首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Climatic factors influence the distribution of ectotherms, raising the possibility that distributions of many species will shift rapidly under climate change and/or that species will become locally extinct. Recent studies have compared performance curves of species from different climate zones and suggested that tropical species may be more susceptible to climate change than those from temperate environments. However, in other comparisons involving responses to thermal extremes it has been suggested that mid‐latitude populations are more susceptible. Using a group of 10 closely related Drosophila species with known tropical or widespread distribution, we undertake a detailed investigation of their growth performance curves and their tolerance to thermal extremes. Thermal sensitivity of life history traits (fecundity, developmental success, and developmental time) and adult heat resistance were similar in tropical and widespread species groups, while widespread species had higher adult cold tolerance under all acclimation regimes. Laboratory measurements of either population growth capacity or acute tolerance to heat and cold extremes were compared to daily air temperature under current (2002–2007) and future (2100) conditions to investigate if these traits could explain current distributions and, therefore, also forecast future effects of climate change. Life history traits examining the thermal sensitivity of population growth proved to be a poor predictor of current species distributions. In contrast, we validate that adult tolerance to thermal extremes provides a good correlate of current distributions. Thus, in their current distribution range, most of the examined species experience heat exposure close to, but rarely above, the functional heat resistance limit. Similarly, adult functional cold resistance proved a good predictor of species distribution in cooler climates. When using the species’ functional tolerance limits under a global warming scenario, we find that both tropical and widespread Drosophila species will face a similar proportional reduction in distribution range under future warming.  相似文献   

2.
Inbreeding depression plays a central role within the conservation genetics paradigm. Until now inbreeding depression is incorporated into models of population viability as a mean value (e.g. number of lethal equivalents) for all traits in a population. In this study of the locally threatened perennial plant species Scabiosa columbaria we investigated both the mean and the variance among families of inbreeding depression in eight life history traits for five natural populations varying in size from 300 to more than 120,000 individuals. Significant inbreeding depression was found in all populations and all traits. The mean inbreeding depression value per trait was never correlated to population size. Within each population, highly significant variation in inbreeding depression between families (VIFLID) was found. Per trait, families with inbreeding depression next to families with outbreeding depression were often found within the same population. Inbreeding depression at the family level was in many cases not correlated among traits and independent of correlations between traits themselves. VIFLID was negatively correlated with population size: in two traits these correlations were significant. The results underline that inbreeding depression is a complex, highly dynamic phenomenon. Models of viability should incorporate inbreeding depression distributions, with a trait specific mean and variance. Moreover, models of metapopulation dynamics should incorporate genotype quality as factor in colonization success.  相似文献   

3.
Populations are from time to time exposed to stressful temperatures. Their thermal resistance levels are determined by inherent and plastic mechanisms, which are both likely to be under selection in natural populations. Previous studies on Drosophila species have shown that inherent resistance is highly species specific, and differs among ecotypes (e.g., tropical and widespread species). Apart from being exposed to thermal stress many small and fragmented populations face genetic challenges due to, for example, inbreeding. Inbreeding has been shown to reduce inherent resistance levels toward stressful temperatures, but whether adaptation to thermal stress through plastic responses also is affected by inbreeding is so far not clear. In this study, we test inherent cold resistance and the ability to respond plastically to temperature changes through developmental cold acclimation in inbred and outbred lines of five tropical and five widespread Drosophila species. Our results confirm that tropical species have lower cold resistance compared to widespread species, and show that (1) inbreeding reduces inherent cold resistance in both tropical and widespread species, (2) inbreeding does not affect the ability to respond adaptively to temperature acclimation, and (3) tropical species with low basal resistance show stronger adaptive plastic responses to developmental acclimation compared to widespread species.  相似文献   

4.
Inbreeding depression varies among species and among populations within a species. Few studies, however, have considered the extent to which inbreeding depression varies within a single population. We report on two experiments to provide evidence that inbreeding depression is genetically variable, such that within a single population some lineages suffer severe inbreeding depression, others suffer only mild inbreeding depression, and some lineages actually increase in phenotypic value at higher levels of inbreeding. We examine the effects of population structure on inbreeding depression for two traits in the first experiment (adult dry weight and female relative fitness), and for seven traits in the second experiment (female and male adult dry weight, female and male relative fitness, female and male developmental time, and egg-to-adult viability). In the first experiment, we collected data from 4 families within each of 38 lineages derived from a single ancestral stock population and maintained for four generations of full-sib mating. Both traits demonstrate significant inbreeding depression and provide evidence that even within a single lineage there is significant genetic variability in inbreeding depression. In the second experiment, we collected data from 5 replicates for each of 15 lineages derived from the same ancestral population used in the first experiment; these lineages were maintained for four generations of full-sib mating. We also collected data on outbred control beetles in each generation and incorporated these data into the analyses to account for environmental effects in an unbiased manner. All traits except female and male developmental time show significant inbreeding depression. All traits showing inbreeding depression are genetically variable in inbreeding depression, as is evident from a significant linear lineage-×-f component. For both experiments, the effect of population structure on inbreeding depression is further evident from the increasing amount of variation that can be explained by the models used to measure inbreeding depression when additional levels of population structure are included. Genetic variation in inbreeding depression has important implications for conservation biology and may be an important factor in mating-system evolution.  相似文献   

5.
This paper examines the effect of inbreeding level of population on the magnitude of inbreeding depression expressed by comparing them between two cultured populations (A and B) in the hermaphroditic animal of the bay scallop Argopecten irradians irradians. Population A is expected to have less genetic variations and higher inbreeding level due to longer cultured history (20 generations) and less “ancestral” individuals (26 individuals) than population B due to shorter cultured history (4 generations) and more “ancestral” individuals (406 individuals). Two groups within each population were produced, one using self-fertilization and one using mass-mating within the same population. Selfed offspring (AS and BS) from two populations both had lower fitness components than their mass-mated counterparts (AM and BM) and exhibited inbreeding depression for all examined traits, e.g. lower hatching, less viability and slower growth, indicating that inbreeding depression is a common feature in this animal. Fitness components in all traits of offspring from population A significantly differed those from population B and the magnitude of inbreeding depression for all traits in population A with higher inbreeding level was significantly smaller than that in population B with lower inbreeding level, indicating that both fitness components and magnitude of inbreeding depression were significantly affected by inbreeding level of populations and genetic load harbored in population A may be partially purged through inbreeding. Moreover, the magnitude of inbreeding depression in the two populations both varied among traits and life history stages. The present results support the partial-dominance hypothesis of inbreeding depression.  相似文献   

6.
Inbreeding depression (ID) has since long been recognized as a significant factor in evolutionary biology. It is mainly the consequence of (partially) recessive deleterious mutations maintained by mutation-selection balance in large random mating populations. When population size is reduced, recessive alleles are increasingly found in homozygous condition due to drift and inbreeding and become more prone to selection. Particularly at slow rates of drift and inbreeding, selection will be more effective in purging such alleles, thereby reducing the amount of ID. Here we test assumptions of the efficiency of purging in relation to the inbreeding rate and the experimental conditions for four traits in D. melanogaster. We investigated the magnitude of ID for lines that were inbred to a similar level, F ≈ 0.50, reached either by three generations of full-sib mating (fast inbreeding), or by 12 consecutive generations with a small population size (slow inbreeding). This was done on two different food media. We observed significant ID for egg-to-adult viability and heat shock mortality, but only for egg-to-adult viability a significant part of the expressed inbreeding depression was effectively purged under slow inbreeding. For other traits like developmental time and starvation resistance, however, adaptation to the experimental and environmental conditions during inbreeding might affect the likelihood of purging to occur or being detected. We discuss factors that can affect the efficiency of purging and why empirical evidence for purging may be ambiguous.Subject terms: Evolutionary genetics, Inbreeding  相似文献   

7.
Inbreeding is unavoidable in small, isolated populations and can cause substantial fitness reductions compared to outbred populations. This loss of fitness has been predicted to elevate extinction risk giving it substantial conservation significance. Inbreeding may result in reduced fitness for two reasons: an increased expression of deleterious recessive alleles (partial dominance hypothesis) or the loss of favourable heterozygote combinations (overdominance hypothesis). Because both these sources of inbreeding depression are dependent upon dominance variance, inbreeding depression is predicted to be greater in life history traits than in morphological traits. In this study we used replicate inbred and control lines of Drosophila simulans to address three questions:1) is inbreeding depression greater in life history than morphological traits? 2) which of the two hypotheses is the major underlying cause of inbreeding depression? 3) does inbreeding elevate population extinction risk? We found that inbreeding depression was significantly greater in life history traits compared to morphological traits, but were unable to find unequivocal support for either the overdominance or partial dominance hypotheses as the genetic basis of inbreeding depression. As predicted, inbred lines had a significantly greater extinction risk.  相似文献   

8.
Quantitative genetic studies for life history and behavioral traits are important in quality control for insect mass-rearing programs. Firstly, a brief history of quality control in mass-reared insects is described. Next, the differentiation of many traits of wild and mass-reared melon flies,Bactrocera cucurbitae, in Okinawa is reviewed, and the factors which have caused variation in these traits are considered. As artificial selection pressures are thought to be more important than inbreeding depression and genetic drift in the mass-reared strain of the Okinawan melon fly, two artificial selection experiments were conducted to evaluate genetic variations and genetic correlations among life history and behavioral traits. These are divergent selections for age at reproduction and for developmental period. The genetic relationship among 5 traits, i.e. longevity, age at reproduction, developmental period, circadian period, and time of mating was clarified and discussed in relation to genetic changes of traits during the mass-rearing. The results suggest that the genetic trade-off relationships between traits should be taken into account in mass-rearing programs.  相似文献   

9.
The increased homozygosity due to inbreeding leads to expression of deleterious recessive alleles, which may cause inbreeding depression in small populations. The severity of inbreeding depression has been suggested to depend on the rate of inbreeding, with slower inbreeding being more effective in purging deleterious alleles of smaller effect. The effectiveness of purging is however dependent on various factors such as the effect of the deleterious, recessive alleles, the genetic background of inbreeding depression and the environment in which purging occurs. Investigations have shown inconclusive results as to whether purging efficiently diminish inbreeding depression. Here we used an ecologically relevant inbreeding coefficient (f ≈ 0.25) and generated ten slow and ten fast inbred lines of Drosophila melanogaster by keeping the effective population size constant at respectively 32 and 2 for 19 or 2 generations. These inbred lines were contrasted to non-inbred control lines. We investigated the effect of inbreeding and inbreeding rate in traits associated with fitness including heat, cold and desiccation stress resistance, egg-to-adult viability, development time, productivity, metabolic rate and wet weight under laboratory conditions. The results showed highly trait specific consequences of inbreeding and generally no support for the hypothesis that slow inbreeding is less deleterious than fast inbreeding. Egg-to-adult viability and development time were investigated under both benign and heat stress conditions. Reduced viability and increased developmental time were observed at stressful temperatures and inbreeding depression was on average more severe at stressful compared to benign temperatures.  相似文献   

10.
Several workers have suggested that species with restricted ranges and few individuals are more likely to be self-compatible and to exhibit low levels of inbreeding depression than are geographically widespread congeners. To investigate these predicted patterns, controlled pollinations were performed in the field on populations of two restricted and two widespread species of Astragalus. All four species are xerophytic perennials which have similar floral size and morphology. Both restricted A. linifolius and restricted A. osterhouti are self-compatible, and A. linifolius is moderately autogamous. Widespread A. lonchocarpus is self-compatible, but widespread A. pectinatus is essentially self-incompatible. Neither the restricted nor the widespread species exhibited evidence of fecundity components of inbreeding depression (as measured by percent seed set and percent embryo abortion). Seedlings of A. linifolius and A. lonchocarpus that had been produced by self- and cross-fertilization were grown in a growth chamber to investigate progeny viability components of inbreeding depression. In contrast to the predicted patterns, inbreeding depression was detected in progeny of restricted A. linifolius, but not in progeny of widespread A. lonchocarpus. These patterns emphasize the importance of studying inbreeding depression in additional restricted and widespread species at several stages of the life cycle.  相似文献   

11.
Tychoparthenogenesis, a form of asexual reproduction in which a small proportion of unfertilized eggs can hatch spontaneously, could be an intermediate evolutionary link in the transition from sexual to parthenogenetic reproduction. The lower fitness of tychoparthenogenetic offspring could be due to either developmental constraints or to inbreeding depression in more homozygous individuals. We tested the hypothesis that in populations where inbreeding depression has been purged, tychoparthenogenesis may be less costly. To assess this hypothesis, we compared the impact of inbreeding and parthenogenetic treatments on eight life‐history traits (five measuring inbreeding depression and three measuring inbreeding avoidance) in four laboratory populations of the desert locust, Schistocerca gregaria, with contrasted demographic histories. Overall, we found no clear relationship between the population history (illustrated by the levels of genetic diversity or inbreeding) and inbreeding depression, or between inbreeding depression and parthenogenetic capacity. First, there was a general lack of inbreeding depression in every population, except in two populations for two traits. This pattern could not be explained by the purging of inbreeding load in the studied populations. Second, we observed large differences between populations in their capacity to reproduce through tychoparthenogenesis. Only the oldest laboratory population successfully produced parthenogenetic offspring. However, the level of inbreeding depression did not explain the differences in parthenogenetic success between all studied populations. Differences in development constraints may arise driven by random and selective processes between populations.  相似文献   

12.
The role of development in the evolution of postponed senescence is poorly understood despite the existence of a major gerontological theory connecting developmental rate to aging. We investigate the role of developmental rate in the laboratory evolution of aging using 24 distinct populations of Drosophila melanogaster. We have found a significant difference between the larval developmental rates of our Drosophila stocks selected for early (B) and late-life (O) fertility. This larval developmental time difference of approximately 12% (O > B) has been stable for at least 5 yr, occurs under a wide variety of rearing conditions, responds to reverse selection, and is shown for two other O-like selection treatments. Emerging adults from lines with different larval developmental rates show no significant differences in weight at emergence, thorax length, or starvation resistance. Long-developing lines (O, CO, and CB) have greater survivorship from egg to pupa and from pupa to adult, with and without strong larval competition. Crosses between slower developing populations, and a variety of other lines of evidence, indicate that neither mutation accumulation nor inbreeding depression are responsible for the extended development of our late-reproduced selection treatments. These results stand in striking contrast to other recent studies. We argue that inbreeding depression and inadvertent direct selection in other laboratories' culture regimes explain their results. We demonstrate antagonistic pleiotropy between developmental rate and preadult viability. The absence of any correlation between longevity and developmental time in our stocks refutes the developmental theory of aging.  相似文献   

13.
If male sexual signalling is honest because it captures genetic variation in condition then traits that are important mate choice cues should be disproportionately affected by inbreeding relative to other traits. To test this, we investigated the effect of brother-sister mating on advertisement calling by male field crickets Teleogryllus commodus. We quantified the effect of one generation of inbreeding on nightly calling effort and five finer-scale aspects of call structure that have been shown to influence attractiveness. We also quantified inbreeding depression on six life history traits and one morphological trait. Inbreeding significantly reduced hatching success, nymph survival and adult lifespan but had no detectable effect on hatching rate, developmental rate or adult body mass. The effect of inbreeding on sexually selected traits was equivocal. There was no decline in calling effort (seconds of sound production/night) by inbred males, but there were highly significant changes in three of five finer-scale call parameters. Sexually selected traits clearly vary in their susceptibility to inbreeding depression.  相似文献   

14.
Recently, heterogeneity of the environment has been suggested as an important player in the evolution of life span variation. Established ageing theories propose that life span variation is the result of coevolution with other traits, such as stress resistance. This study aimed to compare these alternative hypotheses by examining the relationship between four environmental variables and different types of stress resistance traits with life span in 13 Drosophila species originating from tropical, subtropical and temperate environments (ecotypes). Average life span was found to differ significantly both between species and sexes, but only male life span correlated with the environment and cold resistance. While controlling for phylogeny, the environmental variable precipitation seasonality and resistance against cold‐induced stress explained most variation in male life span. Furthermore, male life span varied between species in a manner represented by environmental variables linked to the different ecotypes, such that tropical species lived longer and were less cold resistant. The current results suggest that general mechanisms underlying stress resistance and life span are unlikely. In addition, our results point to the environment independently shaping variation in life span and cold resistance rather than genetic interactions.  相似文献   

15.
Inbreeding depression is a key factor influencing mating system evolution in plants, but current understanding of its relationship with selfing rate is limited by a sampling bias with few estimates for self‐incompatible species. We quantified inbreeding depression (δ) over two growing seasons in two populations of the self‐incompatible perennial herb Arabidopsis lyrata ssp. petraea in Scandinavia. Inbreeding depression was strong and of similar magnitude in both populations. Inbreeding depression for overall fitness across two seasons (the product of number of seeds, offspring viability, and offspring biomass) was 81% and 78% in the two populations. Chlorophyll deficiency accounted for 81% of seedling mortality in the selfing treatment, and was not observed among offspring resulting from outcrossing. The strong reduction in both early viability and late quantitative traits suggests that inbreeding depression is due to deleterious alleles of both large and small effect, and that both populations experience strong selection against the loss of self‐incompatibility. A review of available estimates suggested that inbreeding depression tends to be stronger in self‐incompatible than in self‐compatible highly outcrossing species, implying that undersampling of self‐incompatible taxa may bias estimates of the relationship between mating system and inbreeding depression.  相似文献   

16.
We studied inbreeding depression in a perennial plant, Lychnis viscaria, in three populations differing in their inbreeding history and population size by measuring several traits at two nutrient levels over the plant's life cycle. The observed levels of inbreeding depression (cumulative inbreeding depression, from -0.057 to 0.629) were high for a plant with a mixed mating system. As expected, the population with a low level of isozyme variation expressed the least inbreeding depression for seed germination. Highest inbreeding depression for germination was found in the largest and genetically most variable population. No clear differences between populations in expression of inbreeding depression in the later life stages were found. The population level inbreeding depression varied with the nutrient conditions and among populations and life stages, but we found no evidence that inbreeding depression increased with lower nutrient availability. These results emphasize the importance of measuring inbreeding depression under several environmental conditions and over life stages.  相似文献   

17.
This paper examines several aspects of the expression of inbreeding depression in an outcrossing, obligately biennial plant, Hydrophyllum appendiculatum (Hydrophyllaceae). The amount of inbreeding depression detected was small during the first year of life but increased with age and had significant effects on adult size and reproductive traits. The lack of significant inbreeding depression during early growth is likely due to the overriding influence of maternal environmental effects on seed size and seedling growth. However, as maternal effects decreased with age, the seedling's own genotype became a more important determinant of its fate. To examine whether the expression of inbreeding depression was sensitive to ecological conditions, selfed and outcrossed seedlings were grown alone or with other H. appendiculatum seedlings. No inbreeding depression was detected in the plants grown alone. In contrast, under competitive conditions, outcrossed seedlings were significantly larger than selfed seedlings by the end of the first growing season. To address whether parental mating history influences the amount of inbreeding depression expressed, I examined the consequences of two successive generations of selfing on seed set and seed weight. The amount of inbreeding depression increased following the second generation of selfing. In the first generation, seed set and seed weight differed by less than 5% between selfed and outcrossed progeny. However, both traits were 15% greater for outcrossed plants after two generations. These results indicate that the alleles responsible for the reductions in these traits were not purged and suggest the action of multiple loci with deleterious effects.  相似文献   

18.
Estimating the relative suitability of different host plant species for herbivores is usually based on survival and growth parameters, neglecting other parameters such as resistance traits. Adding further complexity, host plant suitability may depend on environmental temperature. We here use the oligophagous pierid butterfly Pieris napi to investigate effects of temperature (during both the larval and the adult stage) and larval host plant species (Alliaria petiolata, Cardamine pratensis and Sinapis alba) on life history and adult stress resistance traits (resistance to desiccation and starvation). Environmental temperature affected all developmental traits: at the lower temperature development time and body mass increased. Temperature also affected adult stress resistance: desiccation and starvation resistance were higher at the lower adult temperature. When the same temperatures were used during larval development, effects on adult stress resistance traits were in the opposite direction. Host plants affected life history (larger body mass and faster development in larvae fed S. alba) and stress resistance traits (best performance in larvae fed A. petiolata) differently. Thus, the relative suitability of a host plant depended on the trait of the herbivore that is focused on and may be subject to local selection pressures. Although interactions with temperature were present for all traits, effect sizes were generally small.  相似文献   

19.
Selection may reduce the deleterious consequences of inbreeding. This may be due to purging of recessive deleterious alleles or balancing selection favouring heterozygote offspring. Such selection is expected to be more efficient at slower compared to at faster rates of inbreeding. In this study we tested the impact of inbreeding and the rate of inbreeding on fitness related traits (egg productivity, egg-to-adult viability, developmental time and behaviour) under cold and benign semi-natural thermal conditions using Drosophila melanogaster as a model organism. We used non-inbred control and slow and fast inbred lines (both with an expected inbreeding level of 0.25). The results show that contrary to expectations the slow inbred lines do not maintain higher average fitness than the fast inbred lines. Furthermore, we found that stressful environmental conditions increased the level of inbreeding depression but the impact of inbreeding rate on the level of inbreeding depression was not affected by the environmental conditions. The results do not support the hypothesis that inbreeding depression is less severe with slow compared to fast rates of inbreeding and illustrate that although selection may be more efficient with slower rates of inbreeding this does not necessary lead to less inbreeding depression.  相似文献   

20.
The majority of experimental studies of the effects of population bottlenecks on fitness are performed under laboratory conditions, which do not account for the environmental complexity that populations face in nature. In this study, we test inbreeding depression in multiple replicates of inbred when compared with non-inbred lines of Drosophila melanogaster under different temperature conditions. Egg-to-adult viability, developmental time and sex ratio of emerging adults are studied under low, intermediate and high temperatures under laboratory as well as semi-natural conditions. The results show inbreeding depression for egg-to-adult viability. The level of inbreeding depression is highly dependent on test temperature and is observed only at low and high temperatures. Inbreeding did not affect the developmental time or the sex ratio of emerging adults. However, temperature affected the sex ratio with more females relative to males emerging at low temperatures, suggesting that selection against males in pre-adult life stages is stronger at low temperatures. The coefficient of variation (CV) of egg-to-adult viability within and among lines is higher for inbred flies and generally increases at stressful temperatures. Our results contribute to knowledge on the environmental dependency of inbreeding under different environmental conditions and emphasize that climate change may impact negatively on fitness through synergistic interactions with the genotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号