首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Forecasting the growth of tree species to future environmental changes requires a better understanding of its determinants. Tree growth is known to respond to global‐change drivers such as climate change or atmospheric deposition, as well as to local land‐use drivers such as forest management. Yet, large geographical scale studies examining interactive growth responses to multiple global‐change drivers are relatively scarce and rarely consider management effects. Here, we assessed the interactive effects of three global‐change drivers (temperature, precipitation and nitrogen deposition) on individual tree growth of three study species (Quercus robur/petraea, Fagus sylvatica and Fraxinus excelsior). We sampled trees along spatial environmental gradients across Europe and accounted for the effects of management for Quercus. We collected increment cores from 267 trees distributed over 151 plots in 19 forest regions and characterized their neighbouring environment to take into account potentially confounding factors such as tree size, competition, soil conditions and elevation. We demonstrate that growth responds interactively to global‐change drivers, with species‐specific sensitivities to the combined factors. Simultaneously high levels of precipitation and deposition benefited Fraxinus, but negatively affected Quercus’ growth, highlighting species‐specific interactive tree growth responses to combined drivers. For Fagus, a stronger growth response to higher temperatures was found when precipitation was also higher, illustrating the potential negative effects of drought stress under warming for this species. Furthermore, we show that past forest management can modulate the effects of changing temperatures on Quercus’ growth; individuals in plots with a coppicing history showed stronger growth responses to higher temperatures. Overall, our findings highlight how tree growth can be interactively determined by global‐change drivers, and how these growth responses might be modulated by past forest management. By showing future growth changes for scenarios of environmental change, we stress the importance of considering multiple drivers, including past management and their interactions, when predicting tree growth.  相似文献   

2.
Mountain forests are at particular risk of climate change impacts due to their temperature limitation and high exposure to warming. At the same time, their complex topography may help to buffer the effects of climate change and create climate refugia. Whether climate change can lead to critical transitions of mountain forest ecosystems and whether such transitions are reversible remain incompletely understood. We investigated the resilience of forest composition and size structure to climate change, focusing on a mountain forest landscape in the Eastern Alps. Using the individual‐based forest landscape model iLand, we simulated ecosystem responses to a wide range of climatic changes (up to a 6°C increase in mean annual temperature and a 30% reduction in mean annual precipitation), testing for tipping points in vegetation size structure and composition under different topography scenarios. We found that at warming levels above +2°C a threshold was crossed, with the system tipping into an alternative state. The system shifted from a conifer‐dominated landscape characterized by large trees to a landscape dominated by smaller, predominantly broadleaved trees. Topographic complexity moderated climate change impacts, smoothing and delaying the transitions between alternative vegetation states. We subsequently reversed the simulated climate forcing to assess the ability of the landscape to recover from climate change impacts. The forest landscape showed hysteresis, particularly in scenarios with lower precipitation. At the same mean annual temperature, equilibrium vegetation size structure and species composition differed between warming and cooling trajectories. Here we show that even moderate warming corresponding to current policy targets could result in critical transitions of forest ecosystems and highlight the importance of topographic complexity as a buffering agent. Furthermore, our results show that overshooting ambitious climate mitigation targets could be dangerous, as ecological impacts can be irreversible at millennial time scales once a tipping point has been crossed.  相似文献   

3.
Climate-driven increases in wildfires, drought conditions, and insect outbreaks are critical threats to forest carbon stores. In particular, bark beetles are important disturbance agents although their long-term interactions with future climate change are poorly understood. Droughts and the associated moisture deficit contribute to the onset of bark beetle outbreaks although outbreak extent and severity is dependent upon the density of host trees, wildfire, and forest management. Our objective was to estimate the effects of climate change and bark beetle outbreaks on ecosystem carbon dynamics over the next century in a western US forest. Specifically, we hypothesized that (a) bark beetle outbreaks under climate change would reduce net ecosystem carbon balance (NECB) and increase uncertainty and (b) these effects could be ameliorated by fuels management. We also examined the specific tree species dynamics—competition and release—that determined NECB response to bark beetle outbreaks. Our study area was the Lake Tahoe Basin (LTB), CA and NV, USA, an area of diverse forest types encompassing steep elevation and climatic gradients and representative of mixed-conifer forests throughout the western United States. We simulated climate change, bark beetles, wildfire, and fuels management using a landscape-scale stochastic model of disturbance and succession. We simulated the period 2010–2100 using downscaled climate projections. Recurring droughts generated conditions conducive to large-scale outbreaks; the resulting large and sustained outbreaks significantly increased the probability of LTB forests becoming C sources over decadal time scales, with slower-than-anticipated landscape-scale recovery. Tree species composition was substantially altered with a reduction in functional redundancy and productivity. Results indicate heightened uncertainty due to the synergistic influences of climate change and interacting disturbances. Our results further indicate that current fuel management practices will not be effective at reducing landscape-scale outbreak mortality. Our results provide critical insights into the interaction of drivers (bark beetles, wildfire, fuel management) that increase the risk of C loss and shifting community composition if bark beetle outbreaks become more frequent.  相似文献   

4.
Climate and forest structure are considered major drivers of forest demography and productivity. However, recent evidence suggests that the relationships between climate and tree growth are generally non‐stationary (i.e. non‐time stable), and it remains uncertain whether the relationships between climate, forest structure, demography and productivity are stationary or are being altered by recent climatic and structural changes. Here we analysed three surveys from the Spanish Forest Inventory covering c. 30 years of information and we applied mixed and structural equation models to assess temporal trends in forest structure (stand density, basal area, tree size and tree size inequality), forest demography (ingrowth, growth and mortality) and above‐ground forest productivity. We also quantified whether the interactive effects of climate and forest structure on forest demography and above‐ground forest productivity were stationary over two consecutive time periods. Since the 1980s, density, basal area and tree size increased in Iberian forests, and tree size inequality decreased. In addition, we observed reductions in ingrowth and growth, and increases in mortality. Initial forest structure and water availability mainly modulated the temporal trends in forest structure and demography. The magnitude and direction of the interactive effects of climate and forest structure on forest demography changed over the two time periods analysed indicating non‐stationary relationships between climate, forest structure and demography. Above‐ground forest productivity increased due to a positive balance between ingrowth, growth and mortality. Despite increasing productivity over time, we observed an aggravation of the negative effects of climate change and increased competition on forest demography, reducing ingrowth and growth, and increasing mortality. Interestingly, our results suggest that the negative effects of climate change on forest demography could be ameliorated through forest management, which has profound implications for forest adaptation to climate change.  相似文献   

5.
为探讨不同时间尺度、气候因子及林分因子对森林中树木死亡的影响,本研究以美国德克萨斯州东部的4个国家森林中264个重复调查的森林样地为对象,使用近20年来美国森林清查4个周期的数据,估算其在清查周期和年度水平上的树木死亡率变化,并使用广义线性混合效应模型来分析气候因子(干旱强度、干旱持续时间、年均温和年降水量)、树木大小(胸径)和林分因子(树木胸高断面积、林分密度和林分年龄)对树木存活的影响。结果表明: 在重度干旱当年和重度干旱的清查周期中,森林的树木死亡率分别增加了151%和123%,天气干扰(干旱和飓风)和植物之间的竞争是其主要的影响因素;干旱强度(标准化降水蒸散发指数,SPEI)和干旱持续时间对树木的存活具有显著的负效应,年降水量对树木的存活具有显著的正效应;树木胸高面积对树木存活具有显著的负效应,树木大小、林分年龄和林分密度对树木存活均具有显著的正效应,但是大树比小树更容易受到天气影响而死亡;在重度干旱的清查周期中,松树种组的树木死亡率(2.1%)比阔叶树木种组(3.9%)低,天然林的树木死亡率(3.0%)高于人工林(1.9%)。在分析树木死亡率时,需同时考虑个体树木大小、林分因子与气候因子的相对重要性。  相似文献   

6.
Basic knowledge of the relationships between tree growth and environmental variables is crucial for understanding forest dynamics and predicting vegetation responses to climate variations. Trees growing in tropical areas with a clear seasonality in rainfall often form annual growth rings. In the understory, however, tree growth is supposed to be mainly affected by interference for access to light and other resources. In the semi-deciduous Mayombe forest of the Democratic Republic of Congo, the evergreen species Aidia ochroleuca, Corynanthe paniculata and Xylopia wilwerthii dominate the understory. We studied their wood to determine whether they form annual growth rings in response to changing climate conditions. Distinct growth rings were proved to be annual and triggered by a common external factor for the three species. Species-specific site chronologies were thus constructed from the cross-dated individual growth-ring series. Correlation analysis with climatic variables revealed that annual radial stem growth is positively related to precipitation during the rainy season but at different months. The growth was found to associate with precipitation during the early rainy season for Aidia but at the end of the rainy season for Corynanthe and Xylopia. Our results suggest that a dendrochronological approach allows the understanding of climate–growth relationships in tropical forests, not only for canopy trees but also for evergreen understory species and thus arguably for the whole tree community. Global climate change influences climatic seasonality in tropical forest areas, which is likely to result in differential responses across species with a possible effect on forest composition over time.  相似文献   

7.
North-east (NE) China covers considerable climatic gradients and all major forests types of NE Asia. in the present study, 10 major forest types across the forest region of NE China were sampled to Investigate forest distribution in relation to climate. Canonical correspondence analysis (CCA) revealed that growing season precipitation and energy availability were primary climatic factors for the overall forest pattern of NE China, accounting for 66% of the explanatory power of CCA. Conversely, annual precipitation and winter coldness had minor effects. Generalized additive models revealed that tree species responded to climatic gradients differently and showed three types of response curve: (i) monotonous decline; (ii) monotonous Increase; and (iii) a unimodai pattern. Furthermore, tree species showed remarkable differences in limiting climatic factors for their distribution. The power of climate in explaining species distribution declined significantly with decreasing species dominance, suggesting that the distribution of dominant species was primarily controlled by climate, whereas that of subordinate species was more affected by competition from other species.  相似文献   

8.
Plant diversity is an important driver of diversity at other trophic levels, suggesting that cascading extinctions could reduce overall biodiversity. Most evidence for positive effects of plant diversity comes from grasslands. Despite the fact that forests are hotspots of biodiversity, the importance of tree diversity, in particular its relative importance compared to other management related factors, in affecting forest-associated taxa is not well known. To address this, we used data from 183 plots, located in different forest types, from Mediterranean to Boreal, and established along a climatic gradient across six European countries (FunDivEUROPE project). We tested the influence of tree diversity, tree functional composition (i.e. functional trait values), forest structure, climate and soil on the diversity and abundance/activity of nine taxa (bats, birds, spiders, microorganisms, earthworms, ungulates, foliar fungal pathogens, defoliating insects and understorey plants) and on their overall diversity and abundance/activity (multidiversity, multiabundance/activity). Tree diversity was a key driver of taxon-level and overall forest-associated biodiversity, along with tree functional composition, forest structure, climate and soil. Both tree species richness and functional diversity (variation in functional trait values) were important. The effects of tree diversity on the abundance/activity of forest-associated taxa were less consistent. Nonetheless, spiders, ungulates and foliar fungal pathogens were all more abundant/active in diverse forests. Tree functional composition and structure were also important drivers of abundance/activity: conifer stands had lower overall multidiversity (although the effect was driven by defoliating insects), while stands with potentially tall trees had lower overall multiabundance/activity. We found more synergies than tradeoffs between diversity and abundance/activity of different taxa, suggesting that forest management can promote high diversity across taxa. Our results clearly show the high value of mixed forest stands for multiple forest-associated taxa and indicate that multiple dimensions of tree diversity (taxonomic and functional) are important.  相似文献   

9.
Question: Are trees sensitive to climatic variability, and do tree species differ in their responses to climatic variability? Does sensitivity of forest communities to climatic variability depend on stand composition? Location: Mixed young forest at Walker Branch Watershed near Oak Ridge, East Tennessee, USA. Methods: Using a long‐term dataset (1967–2006), we analyzed temporal forest dynamics at the tree and species level, and community dynamics for forest stands that differed in initial species composition (i.e., chestnut oak, oak–hickory, pine, and yellow poplar stands). Using summer drought and growing season temperature as defined climate drivers, we evaluated relationships between forest dynamics and climate across levels of organization. Results: Over the four‐decade study period, forest communities underwent successional change and substantially increased in biomass. Variation in summer drought and growing season temperature contributed to temporal biomass dynamics for some tree species, but not for others. Stand‐level responses to climatic variability were related to the responses of component species, except in pine stands. Pinus echinata, the dominant species in pine stands, decreased over time due to periodic outbreaks of pine bark beetle (Dendroctonus frontalis). These outbreaks at Walker Branch could not be directly related to climatic conditions. Conclusions: The results indicate that sensitivity of developing forests to climatic variability is stand type‐dependent, and hence is a function of species composition. However, in the long term, direct effects of climatic variability on forest dynamics may be small relative to autogenic successional processes or climate‐related insect outbreaks. Empirical studies testing for interactions between forest succession and climatic variability are needed.  相似文献   

10.
Climate change and atmospheric deposition of nitrogen (N) and sulfur (S) are important drivers of forest demography. Here we apply previously derived growth and survival responses for 94 tree species, representing >90% of the contiguous US forest basal area, to project how changes in mean annual temperature, precipitation, and N and S deposition from 20 different future scenarios may affect forest composition to 2100. We find that under the low climate change scenario (RCP 4.5), reductions in aboveground tree biomass from higher temperatures are roughly offset by increases in aboveground tree biomass from reductions in N and S deposition. However, under the higher climate change scenario (RCP 8.5) the decreases from climate change overwhelm increases from reductions in N and S deposition. These broad trends underlie wide variation among species. We found averaged across temperature scenarios the relative abundance of 60 species were projected to decrease more than 5% and 20 species were projected to increase more than 5%; and reductions of N and S deposition led to a decrease for 13 species and an increase for 40 species. This suggests large shifts in the composition of US forests in the future. Negative climate effects were mostly from elevated temperature and were not offset by scenarios with wetter conditions. We found that by 2100 an estimated 1 billion trees under the RCP 4.5 scenario and 20 billion trees under the RCP 8.5 scenario may be pushed outside the temperature record upon which these relationships were derived. These results may not fully capture future changes in forest composition as several other factors were not included. Overall efforts to reduce atmospheric deposition of N and S will likely be insufficient to overcome climate change impacts on forest demography across much of the United States unless we adhere to the low climate change scenario.  相似文献   

11.
Forest ecosystems across western North America will likely see shifts in both tree species dominance and composition over the rest of this century in response to climate change. Our objective in this study was to identify which ecological regions might expect the greatest changes to occur. We used the process‐based growth model 3‐PG, to provide estimates of tree species responses to changes in environmental conditions and to evaluate the extent that species are resilient to shifts in climate over the rest of this century. We assessed the vulnerability of 20 tree species in western North America using the Canadian global circulation model under three different emission scenarios. We provided detailed projections of species shifts by including soil maps that account for the spatial variation in soil water availability and soil fertility as well as by utilizing annual climate projections of monthly changes in air temperature, precipitation, solar radiation, vapor pressure deficit and frost at a spatial resolution of one km. Projected suitable areas for tree species were compared to their current ranges based on observations at >40 000 field survey plots. Tree species were classified as vulnerable if environmental conditions projected in the future appear outside that of their current distribution ≥70% of the time. We added a migration constraint that limits species dispersal to <200 m yr?1 to provide more realistic projections on species distributions. Based on these combinations of constraints, we predicted the greatest changes in the distribution of dominant tree species to occur within the Northwest Forested Mountains and the highest number of tree species stressed will likely be in the North American Deserts. Projected climatic changes appear especially unfavorable for species in the subalpine zone, where major shifts in composition may lead to the emergence of new forest types.  相似文献   

12.
In the Sierra Nevada, distributions of forest tree species are largely controlled by the soil-moisture balance. Changes in temperature or precipitation as a result of increased greenhouse gas concentrations could lead to changes in species distributions. In addition, climatic change could increase the frequency and severity of wildfires. We used a forest gap model developed for Sierra Nevada forests to investigate the potential sensitivity of these forests to climatic change, including a changing fire regime. Fuel moisture influences the fire regime and couples fire to climate. Fires are also affected by fuel loads, which accumulate according to forest structure and composition. These model features were used to investigate the complex interactions between climate, fire, and forest dynamics. Eight hypothetical climate-change scenarios were simulated, including two general circulation model (GCM) predictions of a 2 × CO2 world. The response of forest structure,species composition, and the fire regime to these changes in the climate were examined at four sites across an elevation gradient. Impacts on woody biomass and species composition as a result of climatic change were site specific and depended on the environmental constraints of a site and the environmental tolerances of the tree species simulated. Climatic change altered the fire regime both directly and indirectly. Fire frequency responded directly to climate's influence on fuel moisture, whereas fire extent was affected by changes that occurred in either woody biomass or species composition. The influence of species composition on fuel-bed bulk density was particularly important. Future fires in the Sierra Nevada could be both more frequent and of greater spatial extent if GCM predictions prove true. Received 5 May 1998; accepted 4 November 1998.  相似文献   

13.
Tree rings provide an invaluable long-term record for understanding how climate and other drivers shape tree growth and forest productivity. However, conventional tree-ring analysis methods were not designed to simultaneously test effects of climate, tree size, and other drivers on individual growth. This has limited the potential to test ecologically relevant hypotheses on tree growth sensitivity to environmental drivers and their interactions with tree size. Here, we develop and apply a new method to simultaneously model nonlinear effects of primary climate drivers, reconstructed tree diameter at breast height (DBH), and calendar year in generalized least squares models that account for the temporal autocorrelation inherent to each individual tree's growth. We analyze data from 3811 trees representing 40 species at 10 globally distributed sites, showing that precipitation, temperature, DBH, and calendar year have additively, and often interactively, influenced annual growth over the past 120 years. Growth responses were predominantly positive to precipitation (usually over ≥3-month seasonal windows) and negative to temperature (usually maximum temperature, over ≤3-month seasonal windows), with concave-down responses in 63% of relationships. Climate sensitivity commonly varied with DBH (45% of cases tested), with larger trees usually more sensitive. Trends in ring width at small DBH were linked to the light environment under which trees established, but basal area or biomass increments consistently reached maxima at intermediate DBH. Accounting for climate and DBH, growth rate declined over time for 92% of species in secondary or disturbed stands, whereas growth trends were mixed in older forests. These trends were largely attributable to stand dynamics as cohorts and stands age, which remain challenging to disentangle from global change drivers. By providing a parsimonious approach for characterizing multiple interacting drivers of tree growth, our method reveals a more complete picture of the factors influencing growth than has previously been possible.  相似文献   

14.
Seasonally dry tropical forests are an important global climate regulator and represent one of main drivers of carbon sink dynamics. However, projections of climate change suggest future productivity losses and negative impacts on forest functioning. Understanding the interaction between climate variability and tree growth responses between species with different growth strategies represents a crucial challenge to forecast ecosystem functioning in the future. Here we used tree ring chronology to evaluate changes in growth and climate sensitivity of two tropical tree species that co-occur in a seasonally dry tropical forest in Brazil: Cedrela odorata and Ceiba glaziovii. Using Pearson correlations and linear regressions we explored how growth variability is correlated with local (precipitation, temperature) and global (ocean temperature and El Niño Southern Oscillation - ENSO) climatic factors. Tree growth was closely related with precipitation in C. odorata (r = 0.59) and C. glaziovii (0.24). Differences were found at monthly level, which C. odorata showing greater sensitivity in the beginning of rainy season. The South Atlantic Temperature was positively correlated with C. odorata, while ENSO was negatively correlated. Our results showed a dominant effect of precipitation on tree growth and suggest that are different growth strategies among species, which C. odorata being the most sensitive to drought and C. glaziovii more adapted with parenchyma in trunk. Therefore, C. odorata is probably more vulnerable to the deleterious effects of future climate change than C. glaziovii. Our findings highlight the importance of understanding the climate sensitivity of different seasonally dry tropical forest species, which is critical to predicting carbon dynamics in tropical regions. These also reveal that differences in sensitivity must be considered when prioritizing conservation measures for seasonally dry tropical forests.  相似文献   

15.
Climate change is altering the conditions for tree recruitment, growth, and survival, and impacting forest community composition. Across southeast Alaska, USA, and British Columbia, Canada, Callitropsis nootkatensis (Alaska yellow‐cedar) is experiencing extensive climate change‐induced canopy mortality due to fine‐root death during soil freezing events following warmer winters and the loss of insulating snowpack. Here, we examine the effects of ongoing, climate‐driven canopy mortality on forest community composition and identify potential shifts in stand trajectories due to the loss of a single canopy species. We sampled canopy and regenerating forest communities across the extent of C. nootkatensis decline in southeast Alaska to quantify the effects of climate, community, and stand‐level drivers on C. nootkatensis canopy mortality and regeneration as well as postdecline regenerating community composition. Across the plot network, C. nootkatensis exhibited significantly higher mortality than co‐occurring conifers across all size classes and locations. Regenerating community composition was highly variable but closely related to the severity of C. nootkatensis mortality. Callitropsis nootkatensis canopy mortality was correlated with winter temperatures and precipitation as well as local soil drainage, with regenerating community composition and C. nootkatensis regeneration abundances best explained by available seed source. In areas of high C. nootkatensis mortality, C. nootkatensis regeneration was low and replaced by Tsuga. Our study suggests that climate‐induced forest mortality is driving alternate successional pathways in forests where C. nootkatensis was once a major component. These pathways are likely to lead to long‐term shifts in forest community composition and stand dynamics. Our analysis fills a critical knowledge gap on forest ecosystem response and rearrangement following the climate‐driven decline of a single species, providing new insight into stand dynamics in a changing climate. As tree species across the globe are increasingly stressed by climate change‐induced alteration of suitable habitat, identifying the autecological factors contributing to successful regeneration, or lack thereof, will provide key insight into forest resilience and persistence on the landscape.  相似文献   

16.
Tree survival is a critical driver of stand dynamics, influencing forest structure and composition. Many local-scale drivers (tree size, abiotic and biotic factors) have been proposed as being important in explaining patterns of tree survival, but their contributions are still unknown. We examined the relative importance of these local drivers on tree survival using generalized linear mixed models in an old-growth sub-tropical forest in south China at three levels (community, guild, and species). Among the variables tested, tree size was typically the most important driver of tree survival, followed by abiotic and then biotic variables. Tree size has a strongly positive effect on tree survival for small trees (10–30 cm dbh) and shade-tolerant tree species. Of the abiotic factors tested, elevation tended to be more important in affecting tree survival than other topographic variables. Abiotic factors generally influenced survival of species with relatively high abundances, for individuals in smaller size classes and for mid-tolerant species. Among biotic factors, we found that the mortality of tree species was not driven by density- and frequency-dependent effects in this sub-tropical forest, as indicated by the results of both total basal area of neighbors and the proportion of conspecific neighbors in our study. We conclude that the relative importance of variables driving patterns of tree survival varied greatly among tree size classes, species guilds, shade tolerance, density, and abundance classes in this sub-tropical forest. These results also provide critical information for future studies of forest dynamics and offer insight into forest management in this region.  相似文献   

17.
利用树木年轮宽度结合树木生物量方程,重建了贵州3个地区典型森林(2个常绿与落叶阔叶混交林和1个典型常绿阔叶林)6个优势树种(天龙山:化香树Platycarya strobilacea、安顺润楠Machilus cavaleriei;茂兰:化香树、马尾松Pinus massoniana;雷公山:华山松Pinus armandii、白梓树Pterostyrax psilophyllus)以树木个体为单元的地上生物量(AGB)与地上净初级生产力(ANPP);比较了喀斯特与非喀斯特地区树木AGB与ANPP的差异;并研究了近50年气候变化对ANPP的影响。结果显示,针叶树的平均年轮宽度大于阔叶树,喀斯特地区针叶树和阔叶树的平均树木年轮宽度,分别小于非喀斯特地区针叶树和阔叶树的平均树木年轮宽度。喀斯特地区树木的AGB及其变异幅度均小于非喀斯特地区树木。近50年来,喀斯特地区阔叶树与针叶树的ANPP平均分别为(2.4±1.2) kg a-1-1和(4.6±4.1) kg a-1-1,显著低于非喀斯特地区阔叶树...  相似文献   

18.
Kermavnar  Janez  Kutnar  Lado  Marinšek  Aleksander 《Plant Ecology》2022,223(2):229-242

Species- and trait-environment linkages in forest plant communities continue to be a frequent topic in ecological research. We studied the dependence of floristic and functional trait composition on environmental factors, namely local soil properties, overstory characteristics, climatic parameters and other abiotic and biotic variables. The study area comprised 50 monitoring plots across Slovenia, belonging to the EU ICP Forests monitoring network. Vegetation was surveyed in accordance with harmonized protocols, and environmental variables were either measured or estimated during vegetation sampling. Significant predictors of species composition were identified by canonical correspondence analysis. Correlations between plant traits, i.e. plant growth habit, life form, flowering features and CSR signature, were examined with fourth-corner analysis and linear regressions. Our results show that variation in floristic composition was mainly explained by climatic parameters (mean annual temperature, mean annual precipitation), soil properties (pH) and tree layer-dependent light conditions. Trait composition was most closely related with tree layer characteristics, such as shade-casting ability (SCA, a proxy for light availability in the understory layer), tree species richness and tree species composition. Amongst soil properties, total nitrogen content and soil texture (proportion of clay) were most frequently correlated with different species traits or trait states. The CSR signature of herb communities was associated with tree layer SCA, soil pH and mean annual temperature. The floristic composition of the studied herb-layer vegetation depended on temperature and precipitation, which are likely to be influenced by ongoing climate change (warming and drying). Trait composition exhibited significant links to tree layer characteristics and soil conditions, which are in turn directly modified by forest management interventions.

  相似文献   

19.
Questions: Have forest dynamics changed significantly in intact Amazon rainforests since the early 1980s? If so, what environmental drivers might potentially be responsible? Location: Central Amazonia, north of Manaus, Brazil. Methods: Within 20 1‐ha plots scattered over ~300 km2, all trees (≥10 cm diameter at breast height) were marked, identified, and measured five times between 1981 and 2003. We estimated stand‐level dynamics (mortality, recruitment, and growth) for each census interval and evaluated weather parameters over the study period. Results: We observed a widespread, significant increase in tree mortality across our plots. Tree recruitment also rose significantly over time but lagged behind mortality. Tree growth generally accelerated but varied considerably among census intervals, and was lowest when mortality was highest. Tree basal area rose 4% overall, but stem number exhibited no clear trend. In terms of climate variation, annual maximum and minimum temperatures increased significantly during our study. Rainfall anomalies were strongly and positively associated with ENSO events. Conclusions: The increasing forest dynamics, growth, and basal area observed are broadly consistent with the CO2 fertilization hypothesis. However, pronounced shorter‐term variability in stand dynamics might be associated with climatic vicissitudes. Tree mortality peaked, and tree recruitment and growth declined during atypically wet periods. Tree growth was fastest during dry periods, when reduced cloudiness might have increased available solar radiation. Inferences about causality are tenuous because tree data were collected only at multi‐year intervals. Mean temperatures and rainfall seasonality have both increased over time in central Amazonia, and these could potentially have long‐term effects on forest dynamics and carbon storage.  相似文献   

20.
A better understanding of stem growth phenology and its climate drivers would improve projections of the impact of climate change on forest productivity. Under a Mediterranean climate, tree growth is primarily limited by soil water availability during summer, but cold temperatures in winter also prevent tree growth in evergreen forests. In the widespread Mediterranean evergreen tree species Quercus ilex, the duration of stem growth has been shown to predict annual stem increment, and to be limited by winter temperatures on the one hand, and by the summer drought onset on the other hand. We tested how these climatic controls of Q. ilex growth varied with recent climate change by correlating a 40‐year tree ring record and a 30‐year annual diameter inventory against winter temperature, spring precipitation, and simulated growth duration. Our results showed that growth duration was the best predictor of annual tree growth. We predicted that recent climate changes have resulted in earlier growth onset (?10 days) due to winter warming and earlier growth cessation (?26 days) due to earlier drought onset. These climatic trends partly offset one another, as we observed no significant trend of change in tree growth between 1968 and 2008. A moving‐window correlation analysis revealed that in the past, Q. ilex growth was only correlated with water availability, but that since the 2000s, growth suddenly became correlated with winter temperature in addition to spring drought. This change in the climate–growth correlations matches the start of the recent atmospheric warming pause also known as the ‘climate hiatus’. The duration of growth of Q. ilex is thus shortened because winter warming has stopped compensating for increasing drought in the last decade. Decoupled trends in precipitation and temperature, a neglected aspect of climate change, might reduce forest productivity through phenological constraints and have more consequences than climate warming alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号