified including drought stress-tolerant Bd1-1 and Bd21, drought stress-susceptible Bd3-1 and Bd18-1. Physiological assay showed that drought-tolerant varieties (Bd1-1 and Bd21) were more effective in maintenance of leaf water content, activation of catalase and peroxidase activities and accumulation of reduced glutathione, resulting in alleviated cell damage and lower reactive oxygen species level than drought-susceptible varieties (Bd3-1 and Bd18-1) in response to drought stress. In addition, 54 primary metabolites were differentially regulated among Brachypodium varieties and after drought stress treatment, indicating the complexity of Brachypodium response to drought stress. We also identified several commonly regulated metabolites especially some compatible solutes including proline and soluble sugars, which exhibited higher concentrations in the drought-tolerant varieties. Taken together, this study suggested that natural variation of Brachypodium varieties in response to drought stress might be connected with higher leaf water, enhanced accumulation of osmolyte and more effective antioxidant system, as well as the modulation of metabolic profiles under drought stress conditions.  相似文献   

3.
《Experimental mycology》1992,16(4):324-328
Haustoria of the wheat stem rust fungus,Puccinia graminis f.sp.tritici, race 32, were isolated from two different infected wheat cultivars. Yield of haustoria from the highly susceptible wheat cv. “Little Club” was 10 times higher than that of the resistant wheat line “Prelude × Eagle” carrying the Sr26 gene for resistance toP. graminis f.sp.tritici. Tests for the integrity of haustoria using the stain methylene blue showed that up to 91% of the haustoria were undamaged.  相似文献   

4.
Developmental phase change and flowering transition are emerging as potential targets for biomass agriculture in recent years. The GIGANTEA (GI) gene is one of the central regulators that direct flowering promotion and phase transition. In this work, we isolated a GI gene orthologue from the small annual grass Brachypodium distachyon inbred line Bd21 (Brachypodium), which is perceived as a potential model monocot for studies on bioenergy grass species. A partial GI gene sequence was identified from a Brachypodium expressed sequence tag library, and a full-size gene (BdGI) was amplified from a Brachypodium cDNA library using specific primer sets designed through analysis of monocot GI gene sequences. The BdGI gene was up-regulated by light and cold. A circadian rhythm set by light–dark transition also regulated the expression of the BdGI gene. The deduced amino acid sequence of the BdGI protein shares higher than 70% of sequence identity with the GI proteins in monocots and Arabidopsis. In addition, the BdGI protein is constitutively targeted to the nucleus and physically interacts with the ZEITLUPE (ZTL) and CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) proteins, like the Arabidopsis GI protein. Interestingly, heterologous expression of the BdGI gene in a GI-deficient Arabidopsis mutant rescued efficiently the late flowering phenotype. Together, our data indicate that the role of the GI gene in flowering induction is conserved in Arabidopsis and Brachypodium. It is envisioned that the GI genes of bioenergy grasses as well as Brachypodium could be manipulated to improve biomass by engineering developmental timing of phase transitions.  相似文献   

5.
6.
The host range of isolates of Polymyxa was tested in mono-fungal sand cultures. Fourteen isolates of P. graminis, obtained from barley, wheat, oats or Poa annua and from several different countries, all infected barley and all but one infected wheat. Rye was also a good host, whereas oats (nine cultivars), Lolium multiflorum and Poa pratensis became only slightly infected. Wheat cultivars differed in susceptibility, with Galahad much more resistant than Avalon. Several common weed and pasture grasses were not infected by the two isolates tested. A range of wild Hordeum spp. were mostly susceptible to P. graminis and/or barley mild mosaic virus, which it transmits. An isolate of P. betae, used for comparison, caused slight infection on oats but not on other cereals. The variation within and between species of Polymyxa needs more detailed investigation.  相似文献   

7.
A potential alternative strategy to chemical control of plant diseases could be the stimulation of plant defense by arbuscular mycorrhizal fungi (AMF). In the present study, the influence of three parameters (phosphorus supply, mycorrhizal inoculation, and wheat cultivar) on AMF protective efficiency against Blumeria graminis f. sp. tritici, responsible for powdery mildew, was investigated under controlled conditions. A 5-fold reduction (P/5) in the level of phosphorus supply commonly recommended for wheat in France improved Funneliformis mosseae colonization and promoted protection against B. graminis f. sp. tritici in a more susceptible wheat cultivar. However, a further decrease in P affected plant growth, even under mycorrhizal conditions. Two commercially available AMF inocula (F. mosseae, Solrize®) and one laboratory inoculum (Rhizophagus irregularis) were tested for mycorrhizal development and protection against B. graminis f. sp. tritici of two moderately susceptible and resistant wheat cultivars at P/5. Mycorrhizal levels were the highest with F. mosseae (38 %), followed by R. irregularis (19 %) and Solrize® (SZE, 8 %). On the other hand, the highest protection level against B. graminis f. sp. tritici was obtained with F. mosseae (74 %), followed by SZE (58 %) and R. irregularis (34 %), suggesting that inoculum type rather than mycorrhizal levels determines the protection level of wheat against B. graminis f. sp. tritici. The mycorrhizal protective effect was associated with a reduction in the number of conidia with haustorium and with an accumulation of polyphenolic compounds at B. graminis f. sp. tritici infection sites. Both the moderately susceptible and the most resistant wheat cultivar were protected against B. graminis f. sp. tritici infection by F. mosseae inoculation at P/5, although the underlying mechanisms appear rather different between the two cultivars. This study emphasizes the importance of taking into account the considered parameters when considering the use of AMF as biocontrol agents.  相似文献   

8.

Key message

Resistance factors against non-adapted powdery mildews were mapped in barley. Some QTLs seem effective only to non-adapted mildews, while others also play a role in defense against the adapted form.The durability and effectiveness of nonhost resistance suggests promising practical applications for crop breeding, relying upon elucidation of key aspects of this type of resistance. We investigated which genetic factors determine the nonhost status of barley (Hordeum vulgare L.) to powdery mildews (Blumeria graminis). We set out to verify whether genes involved in nonhost resistance have a wide effectiveness spectrum, and whether nonhost resistance genes confer resistance to the barley adapted powdery mildew. Two barley lines, SusBgtSC and SusBgtDC, with some susceptibility to the wheat powdery mildew B. graminis f.sp. tritici (Bgt) were crossed with cv Vada to generate two mapping populations. Each population was assessed for level of infection against four B. graminis ff.spp, and QTL mapping analyses were performed. Our results demonstrate polygenic inheritance for nonhost resistance, with some QTLs effective only to non-adapted mildews, while others play a role against adapted and non-adapted forms. Histology analyses of nonhost interaction show that most penetration attempts are stopped in association with papillae, and also suggest independent layers of defence at haustorium establishment and conidiophore formation. Nonhost resistance of barley to powdery mildew relies mostly on non-hypersensitive mechanisms. A large-effect nonhost resistance QTL mapped to a 1.4 cM interval is suitable for map-based cloning.
  相似文献   

9.

Key message

By applying comparative genomics analyses, a high-density genetic linkage map narrowed the powdery mildew resistance gene Pm41 originating from wild emmer in a sub-centimorgan genetic interval.

Abstract

Wheat powdery mildew, caused by Blumeria graminis f. sp. tritici, results in large yield losses worldwide. A high-density genetic linkage map of the powdery mildew resistance gene Pm41, originating from wild emmer (Triticum turgidum var. dicoccoides) and previously mapped to the distal region of chromosome 3BL bin 0.63–1.00, was constructed using an F5:6 recombinant inbred line population derived from a cross of durum wheat cultivar Langdon and wild emmer accession IW2. By applying comparative genomics analyses, 19 polymorphic sequence-tagged site markers were developed and integrated into the Pm41 genetic linkage map. Ultimately, Pm41 was mapped in a 0.6 cM genetic interval flanked by markers XWGGC1505 and XWGGC1507, which correspond to 11.7, 19.2, and 24.9 kb orthologous genomic regions in Brachypodium, rice, and sorghum, respectively. The XWGGC1506 marker co-segregated with Pm41 and could be served as a starting point for chromosome landing and map-based cloning as well as marker-assisted selection of Pm41. Detailed comparative genomics analysis of the markers flanking the Pm41 locus in wheat and the putative orthologous genes in Brachypodium, rice, and sorghum suggests that the gene order is highly conserved between rice and sorghum. However, intra-chromosome inversions and re-arrangements are evident in the wheat and Brachypodium genomic regions, and gene duplications are also present in the orthologous genomic regions of Pm41 in wheat, indicating that the Brachypodium gene model can provide more useful information for wheat marker development.  相似文献   

10.
In barley, non-host resistance against the wheat powdery mildew fungus (Blumeria graminis f.sp. tritici, Bgt) is associated with the formation of cell wall appositions and a hypersensitive reaction in which epidermal cells die rapidly in response to fungal attack. In the interaction of barley with the pathogenic barley powdery mildew fungus (Blumeria graminis f.sp. hordei, Bgh), these defence reactions are also associated with accumulation of H2O2. To elucidate the mechanism of non-host resistance, the accumulation of H2O2 in response to Bgt was studied in situ by histochemical staining with diaminobenzidine. H2O2 accumulation was found in cell wall appositions under appressoria from Bgt and in cells undergoing a hypersensitive reaction. A mutation (mlo5) at the barley Mlo locus, that confers broad spectrum resistance to Bgh, did not influence the barley defence phenotype to Bgt. Significantly, Bgt triggered cell death on mlo5-barley while Bgh did not.  相似文献   

11.
Spring barley cultivars and lines were tested for 3 years in field studies for adult plant resistance against Erysiphe graminis f.sp. hordei. The cultivars Osiris and Asse were selected for further detailed cytological studies and compared with the susceptible cultivar Peruvian. Under controlled greenhouse conditions, the percentage of conidia that had formed a functional haustorium and secondary hyphae (infection efficiency) was reduced in fifth leaves of the adult plant resistant cultivars. On fifth and flag leaves of adult plant resistant cultivars, papillae were formed more frequently under primary germ tubes and appressoria, and fungal penetration was prevented more often than on the susceptible cultivar Peruvian. In ultrastructural studies various types of papillae were observed, but could not be strictly correlated with penetration success or failure of the fungus.  相似文献   

12.
Powdery mildew is an important disease of cereals, affecting both grain yield and end‐use quality. The causal agent of powdery mildew on cereals, Blumeria graminis, has been classified into eight formae speciales (ff.spp.), infecting crops and wild grasses. Advances in research on host specificity and resistance, and on pathogen phylogeny and origins, have brought aspects of the subspecific classification system of B. graminis into ff.spp. into question, because it is based on adaptation to certain hosts rather than strict host specialization. Cereals therefore cannot be considered as typical non‐hosts to non‐adapted ff.spp. We introduce the term ‘non‐adapted resistance’ of cereals to inappropriate ff.spp. of B. graminis, which involves both pathogen‐associated molecular pattern‐triggered immunity (PTI) and effector‐triggered immunity (ETI). There is no clear distinction between the mechanisms of resistance to adapted and non‐adapted ff.spp. Molecular evolutionary data suggest that the taxonomic grouping of B. graminis into different ff.spp. is not consistent with the phylogeny of the fungus. Imprecise estimates of mutation rates and the lack of genetic variation in introduced populations may explain the uncertainty with regard to divergence times, in the Miocene or Holocene epochs, of ff.spp. of B. graminis which infect cereal crop species. We propose that most evidence favours divergence in the Holocene, during the course of early agriculture. We also propose that the forma specialis concept should be retained for B. graminis pathogenic on cultivated cereals to include clades of the fungus which are strongly specialized to these hosts, i.e. ff.spp. hordei, secalis and tritici, as well as avenae from cultivated A. sativa, and that the forma specialis concept should no longer be applied to B. graminis from most wild grasses.  相似文献   

13.
14.
Non-specific lipid transfer proteins (LTPs) are involved in the transport of lipophilic compounds to the cuticular surface in epidermal cells and in the defence against pathogens. The role of glycophosphatidylinositol (GPI)-anchored LTPs (LTPGs) in resistance against non-host mildews in Arabidopsis thaliana was investigated using reverse genetics. Loss of either LTPG1, LTPG2, LTPG5 or LTPG6 increased the susceptibility to penetration of the epidermal cell wall by Blumeria graminis f. sp. hordei (Bgh). However, no impact on pre-penetration defence against another non-host mildew, Erysiphe pisi (Ep), was observed. LTPG1 was localized to papillae at the sites of Bgh penetration. This study shows that, in addition to the previously known functions, LTPGs contribute to pre-invasive defence against certain non-host powdery mildew pathogens.  相似文献   

15.
Colony development of Erysiphe graminis f.sp. avenae race 2 was studied on detached leaf segments of a range of Avena hosts with different levels of resistance, none of which possesses known specific gene resistance to this race. Resistance affected the length attained by mature primary haustoria, and also colony size as assessed by numbers of haustoria and conidiophores produced per colony 5 days after inoculation. A more accurate assessment of the size of mature haustoria was provided by the total length of their digitate processes. At the primary haustorium stage resistance affected not only haustorial size, but also haustorial efficiency measured as colony growth per unit size. Adult plant resistance of some hosts decreased haustorial size and/or efficiency in colonies on the fifth in comparison with the first formed leaf.  相似文献   

16.
Clarke JA 《Plant physiology》1981,67(1):188-189
Host cell wall hydroxyproline enhancement was observed in the successful development of the parasite Erysiphe graminis DC. f. sp. tritici em Marchal (MS-1) on wheat (em Thell). Hydroxyproline enhancement, which was observed only in susceptible hosts, was detected as early as 25 hours after infection. This observation suggests that the increase in cell wall hydroxyproline is a primary event in the host-pathogen interaction of Erysiphe graminis in wheat.  相似文献   

17.
The biology and infection-behaviour of a typical isolate of Phialophora radicicola Cain have been compared with those of a representative isolate of Ophiobolus graminis (Sacc.) Sacc. Both species can utilize a nitrate source of nitrogen and both require thiamine and biotin for growth on inorganic nitro-gen; P. radicicola, but not O. graminis, was able to synthesize biotin when grown on asparagine as a nitrogen source. The pH range for good growth of P. radicicola in nutrient solution was narrower than that for O. graminis, and its growth rate on agar was only one-third. P. radicicola was the more active decomposer of cellulose, and its cellulolysis adequacy index was I.66 as com-pared with a value of 0.33 for 0. graminis. In agreement with prediction from Garrett's (I966) hypothesis on the cellulolysis adequacy index, saprophytic survival of P. radicicola in wheat straw was shortened by additional soil nitrogen, which prolongs survival of O. graminis.P. radicicola was found to spread ectotrophically over the roots of wheat, oats and barley by runner hyphae indistinguishable from those of O. graminis, but cortical infection caused no necrosis and no discernible check to growth of the infected cereals, nor any significant decrease in grain yield of inoculated wheat grown to maturity. Pre-existing infection of wheat roots by P. radicicola retarded spread of infection by O. graminis; inoculation of several grass species with P. radicicola reduced the extent of infection by O. graminis of wheat following the grasses.  相似文献   

18.
Brachypodium distachyon (Brachypodium) is a model for the temperate grasses which include important cereals such as barley, wheat and oats. Comparison of the Brachypodium genome (accession Bd21) with those of the model dicot Arabidopsis thaliana and the tropical cereal rice (Oryza sativa) provides an opportunity to compare and contrast genetic pathways controlling important traits. We analysed the homologies of genes controlling the induction of flowering using pathways curated in Arabidopsis Reactome as a starting point. Pathways include those detecting and responding to the environmental cues of day length (photoperiod) and extended periods of low temperature (vernalization). Variation in these responses has been selected during cereal domestication, providing an interesting comparison with the wild genome of Brachypodium. Brachypodium Bd21 has well conserved homologues of circadian clock, photoperiod pathway and autonomous pathway genes defined in Arabidopsis and homologues of vernalization pathway genes defined in cereals with the exception of VRN2 which was absent. Bd21 also lacked a member of the CO family (CO3). In both cases flanking genes were conserved showing that these genes are deleted in at least this accession. Segmental duplication explains the presence of two CO-like genes in temperate cereals, of which one (Hd1) is retained in rice, and explains many differences in gene family structure between grasses and Arabidopsis. The conserved fine structure of duplications shows that they largely evolved to their present structure before the divergence of the rice and Brachypodium. Of four flowering-time genes found in rice but absent in Arabidopsis, two were found in Bd21 (Id1, OsMADS51) and two were absent (Ghd7, Ehd1). Overall, results suggest that an ancient core photoperiod pathway promoting flowering via the induction of FT has been modified by the recruitment of additional lineage specific pathways that promote or repress FT expression.  相似文献   

19.
Brachypodium distachyon (Brachypodium) has been proposed as a model temperate grass because its physical, genetic, and genome attributes (small stature, simple growth requirements, small genome size, availability of diploid ecotypes, annual lifecycle and self fertility) are suitable for a model plant system. Two additional requirements that are necessary before Brachypodium can be widely accepted as a model system are an efficient transformation system and homogeneous inbred reference genotypes. Here we describe the development of inbred lines from 27 accessions of Brachypodium. Determination of c-values indicated that five of the source accessions were diploid. These diploid lines exhibit variation for a variety of morphological traits. Conditions were identified that allow generation times as fast as two months in the diploids. An Agrobacterium-mediated transformation protocol was developed and used to successfully transform 10 of the 19 lines tested with efficiencies ranging from 0.4% to 15%. The diploid accession Bd21 was readily transformed. Segregation of transgenes in the T 1 generation indicated that most of the lines contained an insertion at a single genetic locus. The new resources and methodologies reported here will advance the development and utilization of Brachypodium as a new model system for grass genomics.  相似文献   

20.
Resistance was induced in barley by virulent and avirulent Erysiphe graminis f. sp. hordei and by E. graminis f. sp. tritici. The diameters of fluorescent haloes and papillae at the site of the primary germ tube of the inducers were larger until 12 hours after inoculation with E g. f. sp. tritici than in the corresponding periods after inoculation with E. g. f. sp. hordei. Fluorescence at the site of appressorial lobes of the inducers developed, gradually from 10 and 12 hours after inoculation with E. g. f. sp. hordei and E. g. f. sp. tritici, respectively. Penetration success of single infection units of the challenger was reduced in cells with inducer fluorescence, suggesting that resistance is principally localized to cells previously attacked by the inducer. But penetration success was independent of the average distance to the ten nearest inducer fluorescences, and penetration failures did also occur in cells without inducer fluorescence, suggesting that the induced resistance to some extent is translocated to other epidermal cells. The average diameter of the fluorescent papillae at the site of unsuccessful challenger infection units increased as a result of induced resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号