首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Biophysical journal》2020,118(9):2193-2208
The three-dimensional (3D) organization of chromatin, on the length scale of a few genes, is crucial in determining the functional state—accessibility and amount of gene expression—of the chromatin. Recent advances in chromosome conformation capture experiments provide partial information on the chromatin organization in a cell population, namely the contact count between any segment pairs, but not on the interaction strength that leads to these contact counts. However, given the contact matrix, determining the complete 3D organization of the whole chromatin polymer is an inverse problem. In this work, a novel inverse Brownian dynamics method based on a coarse-grained bead-spring chain model has been proposed to compute the optimal interaction strengths between different segments of chromatin such that the experimentally measured contact count probability constraints are satisfied. Applying this method to the α-globin gene locus in two different cell types, we predict the 3D organizations corresponding to active and repressed states of chromatin at the locus. We show that the average distance between any two segments of the region has a broad distribution and cannot be computed as a simple inverse relation based on the contact probability alone. The results presented for multiple normalization methods suggest that all measurable quantities may crucially depend on the nature of normalization. We argue that by experimentally measuring predicted quantities, one may infer the appropriate form of normalization.  相似文献   

2.
In the present study a model for the compactification of the 30 nm chromatin fibre into higher order structures is suggested. The idea is that basically every condensing agent (HMG/SAR, HP1, cohesin, condensin, DNA–DNA interaction …) can be modeled as an effective attractive potential of specific chain segments. This way the formation of individual 1 Mbp sized rosettes from a linear chain could be observed. We analyse how the size of these rosettes depends on the number of attractive segments and on the segment length. It turns out that 8–20 attractive segments per 1 Mbp domain produces rosettes of 300–800 nm in diameter. Furthermore, our results show that the size of the rosettes is relatively insensitive to the segment length.  相似文献   

3.
《Biophysical journal》2022,121(14):2794-2812
Chromatin is known to be organized into multiple domains of varying sizes and compaction. While these domains are often imagined as static structures, they are highly dynamic and show cell-to-cell variability. Since processes such as gene regulation and DNA replication occur in the context of these domains, it is important to understand their organization, fluctuation, and dynamics. To simulate chromatin domains, one requires knowledge of interaction strengths among chromatin segments. Here, we derive interaction-strength parameters from experimentally known contact maps and use them to predict chromatin organization and dynamics. Taking two domains on the human chromosome as examples, we investigate its three-dimensional organization, size/shape fluctuations, and dynamics of different segments within a domain, accounting for hydrodynamic effects. Considering different cell types, we quantify changes in interaction strengths and chromatin shape fluctuations in different epigenetic states. Perturbing the interaction strengths systematically, we further investigate how epigenetic-like changes can alter the spatio-temporal nature of the domains. Our results show that heterogeneous weak interactions are crucial in determining the organization of the domains. Computing effective stiffness and relaxation times, we investigate how perturbations in interactions affect the solid- and liquid-like nature of chromatin domains. Quantifying dynamics of chromatin segments within a domain, we show how the competition between polymer entropy and interaction energy influence the timescales of loop formation and maintenance of stable loops.  相似文献   

4.
Spatial organization of chromatin in the interphase nucleus plays a role in gene expression and inheritance. Although it appears not to be random, the principles of this organization are largely unknown. In this work, we show an explicit relationship between the intranuclear localization of various chromosome segments and the pattern of gene distribution along the genome sequence. Using a 7-megabase-long region of the Drosophila melanogaster chromosome 2 as a model, we observed that the six gene-poor chromosome segments identified in the region interact with components of the nuclear matrix to form a compact stable cluster. The six gene-rich segments form a spatially segregated unstable cluster dependent on nonmatrix nuclear proteins. The resulting composite structure formed by clusters of gene-rich and gene-poor regions is reproducible between the nuclei. We suggest that certain aspects of chromosome folding in interphase are predetermined and can be inferred through in silico analysis of chromosome sequence, using gene density profile as a manifestation of "folding code."  相似文献   

5.
Facilitated diffusion of a DNA binding protein on chromatin.   总被引:4,自引:1,他引:3       下载免费PDF全文
R Hannon  E G Richards    H J Gould 《The EMBO journal》1986,5(12):3313-3319
Facilitated diffusion accounts for the rapid rate of association of many bacterial DNA binding proteins with specific DNA sequences in vitro. In this mechanism the proteins bind at random to non-specific sites on the DAN and diffuse (by 'sliding' or 'hopping') along the DNA chain until they arrive at their specific functional sites. We have investigated whether such a mechanism can operate in chromatin by using a bacterial DNA binding protein, Escherichia coli RNA polymerase, that depends on linear diffusion to locate initiation sites on DNA. We have measured the competition between chromatin and its free DNA for the formation of initiation complexes. Only the short linker segments exposed by the removal of histone H1 are available for interaction with the polymerase, but the sparsely distributed promoter sites on the linker DNA of such a polynucleosome chain are located at the same rate as those on DNA. We conclude that the polymerase is free to migrate between the separate linker DNA segments of a polynucleosome chain to reach a promoter site. This chain thus permits the 'hopping' of proteins between neighboring linker segments in their search for a target site on the accessible DNA.  相似文献   

6.
Underlying higher order chromatin organization are Structural Maintenance of Chromosomes (SMC) complexes, large protein rings that entrap DNA. The molecular mechanism by which SMC complexes organize chromatin is as yet incompletely understood. Two prominent models posit that SMC complexes actively extrude DNA loops (loop extrusion), or that they sequentially entrap two DNAs that come into proximity by Brownian motion (diffusion capture). To explore the implications of these two mechanisms, we perform biophysical simulations of a 3.76 Mb-long chromatin chain, the size of the long Schizosaccharomyces pombe chromosome I left arm. On it, the SMC complex condensin is modeled to perform loop extrusion or diffusion capture. We then compare computational to experimental observations of mitotic chromosome formation. Both loop extrusion and diffusion capture can result in native-like contact probability distributions. In addition, the diffusion capture model more readily recapitulates mitotic chromosome axis shortening and chromatin compaction. Diffusion capture can also explain why mitotic chromatin shows reduced, as well as more anisotropic, movements, features that lack support from loop extrusion. The condensin distribution within mitotic chromosomes, visualized by stochastic optical reconstruction microscopy (STORM), shows clustering predicted from diffusion capture. Our results inform the evaluation of current models of mitotic chromosome formation.  相似文献   

7.
《Biophysical journal》2020,118(9):2319-2332
The nuclear morphology of eukaryotic cells is determined by the interplay between the lamina forming the nuclear skeleton, the chromatin inside the nucleus, and the coupling with the cytoskeleton. Nuclear alterations are often associated with pathological conditions as in Hutchinson-Gilford progeria syndrome, in which a mutation in the lamin A gene yields an altered form of the protein, named progerin, and an aberrant nuclear shape. Here, we introduce an inducible cellular model of Hutchinson-Gilford progeria syndrome in HeLa cells in which increased progerin expression leads to alterations in the coupling of the lamin shell with cytoskeletal or chromatin tethers as well as with polycomb group proteins. Furthermore, our experiments show that progerin expression leads to enhanced nuclear shape fluctuations in response to cytoskeletal activity. To interpret the experimental results, we introduce a computational model of the cell nucleus that explicitly includes chromatin fibers, the nuclear shell, and coupling with the cytoskeleton. The model allows us to investigate how the geometrical organization of the chromatin-lamin tether affects nuclear morphology and shape fluctuations. In sum, our findings highlight the crucial role played by lamin-chromatin and lamin-cytoskeletal alterations in determining nuclear shape morphology and in affecting cellular functions and gene regulation.  相似文献   

8.
9.
10.
A model for chromatin structure.   总被引:7,自引:5,他引:2       下载免费PDF全文
A model for chromatin structure is presented. (a) Each of four histone species, H2A (IIbl or f2a2), H2B (IIb2 or f2b), H3 (III or f3) and H4 (IV or f2al) can form a parallel dimer. (b) These dimers can form two tetramers, (H2A)2(H2b)2 and (H3)2(H4)2. (C) These two tetramers bind a segment of DNA and condense it into a "C" segments. (d) The adjacent segments, termed extended or "E" segments, are bound by histone H1 (I or fl) for the major fraction of chromatin; the other "E" regions can be either bound by non-histone proteins or free of protein binding. (e) The binding of histones causes a structural distortion of the DNA which, depending upon the external conditions, may generate the formation of either an open structure with a heterogeneous and non-uniform supercoil or a compact structure with a string of beads. The model is supported by experimental data on histone-histone interaction, histone-DNA interaction and histone subunit-DNA interaction.  相似文献   

11.
12.
13.
14.
《Biophysical journal》2022,121(6):977-990
Methodological advances in conformation capture techniques have fundamentally changed our understanding of chromatin architecture. However, the nanoscale organization of chromatin and its cell-to-cell variance are less studied. Analyzing genome-wide data from 733 human cell and tissue samples, we identified 2 prototypical regions that exhibit high or absent hypersensitivity to deoxyribonuclease I, respectively. These regulatory active or inactive regions were examined in the lymphoblast cell line K562 by using high-throughput super-resolution microscopy. In both regions, we systematically measured the physical distance of 2 fluorescence in situ hybridization spots spaced by only 5 kb of DNA. Unexpectedly, the resulting distance distributions range from very compact to almost elongated configurations of more than 200-nm length for both the active and inactive regions. Monte Carlo simulations of a coarse-grained model of these chromatin regions based on published data of nucleosome occupancy in K562 cells were performed to understand the underlying mechanisms. There was no parameter set for the simulation model that can explain the microscopically measured distance distributions. Obviously, the chromatin state given by the strength of internucleosomal interaction, nucleosome occupancy, or amount of histone H1 differs from cell to cell, which results in the observed broad distance distributions. This large variability was not expected, especially in inactive regions. The results for the mechanisms for different distance distributions on this scale are important for understanding the contacts that mediate gene regulation. Microscopic measurements show that the inactive region investigated here is expected to be embedded in a more compact chromatin environment. The simulation results of this region require an increase in the strength of internucleosomal interactions. It may be speculated that the higher density of chromatin is caused by the increased internucleosomal interaction strength.  相似文献   

15.
Protein-mediated bridging is ubiquitous and essential for shaping cellular structures in all organisms. Here we dissect this mechanism for a model system: the Histone-like Nucleoid-Structuring protein (H-NS). We present data from two complementary single-molecule assays that probe the H-NS-DNA interaction: a dynamic optical-trap-driven unzipping assay and an equilibrium H-NS-mediated DNA looping scanning force microscopy imaging assay. To quantitatively analyze and compare these assays, we employ what we consider a novel theoretical framework that describes the bridging motif. The interplay between the experiments and our theoretical model not only infers the effective interaction free energy, the bridging conformation and the duplex-duplex spacing, but also reveals a second, unresolved, cis-binding mode that challenges our current understanding of the role of bridging proteins in chromatin structure. We expect that this theoretical framework for describing protein-mediated bridging will be applicable to proteins acting in chromatin and cytoskeletal organization.  相似文献   

16.
Chromatin is the driver of gene regulation, yet understanding the molecular interactions underlying chromatin factor combinatorial patterns (or the “chromatin codes”) remains a fundamental challenge in chromatin biology. Here we developed a global modeling framework that leverages chromatin profiling data to produce a systems-level view of the macromolecular complex of chromatin. Our model ultilizes maximum entropy modeling with regularization-based structure learning to statistically dissect dependencies between chromatin factors and produce an accurate probability distribution of chromatin code. Our unsupervised quantitative model, trained on genome-wide chromatin profiles of 73 histone marks and chromatin proteins from modENCODE, enabled making various data-driven inferences about chromatin profiles and interactions. We provided a highly accurate predictor of chromatin factor pairwise interactions validated by known experimental evidence, and for the first time enabled higher-order interaction prediction. Our predictions can thus help guide future experimental studies. The model can also serve as an inference engine for predicting unknown chromatin profiles — we demonstrated that with this approach we can leverage data from well-characterized cell types to help understand less-studied cell type or conditions.  相似文献   

17.
18.
19.
The influence of higher-order chromatin structure on the non-random distribution of DNA double-strand breaks induced by high-LET radiation was investigated. Five different chromatin structures (intact cells, condensed and decondensed chromatin, nucleoids and naked genomic DNA) from GM5758 cells or K562 cells were irradiated with (137)Cs gamma-ray photons and 125 keV/microm nitrogen ions (16-25 MeV/nucleon). DNA was purified with a modified lysis procedure to avoid release of heat-labile sites, and fragment size distributions and double-strand break yields were analyzed by different pulsed-field gel electrophoresis protocols. Whereas double-strand breaks in photon-irradiated cells were randomly distributed, irradiation of intact K562 cells with high-LET nitrogen ions produced an excess of non-randomly distributed DNA fragments 10 kb-1 Mbp in size. Complete removal of proteins eliminated this non-random component. There was a gradual increase in the yield of double-strand breaks for each chromatin decondensation step, and compared to intact cells, the yields for naked DNA (in buffer without scavengers) increased 83 and 25 times after photon and nitrogen-ion irradiation, respectively. The corresponding relative biological effectiveness decreased from 1.6-1.8 for intact cells to 0.49 for the naked DNA. We conclude that the organization of DNA into chromatin fiber and higher-order structures is responsible for the majority of non-randomly distributed double-strand breaks induced by high-LET radiation. However, our data suggest a complex interaction between track structure and chromatin organization over several levels.  相似文献   

20.
The use of the budding yeast Saccharomyces cerevisiae as a simple eukaryotic model system for the study of chromatin assembly and regulation has allowed rapid discovery of genes that influence this complex process. The functions of many of the proteins encoded by these genes have not yet been fully characterized. Here, we describe a high-throughput methodology that can be used to illuminate gene function and discuss its application to a set of genes involved in the creation, maintenance and remodeling of chromatin structure. Our technique, termed E-MAPs, involves the generation of quantitative genetic interaction maps that reveal the function and organization of cellular proteins and networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号