首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
Ebola virus is from the Filoviridae family of viruses and is one of the most virulent pathogens known with ∼60% clinical fatality. The Ebola virus negative sense RNA genome encodes seven proteins including viral matrix protein 40 (VP40), which is the most abundant protein found in the virions. Within infected cells VP40 localizes at the inner leaflet of the plasma membrane (PM), binds lipids, and regulates formation of new virus particles. Expression of VP40 in mammalian cells is sufficient to form virus-like particles that are nearly indistinguishable from the authentic virions. However, how VP40 interacts with the PM and forms virus-like particles is for the most part unknown. To investigate VP40 lipid specificity in a model of viral egress we employed giant unilamellar vesicles with different lipid compositions. The results demonstrate VP40 selectively induces vesiculation from membranes containing phosphatidylserine (PS) at concentrations of PS that are representative of the PM inner leaflet content. The formation of intraluminal vesicles was not significantly detected in the presence of other important PM lipids including cholesterol and polyvalent phosphoinositides, further demonstrating PS selectivity. Taken together, these studies suggest that PM phosphatidylserine may be an important component of Ebola virus budding and that VP40 may be able to mediate PM scission.  相似文献   

2.
The envelope and precursor membrane (prM) proteins of dengue virus (DENV) are present on the surface of immature virions. During maturation, prM protein is cleaved by furin protease into pr peptide and membrane (M) protein. Although previous studies mainly focusing on the pr region have identified several residues important for DENV replication, the functional role of M protein, particularly the α-helical domain (MH), which is predicted to undergo a large conformational change during maturation, remains largely unknown. In this study, we investigated the role of nine highly conserved MH domain residues in the replication cycle of DENV by site-directed mutagenesis in a DENV1 prME expression construct and found that alanine substitutions introduced to four highly conserved residues at the C terminus and one at the N terminus of the MH domain greatly affect the production of both virus-like particles and replicon particles. Eight of the nine alanine mutants affected the entry of replicon particles, which correlated with the impairment in prM cleavage. Moreover, seven mutants were found to have reduced prM-E interaction at low pH, which may inhibit the formation of smooth immature particles and exposure of prM cleavage site during maturation, thus contributing to inefficient prM cleavage. Taken together, these results are the first report showing that highly conserved MH domain residues, located at 20–38 amino acids downstream from the prM cleavage site, can modulate the prM cleavage, maturation of particles, and virus entry. The highly conserved nature of these residues suggests potential targets of antiviral strategy.  相似文献   

3.
Down-regulation of protein phosphatase 2A (PP2A) methylation occurs in Alzheimer disease (AD). However, the regulation of PP2A methylation remains poorly understood. We have reported that altered leucine carboxyl methyltransferase (LCMT1)-dependent PP2A methylation is associated with down-regulation of PP2A holoenzymes containing the Bα subunit (PP2A/Bα) and subsequent accumulation of phosphorylated Tau in N2a cells, in vivo and in AD. Here, we show that pools of LCMT1, methylated PP2A, and PP2A/Bα are co-enriched in cholesterol-rich plasma membrane microdomains/rafts purified from N2a cells. In contrast, demethylated PP2A is preferentially distributed in non-rafts wherein small amounts of the PP2A methylesterase PME-1 are exclusively present. A methylation-incompetent PP2A mutant is excluded from rafts. Enhanced methylation of PP2A promotes the association of PP2A and Tau with the plasma membrane. Altered PP2A methylation following expression of a catalytically inactive LCMT1 mutant, knockdown of LCMT1, or alterations in one-carbon metabolism all result in a loss of plasma membrane-associated PP2A and Tau in N2a cells. This correlates with accumulation of soluble phosphorylated Tau, a hallmark of AD and other tauopathies. Thus, our findings reveal a distinct compartmentalization of PP2A and PP2A regulatory enzymes in plasma membrane microdomains and identify a novel methylation-dependent mechanism involved in modulating the targeting of PP2A, and its substrate Tau, to the plasma membrane. We propose that alterations in the membrane localization of PP2A and Tau following down-regulation of LCMT1 may lead to PP2A and Tau dysfunction in AD.  相似文献   

4.
Protein kinase A-anchoring proteins (AKAPs) provide spatio-temporal specificity for the omnipotent cAMP-dependent protein kinase (PKA) via high affinity interactions with PKA regulatory subunits (PKA-RI, RII). Many PKA-RII-AKAP complexes are heavily tethered to cellular substructures, whereas PKA-RI-AKAP complexes have remained largely undiscovered. Here, using a cAMP affinity-based chemical proteomics strategy in human heart and platelets, we uncovered a novel, ubiquitously expressed AKAP, termed small membrane (sm)AKAP due to its specific localization at the plasma membrane via potential myristoylation/palmitoylation anchors. In vitro binding studies revealed specificity of smAKAP for PKA-RI (Kd = 7 nm) over PKA-RII (Kd = 53 nm) subunits, co-expression of smAKAP with the four PKA R subunits revealed an even more exclusive specificity of smAKAP for PKA-RIα/β in the cellular context. Applying the singlet oxygen-generating electron microscopy probe miniSOG indicated that smAKAP is tethered to the plasma membrane and is particularly dense at cell-cell junctions and within filopodia. Our preliminary functional characterization of smAKAP provides evidence that, like PKA-RII, PKA-RI can be tightly tethered by a novel repertoire of AKAPs, providing a new perspective on spatio-temporal control of cAMP signaling.  相似文献   

5.
Siphophage SPP1 infects the Gram-positive bacterium Bacillus subtilis using its long non-contractile tail and tail-tip. Electron microscopy (EM) previously allowed a low resolution assignment of most orf products belonging to these regions. We report here the structure of the SPP1 distal tail protein (Dit, gp19.1). The combination of x-ray crystallography, EM, and light scattering established that Dit is a back-to-back dimer of hexamers. However, Dit fitting in the virion EM maps was only possible with a hexamer located between the tail-tube and the tail-tip. Structure comparison revealed high similarity between Dit and a central component of lactophage baseplates. Sequence similarity search expanded its relatedness to several phage proteins, suggesting that Dit is a docking platform for the tail adsorption apparatus in Siphoviridae infecting Gram-positive bacteria and that its architecture is a paradigm for these hub proteins. Dit structural similarity extends also to non-contractile and contractile phage tail proteins (gpVN and XkdM) as well as to components of the bacterial type 6 secretion system, supporting an evolutionary connection between all these devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号