首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Heat shock proteins (HSPs) play important roles in cellular stress resistance. Previous reports had already suggested that HSP27 played multiple roles in preventing doxorubicin-induced cardiotoxicity. Although HSP25 might have biological functions similar to its human homolog HSP27, the mechanism of HSP25 is still unclear in doxorubicin-induced cardiomyocyte apoptosis. To investigate HSP25 biological function on doxorubicin-induced apoptosis, flow cytometry was employed to analyze cell apoptosis in over-expressing HSP25 H9c2 cells in presence of doxorubicin. Unexpectedly, the H9c2 cells of over-expressing HSP25 have no protective effect on doxorubicin-induced apoptosis. Moreover, no detectable interactions were detected by coimmunoprecipitation between HSP25 and cytochrome c, and HSP25 over-expression failed in preventing cytochrome c release induced by doxorubicin. However, down-regulation of endogenous HSP25 by a specific small hairpin RNA aggravates apoptosis in H9c2 cells. Subsequent studies found that HSP25, but not HSP90, HSP70, and HSP20, interacted with SIRT1. Knockdown of HSP25 decreased the interaction between SIRT1 and p53, leading to increased p53 acetylation on K379, up-regulated pro-apoptotic Bax protein expression, induced cytochrome c release, and triggered caspase-3 and caspase-9 activation. These findings indicated a novel mechanism by which HSP25 regulated p53 acetylation through dissociation of SIRT1 from p53 in doxorubicin-induced H9c2 cell apoptosis.  相似文献   

2.
Apoptosis of chondrocytes are the main initiator of osteoarthritis (OA) and can be explained by oxidative stress and endoplasmic reticulum (ER) stress, thus the pharmacological interventions aimed at inhibiting of these pathways may be a promising approach for the management of OA. Quercetin is a member of the flavonoid family and has antioxidant and anti-inflammatory properties in degenerative diseases. However, its effects and potential mechanisms on the pathological process of OA are not very clear. The present study aimed to investigate the protective effects of quercetin on OA and the underlying mechanisms. The tert-butyl hydroperoxide (TBHP)-stimulated rat chondrocytes and destabilization of the medial meniscus OA rat model was used to explore the protective effects of quercetin. Our results showed that quercetin treatment can attenuate oxidative stress, ER stress, and associated apoptosis. Moreover, quercetin inhibited ER stress through activating the sirtuin1/adenosine monophosphate-activated protein kinase (SIRT1/AMPK) signaling pathway. The protective effects of quercetin were also observed in OA rat model which is evidenced by abolished cartilage degeneration and decreased chondrocytes apoptosis in the knee joints. Our results suggested that quercetin is a promising treatment for OA.  相似文献   

3.
This study evaluated the protective effect of astaxanthin (ASX) against high-fat diet (HFD)-induced cardiac damage and fibrosis in rats and examined if the mechanism of protection involves modulating SIRT1. Rat were divided into 5 groups (n = 10/group) as: 1) control: fed normal diet (3.82 kcal/g), 2) control + ASX (200 mg/kg/orally), 3) HFD: fed HFD (4.7 kcal/g), 4) HFD + ASX (200 mg/kg/orally), and HFD + ASX + EX-527 (1 mg/kg/i.p) (a selective SIRT1 inhibitor). All treatments were conducted for 14 weeks. Administration of ASX reduced cardiomyocyte damage, inhibited inflammatory cell infiltration, preserved cardiac fibers structure, prevented collagen deposition and protein levels of TGF-β 1 in the left ventricles (LVs) of HFD-fed rats. In the LVs of both the control and HFD-fed rat, ASX significantly reduced levels of reactive oxygen species (ROS), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and p-smad2/3 (Lys19) but increased the levels of glutathione (GSH), catalase, and manganese superoxide dismutase (MnSOD). Concomitantly, it increased the nuclear activity of Nrf2 and reduced that of NF-κB p65. Furthermore, administration of ASX to both the control and HFD-fed rats increased total and nuclear levels of SIRT1, stimulated the nuclear activity of SIRT1, and reduced the acetylation of Nrf2, NF-κB p65, and Smad3. All these cardiac beneficial effects of ASX in the HFD-fed rats were abolished by co-administration of EX-527. In conclusion, ASX stimulates antioxidants and inhibits markers of inflammation under basal and HFD conditions. The mechanism of protection involves, at least, activation SIRT1 signaling.  相似文献   

4.
目的探讨硫化氢(H2S)对阿霉素(DOX)诱导的H9c2细胞损伤的影响及其作用机制。 方法H2S对DOX心肌毒性保护作用的实验分组为:对照组(Control组),5?μmol/?L DOX处理组(A组),5?μmol/L DOX和400?μmol/L NaHS共同处理组(B组),400?μmol/L NaHS单独处理组(C组),5?μmol/L DOX、400?μmol/L NaHS和15?μmol/L Sirtinol共同处理组(D组),15?μmol/L Sirtinol单独处理组(E组)。SIRT1是否参与H2S抗DOX心肌毒性作用机制的实验分组为:对照组(Control组),5?μmol/L DOX处理组(F组),5?μmol/L DOX和400?μmol/L NaHS共同处理组(G组),5?μmol/L DOX、400?μmol/L NaHS和15?μmol/L Sirtinol共同处理组(H组),15?μmol/L Sirtinol单独处理组(I组)。使用MTT法检测细胞活力;Elisa法检测细胞MDA以及SOD水平;DCFH-?DA荧光探针法检测ROS水平;采用Western Blot法检测SIRT1蛋白表达。使用单因素方差分析法进行统计学分析。 结果NaHS预处理可抑制DOX导致的H9c2细胞活力下降:Control组,A组、B组、C组细胞活力分别为100﹪、(54.58±1.58)﹪、(85.05±4.31)﹪、(100.22±4.46)﹪ (F = 134.9,P < 0.001)。NaHS预处理可减弱DOX引起的H9c2细胞ROS、MDA水平的增加以及SOD水平的降低:Control组的ROS、MDA和SOD水平分别是100﹪、(34.18±1.56) μmol/g、(53.69±1.44) U/?mg;A组的ROS、MDA和SOD水平分别是(174.90±12.65)﹪、(72.65±2.66) μmol/g、(31.80±2.05) U/?mg;B组的ROS、MDA和SOD水平分别是(126.08±6.25)﹪、(44.59±1.92) μmol/g、(48.06±1.56) U/mg;C组的ROS、MDA和SOD水平分别是(91.86±1.66)﹪、(32.93±1.56)?μmol/?g、(55.93±1.58)?U/?mg (F?= 83.26,P < 0.001;F = 271.4,P < 0.001;F = 127.0,P < 0.001)。F组(6、12、24?h)H9c2细胞SIRT1蛋白表达水平分别是(0.45±0.03)、(0.27±0.02)、(0.25±0.03),较Control组(1.00±0.00)降低(F = 611.1,P < 0.001)。本研究还发现,NaHS预处理H9c2细胞能阻止DOX引起的SIRT1蛋白表达下调:Control组、F组、G组、H组的SIRT1蛋白表达水平分别是(1.00±0.00)、(0.31±0.03)、(0.60±0.04)、(1.09±0.09)(F = 123.4,P?2S对DOX诱导的H9c2细胞活力降低的抑制作用:Control组,F组、G组、H组、I组细胞活力分别为100﹪、(54.58±1.58)﹪、(85.37±3.62)﹪、(71.11±2.11)﹪、(97.53±1.45)﹪ (F = 238.2,P < 0.001)。Sirtinol预处理可明显逆转H2S对DOX导致的H9c2细胞ROS和MDA含量增加及SOD水平降低的抑制作用:Control组的ROS、MDA和SOD水平分别是100﹪、(35.84±2.22)μmol/?g、(53.03±3.16) U/mg;F组的ROS、MDA和SOD水平分别是(184.6±11.33)﹪、(74.78±5.30)μmol/g、(29.26±0.85)U/mg;G组的ROS、MDA和SOD水平分别是(126.5±7.57)﹪、(41.95±3.43)μmol/g、(52.61±2.26)U/mg;H组的ROS、MDA和SOD水平分别是(174.7±5.50)﹪、(67.69±1.52) μmol/g、(35.33±1.95) U/mg,I组的ROS、MDA和SOD水平分别是(98.03±2.86)﹪、(37.66±2.49)μmol/g、51.14 U/mg(F = 112.0,P < 0.001;F = 93.73,P < 0.001;F = 84.92,P < 0.001)。 结论H2S通过调控SIRT1抑制DOX诱导的H9c2细胞损伤。  相似文献   

5.
This study examined the cardiac anti-cardiomyopathy (DC) protective effect of urolithin A in streptozotocin (STZ)-treated rats and investigated if this protection involves activation of SIRT1 signaling. Diabetes was induced first STZ (65 mg/kg, i.p.) before starting the experiments. Adult male rats (n = 8/group) were treated for 8 weeks as control (non-diabetic), control + urolithin A (2.5 mg/kg/i.p.), STZ, STZ + urolithin A, and STZ + urolithin A + Ex-527 (1 mg/kg/i.p.) (a SIRT1 inhibitor). With no effect on fasting glucose and insulin levels, urolithin A improved left ventricular (LV) function and structure and reduced heart weight and serum levels of cardiac markers in STZ-treated rats. Also, it prevented collagen deposition, reduced mRNA levels of Bax, cleaved caspaspe3, collagen 1A1, transforming growth factor-β1 (TGF-β1), and Smad3 but enhanced those of Bcl2 in the LVs of diabetic rats. However, urolithin A suppressed the generation of reactive oxygen species (ROS), activated the nuclear factor erythroid 2–related factor 2 (Nrf2), and increased the levels of manganese superoxide dismutase (MnSOD) and total glutathione (GSH) in the LVs of the non-diabetic and diabetic rats, In parallel, it suppressed the cardiac activity of NF-nuclear factor-kappa beta p65 (κB p65) and reduced levels of tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6). Coincided with these events, urolithin A promoted higher activity, mRNA, and total/nuclear protein levels of SIRT1 and lowered the levels of acetyl-FOXO1, Nrf2, NF-κB, and p53. All these benefits of urolithin A were prevented by Ex-527. In conclusion, urolithin A protects against DC by activating SIRT signaling.  相似文献   

6.
To investigate the effect of three red wines (RWs) from different growing areas and made from different grapes on asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide synthase, in young and senescent human endothelial cells (ECs). All RWs decreased ADMA levels, but 2-fold concentration of German RW was necessary to reach the same effect on ADMA compared to Italian RW and French RW without affecting the cell viability and morphology. The ADMA-lowering effect of RW was increased in senescent compared to young cells, accompanied by enhanced activity of the metabolizing enzyme: dimethylarginine dimethylaminohydrolase (DDAH) II, whereas the same amount in the upregulated protein expression of DDAH II and the downregulated protein expression of the synthesizing enzyme: protein arginine methyltransferase 1 was revealed. These effects were associated with decreased 8-iso-prostaglandin F and peroxynitrite formation, enhanced protein expression of NAD+-dependent class III histone deacetylase sirtuin (SIRT) 1, and downregulated protein expression of histone senescence factor p53. Blockade of SIRT1 activity abolished the effect of red wine on ADMA. These data are the first demonstration that RW by activating SIRT1 impairs synthesis and increases metabolism of ADMA. This effect of RW is accentuated in senescent cells probably due to enhanced DDAH activity.  相似文献   

7.
Primary percutaneous coronary intervention (PPCI) is a pivotal treatment in ST-segment elevation myocardial infarction (STEMI) patients. However, in hyperglycemic-STEMI patients, the incidence of death is still significant. Here, the involvement of sirtuin 1 (SIRT1) and miR33 on the pro-inflammatory/pro-coagulable state of the coronary thrombus was investigated. Moreover, 1-year outcomes in hyperglycemic STEMI in patients subjected to thrombus aspiration before PPCI were evaluated. Results showed that hyperglycemic thrombi displayed higher size and increased miR33, reactive oxygen species, and pro-inflammatory/pro-coagulable markers. Conversely, the hyperglycemic thrombi showed a lower endothelial SIRT1 expression. Moreover, in vitro experiments on endothelial cells showed a causal effect of SIRT1 modulation on the pro-inflammatory/pro-coagulative state via hyperglycemia-induced miR33 expression. Finally, SIRT1 expression negatively correlated with STEMI outcomes. These observations demonstrate the involvement of the miR33/SIRT1 pathway in the increased pro-inflammatory and pro-coagulable state of coronary thrombi in hyperglycemic STEMI patients.  相似文献   

8.
Loss of cardiomyocytes through apoptosis has been proposed as a cause of ventricular remodeling and heart failure. Ischemia- and hypoxia-induced apoptosis of cardiomyocytes reportedly plays an important role in many cardiac pathologies. We investigated whether resveratrol (Res) has direct cytoprotective effects against ischemia/hypoxia for cardiomyocytes. Exposure of H9c2 embryonic rat heart-derived cells to hypoxia for 24 h caused a significant increase in apoptosis, as evaluated by TUNEL and flow cytometry, while treatment with 20 μM Res greatly decreased hypoxia-induced apoptosis in these cells. Exposure of the cells to Res (20 μM) caused rapid activation of SIRT1, which had a dual effect on FoxO1 function: SIRT1 increased FoxO1’s ability to induce cell cycle arrest, but inhibited FoxO1’s ability to induce cell death. This effect could be reversed by SIRT1 inhibition. Results of our study indicate that Res inhibits hypoxia-induced apoptosis via the SIRT1-FoxO1 pathway in H9c2 cells. This polyphenol may have potential in preventing cardiovascular disease, especially in coronary artery disease (CAD) patients.  相似文献   

9.
Function of SIRT1 in physiology   总被引:1,自引:0,他引:1  
Sirtuins were originally defined as a family of oxidized nicotinamide adenine nucleotide (NAD+)-dependent enzymes that deacetylate lysine residues on various proteins. The sirtuins are remarkably conserved throughout evolution from archae to eukaryotes. They were named after their homology to the Saccharomyces cerevisiae gene silent information regulator 2 (Sir2). The mammalian sirtuins, SIRT1-7, are implicated in a variety of cellular functions ranging from gene silencing, control of the cell cycle and apoptosis, and energy homeostasis. As SIRT1 is a nuclear protein and is the mammalian homolog most highly related to Sir2, it has been the focus of a large number of recent studies. Here we review some of the current data related to SIRT1 and discuss its mode of action and biological role in cellular and organismal models. Published in Russian in Biokhimiya, 2009, Vol. 74, No. 7, pp. 869–876.  相似文献   

10.
SIRT1 is an NAD+-dependent deacetylase that counteracts multiple disease states associated with aging and may underlie some of the health benefits of calorie restriction. Understanding how SIRT1 is regulated in vivo could therefore lead to new strategies to treat age-related diseases. SIRT1 forms a stable complex with DBC1, an endogenous inhibitor. Little is known regarding the biochemical nature of SIRT1-DBC1 complex formation, how it is regulated and whether or not it is possible to block this interaction pharmacologically. In this study, we show that critical residues within the catalytic core of SIRT1 mediate binding to DBC1 via its N-terminal region, and that several carboxamide SIRT1 inhibitors, including EX-527, can completely block this interaction. We identify two acetylation sites on DBC1 that regulate its ability to bind SIRT1 and suppress its activity. Furthermore, we show that DBC1 itself is a substrate for SIRT1. Surprisingly, the effect of EX-527 on SIRT1-DBC1 binding is independent of DBC1 acetylation. Together, these data show that protein acetylation serves as an endogenous regulatory mechanism for SIRT1-DBC1 binding and illuminate a new path to developing small-molecule modulators of SIRT1.  相似文献   

11.
12.
The NAD-dependent deacetylase Sirtuin 1 (SIRT1) plays a vital role in leukemogenesis. Nicotinamide (NAM) is the principal NAD+ precursor and a noncompetitive inhibitor of SIRT1. In our study, we showed that NAM enhanced the sensitivity of chronic myeloid leukemia (CML) to doxorubicin (DOX) via SIRT1. We found that SIRT1 high expression in CML patients was associated with disease progression and drug resistance. Exogenous NAM efficiently repressed the deacetylation activity of SIRT1 and induced the apoptosis of DOX-resistant K562 cells (K562R) in a dose-dependent manner. Notably, the combination of NAM and DOX significantly inhibited tumor cell proliferation and induced cell apoptosis. The knockdown of SIRT1 in K562R cells enhanced NAM+DOX-induced apoptosis. SIRT1 rescue in K562R reduced the NAM+DOX-induced apoptosis. Mechanistically, the combinatory treatment significantly increased the cleavage of caspase-3 and PARP in K562R in vitro and in vivo. These results suggest the potential role of NAM in increasing the sensitivity of CML to DOX via the inhibition of SIRT1.  相似文献   

13.
Silent information regulator type-1 (SIRT1) is the best-studied member of the Sirtuin (Sir2) family of nicotinamide dinucleotide (NAD)-dependent class III histone deacetylases (HDACs), but has not yet been explored in cutaneous T-cell lymphoma (CTCL). We analyzed five CTCL cell lines and lesional tissues using flow cytometry, immunostaining, immunoblotting, cell death, viability, and apoptosis assays, small-molecule inhibitors, and shRNA knockdown. We found strong SIRT1 expression among CTCL lines relative to normal lymphocytes. CTCL cells in lesional tissues also expressed SIRT1 strongly. SIRT1 knockdown resulted in reduced cellular metabolism and proliferation, increased apoptosis, and PARP cleavage products. Tenovin-1, which reversibly inhibits class III HDACs (SIRT1 and SIRT2), reduced SIRT enzymatic activity and SIRT1 expression and led to increased apoptosis. These alterations were accompanied by increased forkhead box O3 (FoxO3) in several cell lines and increased nuclear p53, as well as acetylated p53 in wtp53 MyLa CTCL line. A combination of class I/II and class III HDACIs (vorinostat and tenovin-1) produced significantly greater growth inhibition, cell death via apoptosis, as well as superior p53 promoter upregulation in wtp53 MyLa cells as compared with either agent alone. This occurred in a partially p53-dependent manner, as these effects were blunted by p53 knockdown. Our results indicate that SIRT1 is strongly expressed in CTCL. Its inhibition results in reduced growth and increased apoptosis of CTCL cells. Furthermore, our findings suggest that some CTCL patients, such as those with wtp53, might benefit more from treatment with a combination of different classes of HDACIs than with a single agent.  相似文献   

14.
Age-related cataract is one of the prior causes of blindness and the incidence rates of cataract are even rising. Oxidative stress plays an important role in the pathogenesis of cataracts. Under oxidative stress, lens epithelial cell (LEC cell) apoptosis is activated, which might lead to the opacity of the lens and accelerate the progression of cataract development. Meanwhile, autophagy is also active to face oxidative stress. miRNAs have been reported to involve cataract. However, the underlying mechanism is not clear. The present study aimed to investigate the regulatory effect of miR23b-3p on apoptosis and autophagy in LEC cells under oxidative stress. The expression levels of miR-23b-3p were examined in age-related cataract tissues and LEC cells treated with hydrogen peroxide, showing that miR23b-3p expression levels were upregulated. Knockdown of miR23b-3p expression in LEC cells brought about apoptosis significantly decreased while autophagy significantly increased during hydrogen peroxide. We predicted microRNA miRNA-23b-3p might participate in regulating silent information regulator 1 (SIRT1) by bioinformatics database of TargetScan. Luciferase reporter assays confirmed that miRNA-23b-p could suppress SIRT1 expression by binding its 3′UTR. In addition, overexpression or knockdown of miR-23b-3p could decrease or increase SIRT1 expression, which indicated that Mir-23b-3p could suppress SIRT1 expression. In addition, enhanced SIRT1 could attenuate the regulation of cell apoptosis and autophagy induced by overexpression of miR-23b-3p. Taken together, our findings revealed that miR-23b-3p regulated apoptosis and autophagy via suppressing SIRT1 in LEC cell under oxidative stress, which could provide new ideas for clinical treatment of cataract.  相似文献   

15.
目的探讨慢病毒介导的靶向SIRTlshRNA对肝癌细胞生长和凋亡的影响。方法Western印迹分析SIRT1在多个肝癌细胞系中的表达;通过慢病毒介导的shRNA干扰技术靶向沉默SIRT1的表达,并通过Western印迹验证SIRTl基因的沉默效果。台盼蓝排斥实验分析SIRT1基因沉默对肝癌细胞生长的影响;流式细胞术和Western印迹检测PARP蛋白的剪切物观察细胞凋亡状态。结果SIRT1在多个肝癌细胞系中表达水平明显上调;慢病毒介导的shRNA能显著抑制细胞中SIRT1的表达。流式细胞术及Western印迹结果均显示SIRT1表达沉默显著诱导了肝癌细胞的凋亡。结论慢病毒介导的靶向SIRT1shRNA显著地抑制SIRT1的表达;SIRT1基因沉默抑制肝癌细胞生长并促进了细胞凋亡。  相似文献   

16.
目的:探究姜黄素后处理是否通过激活SIRT1/FOXO1信号通路抵抗小鼠脑缺血再灌注损伤。方法:小鼠脑缺血30 min,再灌注24 h建立脑缺血再灌注模型。手术前脑室内注射SIRT1特异性抑制剂EX527。再灌注后腹腔注射姜黄素。小鼠随机分为以下6组:假手术组;单纯姜黄素后处理组;缺血再灌注组;缺血再灌注+姜黄素后处理组;EX527预处理+缺血再灌注+姜黄素后处理组;EX527预处理+脑缺血再灌注组。再灌注24 h检测脑梗体积、Complex I活性、ROS含量以及SIRT1、Ac-FOXO1、Bax、Bcl-2、Caspase-3蛋白表达情况。结果:与手术组相比,姜黄素后处理组梗死区脑组织SIRT1的表达量及活性明显增加,脑梗体积降低,ROS含量降低而Complex I活性增高,Bcl-2的表达增高而Bax和Caspase-3的表达量降低(均P0.05)。阻断SIRT1信号通路后上述姜黄素脑保护作用均减弱(P0.05)。结论:我们的研究首次证实姜黄素后处理通过激活SIRT1/FOXO1信号通路,进而降低氧化应激与凋亡,最终减轻脑缺血再灌注损伤。  相似文献   

17.
去乙酰化酶1基因对牛前体脂肪细胞凋亡影响的研究   总被引:1,自引:0,他引:1  
去乙酰化酶1(sirtuin type1,SIRTl)是一个新的脂肪细胞调控因子,通过与其靶基因叉头转录因子1(the forkhead box O family1,FoxO1)相互作用,参与细胞增殖、分化、衰老、凋亡和代谢过程.利用吖啶橙(acridine orange,AO)染色、流式细胞仪、荧光定量PCR(quantitative real-timePCR,qPCR)等技术方法,研究SIRT1的抑制剂———烟酸胺(nicotinamide,NAM)处理后对鲁西黄牛皮下前体脂肪细胞(bovine subcutaneous preadipocytes,BSP)和肌内前体脂肪细胞(bovine intramuscular preadipocytes,BIP)凋亡的影响.观察了BSP和BIP的凋亡形态;比较了SIRT1基因抑制后,相关基因如FoxO1等在两种细胞之间的表达差异.结果表明,NAM对BSP和BIP细胞表现出相同的生长抑制作用,处理组的BSP和BIP细胞的凋亡率均显著高于对照组,其作用可能通过抑制SIRT1,激活FoxO1凋亡通路实现.SIRT1及其相关基因对BSP和BIP的调控存在不同途径.  相似文献   

18.
19.
Renal tubular cell injury induced by calcium oxalate (CaOx) is a critical initial stage of kidney stone formation. Theaflavin (TF) has been known for its strong antioxidative capacity; however, the effect and molecular mechanism of TF against oxidative stress and injury caused by CaOx crystal exposure in kidneys remains unknown. To explore the potential function of TF on renal crystal deposition and its underlying mechanisms, experiments were conducted using a CaOx nephrocalcinosis mouse model established by glyoxylate intraperitoneal injection, and HK-2 cells were subjected to calcium oxalate monohydrate (COM) crystals, with or without the treatment of TF. We discovered that TF treatment remarkably protected against CaOx-induced kidney oxidative stress injury and reduced crystal deposition. Additionally, miR-128-3p expression was decreased and negatively correlated with SIRT1 level in mouse CaOx nephrocalcinosis model following TF treatment. Moreover, TF suppressed miR-128-3p expression and further abolished its inhibition on SIRT1 to attenuate oxidative stress in vitro. Mechanistically, TF interacted with miR-128-3p and suppressed its expression. In addition, miR-128-3p inhibited SIRT1 expression by directly binding its 3''-untranslated region (UTR). Furthermore, miR-128-3p activation partially reversed the acceerative effect of TF on SIRT1 expression. Taken together, TF exhibits a strong nephroprotective ability to suppress CaOx-induced kidney damage through the recovery of the antioxidant defense system regulated by miR-128-3p/SIRT1 axis. These findings provide novel insights for the prevention and treatment of renal calculus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号