首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To explore the effect of LYRM1 over-expression on basal and insulin-stimulated glucose uptake in rat skeletal muscle cells, and to understand the underlying mechanisms, Rat myoblasts (L6) transfected with either an empty expression vector (pcDNA3.1Myc/His B) or a LYRM1 expression vector were differentiated into myotubes. Glucose uptake was determined by measuring 2-deoxy-D-[(3)H] glucose uptake into L6 myotubes. Western blotting was performed to assess the translocation of insulin-sensitive glucose transporter 4 (GLUT4). It was also used to measure the phosphorylation and total protein contents of insulin-signaling proteins, such as the insulin receptor (IR), insulin receptor substrate (IRS)-1, phosphatidylinositol-3-kinase (PI3K) p85, Akt, ERK1/2, P38, and JNK. LYRM1 over-expression in L6 myotubes reduced insulin-stimulated glucose uptake and impaired insulin-stimulated GLUT4 translocation. It also diminished insulin-stimulated tyrosine phosphorylation of IRS-1, PI3K (p85), and serine phosphorylation of Akt without affecting the phosphorylation of IR, ERK1/2, P38, and JNK. LYRM1 regulates the function of IRS-1, PI3K, and Akt, and decreases GLUT4 translocation and glucose uptake in response to insulin. These observations highlight the potential role of LYRM1 in glucose homeostasis and possibly in the pathophysiology of type 2 diabetes related to obesity.  相似文献   

2.
Trivalent chromium (Cr3+) is known to improve glucose homeostasis. Cr3+ has been shown to improve plasma membrane-based aspects of glucose transporter GLUT4 regulation and increase activity of the cellular energy sensor 5’ AMP-activated protein kinase (AMPK). However, the mechanism(s) by which Cr3+ improves insulin responsiveness and whether AMPK mediates this action is not known. In this study we tested if Cr3+ protected against physiological hyperinsulinemia-induced plasma membrane cholesterol accumulation, cortical filamentous actin (F-actin) loss and insulin resistance in L6 skeletal muscle myotubes. In addition, we performed mechanistic studies to test our hypothesis that AMPK mediates the effects of Cr3+ on GLUT4 and glucose transport regulation. Hyperinsulinemia-induced insulin-resistant L6 myotubes displayed excess membrane cholesterol and diminished cortical F-actin essential for effective glucose transport regulation. These membrane and cytoskeletal abnormalities were associated with defects in insulin-stimulated GLUT4 translocation and glucose transport. Supplementing the culture medium with pharmacologically relevant doses of Cr3+ in the picolinate form (CrPic) protected against membrane cholesterol accumulation, F-actin loss, GLUT4 dysregulation and glucose transport dysfunction. Insulin signaling was neither impaired by hyperinsulinemic conditions nor enhanced by CrPic, whereas CrPic increased AMPK signaling. Mechanistically, siRNA-mediated depletion of AMPK abolished the protective effects of CrPic against GLUT4 and glucose transport dysregulation. Together these findings suggest that the micronutrient Cr3+, via increasing AMPK activity, positively impacts skeletal muscle cell insulin sensitivity and glucose transport regulation.  相似文献   

3.
In this study we show that serotonin (5-hydroxytryptamine (5-HT)) causes a rapid stimulation in glucose uptake by approximately 50% in both L6 myotubes and isolated rat skeletal muscle. This activation is mediated via the 5-HT2A receptor, which is expressed in L6, rat, and human skeletal muscle. In L6 cells, expression of the 5-HT2A receptor is developmentally regulated based on the finding that receptor abundance increases by over 3-fold during differentiation from myoblasts to myotubes. Stimulation of the 5-HT2A receptor using methylserotonin (m-HT), a selective 5-HT2A agonist, increased muscle glucose uptake in a manner similar to that seen in response to 5-HT. The agonist-mediated stimulation in glucose uptake was attributable to an increase in the plasma membrane content of GLUT1, GLUT3, and GLUT4. The stimulatory effects of 5-HT and m-HT were suppressed in the presence of submicromolar concentrations of ketanserin (a selective 5-HT2A antagonist) providing further evidence that the increase in glucose uptake was specifically mediated via the 5-HT2A receptor. Treatment of L6 cells with insulin resulted in tyrosine phosphorylation of IRS1, increased cellular production of phosphatidylinositol 3,4,5-phosphate and a 41-fold activation in protein kinase B (PKB/Akt) activity. In contrast, m-HT did not modulate IRS1, phosphoinositide 3-kinase, or PKB activity. The present results indicate that rat and human skeletal muscle both express the 5-HT2A receptor and that 5-HT and specific 5-HT2A agonists can rapidly stimulate glucose uptake in skeletal muscle by a mechanism which does not depend upon components that participate in the insulin signaling pathway.  相似文献   

4.
In this study, we investigated whether epigallocatechin gallate (EGCg) affects glucose uptake activity and the translocation of insulin-sensitive glucose transporter (GLUT) 4 in skeletal muscle. A single oral administration of EGCg at 75 mg/kg body weight promoted GLUT4 translocation in skeletal muscle of rats. EGCg significantly increased glucose uptake accompanying GLUT4 translocation in L6 myotubes at 1 nM. The translocation of GLUT4 was also observed both in skeletal muscle of mice and rats ex vivo and in insulin-resistant L6 myotubes. Wortmannin, an inhibitor of phosphatidylinositol 3′-kinase, inhibited both EGCg- and insulin-increased glucose uptakes, while genistein, an inhibitor of tyrosine kinase, failed to inhibit the EGCg-increased uptake. Therefore, EGCg may improve hyperglycemia by promoting GLUT4 translocation in skeletal muscle with partially different mechanism from insulin.  相似文献   

5.
This study examined the hypothesis that 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) upregulates the insulin-independent signaling cascade of glucose metabolism. C2C12 myotubes were treated with high glucose (HG, 25 mM) and 1,25(OH)2D3 (0–50 nM). 1,25(OH)2D3 supplementation upregulated both insulin-independent (SIRT1) and insulin-dependent (p-IRS) signaling molecules, and stimulated the GLUT4 translocation, and glucose uptake in HG-treated myotubes. The effect of 1,25(OH)2D3 on IRS1 phosphorylation, GLUT4 translocation, and glucose uptake was attenuated in SIRT1-knockdown myotubes. Treatment with 1,25(OH)2D3, coupled with insulin, enhanced GLUT4 translocation and glucose uptake compared to treatment with either insulin or 1,25(OH)2D3 alone in HG-treated myotubes, which suggests that insulin-independent signaling molecules can contribute to the higher glucose metabolism observed in 1,25(OH)2D3 and insulin-treated cells. The data, therefore, suggest that 1,25(OH)2D3 increases glucose consumption by inducing SIRT1 activation, which in turn increases IRS1 phosphorylation and GLUT4 translocation in myotubes.  相似文献   

6.
Lysophosphatidylserine (LPS) is known to have diverse cellular effects, but although LPS is present in many biological fluids, its in vivo effects have not been elucidated. In the present study, we investigated the effects of LPS on glucose metabolism in vivo, and how skeletal muscle cells respond to LPS stimulation. LPS enhanced glucose uptake in a dose- and time-dependent manner in L6 GLUT4myc myotubes, and this effect of LPS on glucose uptake was mediated by a Gαi and PI 3-kinase dependent signal pathway. LPS increased the level of GLUT4 on the cell surface of L6 GLUT4myc myotubes, and enhanced glucose uptake in 3T3-L1 adipocytes. In line with its cellular functions, LPS lowered blood glucose levels in normal mice, while leaving insulin secretion unaffected. LPS also had a glucose-lowering effect in STZ-treated type 1 diabetic mice and in obese db/db type 2 diabetic mice. This study shows that LPS-stimulated glucose transport both in skeletal muscle cells and adipocytes, and significantly lowered blood glucose levels both in type 1 and 2 diabetic mice. Our results suggest that LPS is involved in the regulation of glucose homeostasis in skeletal muscle and adipose tissue.  相似文献   

7.
Elevated saturated FFAs including palmitate (C16:0) are a primary trigger for peripheral insulin resistance characterized by impaired glucose uptake/disposal in skeletal muscle, resulting from impaired GLUT4 translocation in response to insulin. We herein demonstrate that palmitate induces down-regulation of sortilin, a sorting receptor implicated in the formation of insulin-responsive GLUT4 vesicles, via mechanisms involving PKCθ and TNF-α-converting enzyme, but not p38, JNK, or mitochondrial reactive oxygen species generation, leading to impaired GLUT4 trafficking in C2C12 myotubes. Intriguingly, unsaturated FFAs such as palmitoleate (C16:1) and oleate (C18:1) had no such detrimental effects, appearing instead to effectively reverse palmitate-induced impairment of insulin-responsive GLUT4 recycling along with restoration of sortilin abundance by preventing aberrant PKCθ activation. On the other hand, shRNA-mediated reduction of sortilin in intact C2C12 myotubes inhibited insulin-induced GLUT4 recycling without dampening Akt phosphorylation. We found that the peroxisome proliferator-activated receptor γ agonist troglitazone prevented the palmitate-induced sortilin reduction and also ameliorated insulin-responsive GLUT4 recycling without altering the palmitate-evoked insults on signaling cascades; neither highly phosphorylated PKCθ states nor impaired insulin-responsive Akt phosphorylation was affected. Taken together, our data provide novel insights into the pathogenesis of PKCθ-dependent insulin resistance with respect to insulin-responsive GLUT4 translocation, which could occur not only through defects of insulin signaling but also via a reduction of sortilin, which directly controls trafficking/sorting of GLUT4 in skeletal muscle cells. In addition, our data suggest the insulin-sensitizing action of peroxisome proliferator-activated receptor γ agonists to be at least partially mediated through the restoration of proper GLUT4 trafficking/sorting events governed by sortilin.  相似文献   

8.
Study has demonstrated an essential role of cortical filamentous actin (F-actin) in insulin-regulated glucose uptake by skeletal muscle. Here, we tested whether perturbations in F-actin contributed to impaired insulin responsiveness provoked by hyperinsulinemia. In L6 myotubes stably expressing GLUT4 that carries an exofacial myc-epitope tag, acute insulin stimulation (20 min, 100 nM) increased GLUT4myc translocation and glucose uptake by 2-fold. In contrast, a hyperinsulinemic state, induced by inclusion of 5 nM insulin in the medium for 12 h decreased the ability of insulin to stimulate these processes. Defects in insulin signaling did not readily account for the observed disruption. In contrast, hyperinsulinemia reduced cortical F-actin. This occurred concomitant with a loss of plasma membrane phosphatidylinositol 4,5-bisphosphate (PIP2), a lipid involved in cytoskeletal regulation. Restoration of plasma membrane PIP2 in hyperinsulinemic cells restored F-actin and insulin responsiveness. Consistent with these in vitro observations suggesting that the hyperinsulinemic state negatively affects cortical F-actin structure, epitrochlearis skeletal muscle from insulin-resistant hyperinsulinemic Zucker fatty rats displayed a similar loss of F-actin structure compared with that in muscle from lean insulin-sensitive littermates. We propose that a component of insulin-induced insulin resistance in skeletal muscle involves defects in PIP2/F-actin structure essential for insulin-regulated glucose transport. hyperinsulinemia; phosphatidylinositol 4,5-bisphosphate  相似文献   

9.
Insulin resistance in skeletal muscle is one of the earliest symptoms associated with non-insulin-dependent diabetes mellitus (NIDDM). Tumour necrosis factor (TNF) and nonesterified fatty acids have been proposed to be crucial factors in the development of the insulin-resistant state. We here show that, although TNF downregulated insulin-induced insulin receptor (IR) and IR substrate (IRS)-1 phosphorylation as well as phosphoinositide 3-kinase (PI3-kinase) activity in pmi28 myotubes, this was, unlike in adipocytes, not sufficient to affect insulin-induced glucose transport. Rather, TNF increased membrane expression of GLUT1 and glucose transport in these muscle cells. In contrast, the nonesterified fatty acid palmitate inhibited insulin-induced signalling cascades not only at the level of IR and IRS-1 phosphorylation, but also at the level protein kinase B (PKB/Akt), which is thought to be directly involved in the insulin-induced translocation of GLUT4, and inhibited insulin-induced glucose uptake. Palmitate also abrogated TNF-dependent enhancement of basal glucose uptake, suggesting that palmitate has the capacity to render muscle cells resistant not only to insulin but also to TNF with respect to glucose transport by GLUT4 and GLUT1, respectively. Our data illustrate the complexity of the mechanisms governing insulin resistance of skeletal muscle, questioning the role of TNF as a direct inhibitor of glucose homoeostasis in this tissue and shedding new light on an as yet unrecognized multifunctional role for the predominant nonesterified fatty acid palmitate in this process.  相似文献   

10.

Background

Angiopoietin-1 (ANGPT1) and angiopoietin-2 (ANGPT2) are angiogenesis factors that modulate endothelial cell differentiation, survival and stability. Recent studies have suggested that skeletal muscle precursor cells constitutively express ANGPT1 and adhere to recombinant ANGPT1 and ANGPT2 proteins. It remains unclear whether or not they also express ANGPT2, or if ANGPT2 regulates the myogenesis program of muscle precursors. In this study, ANGPT2 regulatory factors and the effects of ANGPT2 on proliferation, migration, differentiation and survival were identified in cultured primary skeletal myoblasts. The cellular networks involved in the actions of ANGPT2 on skeletal muscle cells were also analyzed.

Methodology/Principal Findings

Primary skeletal myoblasts were isolated from human and mouse muscles. Skeletal myoblast survival, proliferation, migration and differentiation were measured in-vitro in response to recombinant ANGPT2 protein and to enhanced ANGPT2 expression delivered with adenoviruses. Real-time PCR and ELISA measurements revealed the presence of constitutive ANGPT2 expression in these cells. This expression increased significantly during myoblast differentiation into myotubes. In human myoblasts, ANGPT2 expression was induced by H2O2, but not by TNFα, IL1β or IL6. ANGPT2 significantly enhanced myoblast differentiation and survival, but had no influence on proliferation or migration. ANGPT2-induced survival was mediated through activation of the ERK1/2 and PI-3 kinase/AKT pathways. Microarray analysis revealed that ANGPT2 upregulates genes involved in the regulation of cell survival, protein synthesis, glucose uptake and free fatty oxidation.

Conclusion/Significance

Skeletal muscle precursors constitutively express ANGPT2 and this expression is upregulated during differentiation into myotubes. Reactive oxygen species exert a strong stimulatory influence on muscle ANGPT2 expression while pro-inflammatory cytokines do not. ANGPT2 promotes skeletal myoblast survival and differentiation. These results suggest that muscle-derived ANGPT2 production may play a positive role in skeletal muscle fiber repair.  相似文献   

11.
Insulin stimulates glucose uptake in skeletal muscle cells and fat cells by promoting the rapid translocation of GLUT4 glucose transporters to the plasma membrane. Recent work from our laboratory supports the concept that insulin also stimulates the intrinsic activity of GLUT4 through a signaling pathway that includes p38 MAPK. Here we show that regulation of GLUT4 activity by insulin develops during maturation of skeletal muscle cells into myotubes in concert with the ability of insulin to stimulate p38 MAPK. In L6 myotubes expressing GLUT4 that carries an exofacial myc-epitope (L6-GLUT4myc), insulin-stimulated GLUT4myc translocation equals in magnitude the glucose uptake response. Inhibition of p38 MAPK with SB203580 reduces insulin-stimulated glucose uptake without affecting GLUT4myc translocation. In contrast, in myoblasts, the magnitude of insulin-stimulated glucose uptake is significantly lower than that of GLUT4myc translocation and is insensitive to SB203580. Activation of p38 MAPK by insulin is considerably higher in myotubes than in myoblasts, as is the activation of upstream kinases MKK3/MKK6. In contrast, the activation of all three Akt isoforms and GLUT4 translocation are similar in myoblasts and myotubes. Furthermore, GLUT4myc translocation and phosphorylation of regulatory sites on Akt in L6-GLUT4myc myotubes are equally sensitive to insulin, whereas glucose uptake and phosphorylation of regulatory sites on p38 MAPK show lower sensitivity to the hormone. These observations draw additional parallels between Akt and GLUT4 translocation and between p38 MAPK and GLUT4 activation. Regulation of GLUT4 activity by insulin develops upon muscle cell differentiation and correlates with p38 MAPK activation by insulin.  相似文献   

12.
目的 研究灵芝多糖对3T3-L1胰岛素抵抗细胞模型PI-3K p85和GLUT4蛋白表达的影响,探讨灵芝多糖改善胰岛素抵抗的分子机制.方法 3T3-L1前脂肪细胞经1-甲基-3-异丁基-黄嘌呤、地塞米松、胰岛素诱导分化成3T3-L1脂肪细胞,以葡萄糖氧化酶法测定培养液中残余的葡萄糖含量.比较二甲双胍组,检测培养液中葡萄糖含量及PI-3K p85和GLUT4蛋白表达变化.结果 地塞米松联合胰岛素诱导3T3-L1脂肪细胞产生胰岛素抵抗,细胞对葡萄糖的摄取量减少.灵芝多糖可改善3T3-L1脂肪细胞胰岛素抵抗.胰岛素抵抗细胞的PI-3K p85和GLUT4蛋白表达明显减少;应用灵芝多糖后,相关蛋白表达增加.结论 灵芝多糖通过提高PI-3K p85和GLUT4蛋白的表达,参与胰岛素抵抗状态下3T3-L1细胞的葡萄糖代谢.  相似文献   

13.
It is well established that insulin stimulation of glucose uptake in skeletal muscle cells is mediated through translocation of GLUT4 from intracellular storage sites to the cell surface. However, the established skeletal muscle cell lines, with the exception of L6 myocytes, reportedly show minimal insulin-dependent glucose uptake and GLUT4 translocation. Using C(2)C(12) myocytes expressing exofacial-Myc-GLUT4-enhanced cyan fluorescent protein, we herein show that differentiated C(2)C(12) myotubes are equipped with basic GLUT4 translocation machinery that can be activated by insulin stimulation ( approximately 3-fold increase as assessed by anti-Myc antibody uptake and immunostaining assay). However, this insulin stimulation of GLUT4 translocation was difficult to demonstrate with a conventional 2-deoxyglucose uptake assay because of markedly elevated basal glucose uptake via other glucose transporter(s). Intriguingly, the basal glucose transport activity in C(2)C(12) myotubes appeared to be acutely suppressed within 5 min by preincubation with a pathophysiologically high level of extracellular glucose (25 mM). In contrast, this activity was augmented by acute glucose deprivation via an unidentified mechanism that is independent of GLUT4 translocation but is dependent on phosphatidylinositol 3-kinase activity. Taken together, these findings indicate that regulation of the facilitative glucose transport system in differentiated C(2)C(12) myotubes can be achieved through surprisingly acute glucose-dependent modulation of the activity of glucose transporter(s), which apparently contributes to obscuring the insulin augmentation of glucose uptake elicited by GLUT4 translocation. We herein also describe several methods of monitoring insulin-dependent glucose uptake in C(2)C(12) myotubes and propose this cell line to be a useful model for analyzing GLUT4 translocation in skeletal muscle.  相似文献   

14.
The renin-angiotensin system (RAS) and reactive oxygen species (ROS) have been implicated in the development of insulin resistance and its related complications. There is also evidence that angiotensin II (Ang II)-induced generation of ROS contributes to the development of insulin resistance in skeletal muscle, although the precise mechanisms remain unknown. In the present study, we found that Ang II markedly enhanced NADPH oxidase activity and consequent ROS generation in L6 myotubes. These effects were blocked by the angiotensin II type 1 receptor blocker losartan, and by the NADPH oxidase inhibitor apocynin. Ang II also promoted the translocation of NADPH oxidase cytosolic subunits p47phox and p67phox to the plasma membrane within 15 min. Furthermore, Ang II abolished insulin-induced tyrosine phosphorylation of insulin receptor substrate 1 (IRS1), activation of protein kinase B (Akt), and glucose transporter-4 (GLUT4) translocation to the plasma membrane, which was reversed by pretreating myotubes with losartan or apocynin. Finally, small interfering RNA (siRNA)-specific gene silencing targeted specifically against p47phox (p47siRNA), in both L6 and primary myotubes, reduced the cognate protein expression, decreased NADPH oxidase activity, restored Ang II-impaired IRS1 and Akt activation as well as GLUT4 translocation by insulin. These results suggest a pivotal role for NADPH oxidase activation and ROS generation in Ang II-induced inhibition of insulin signaling in skeletal muscle cells.  相似文献   

15.
Insulin activates certain protein kinase C (PKC) isoforms that are involved in insulin-induced glucose transport. In this study, we investigated the possibility that activation of PKCdelta by insulin participates in the mediation of insulin effects on glucose transport in skeletal muscle. Studies were performed on primary cultures of rat skeletal myotubes. The role of PKCdelta in insulin-induced glucose uptake was evaluated both by selective pharmacological blockade and by over-expression of wild-type and point-mutated inactive PKCdelta isoforms in skeletal myotubes. We found that insulin induces tyrosine phosphorylation and translocation of PKCdelta to the plasma membrane and increases the activity of this isoform. Insulin-induced effects on translocation and phosphorylation of PKCdelta were blocked by a low concentration of rottlerin, whereas the effects of insulin on other PKC isoforms were not. This selective blockade of PKCdelta by rottlerin also inhibited insulin-induced translocation of glucose transporter 4 (GLUT4), but not glucose transporter 3 (GLUT3), and significantly reduced the stimulation of glucose uptake by insulin. When overexpressed in skeletal muscle, PKCdelta and PKCdelta were both active. Overexpression of PKCdelta induced the translocation of GLUT4 to the plasma membrane and increased basal glucose uptake to levels attained by insulin. Moreover, insulin did not increase glucose uptake further in cells overexpressing PKCdelta. Overexpression of PKCdelta did not affect basal glucose uptake or GLUT4 location. Stimulation of glucose uptake by insulin in cells overexpressing PKCdelta was similar to that in untransfected cells. Transfection of skeletal myotubes with dominant negative mutant PKCdelta did not alter basal glucose uptake but blocked insulin-induced GLUT4 translocation and glucose transport. These results demonstrate that insulin activates PKCdelta and that activated PKCdelta is a major signaling molecule in insulin-induced glucose transport.  相似文献   

16.
UCP3 is a mitochondrial membrane protein expressed in humans selectively in skeletal muscle. To determine the mechanisms by which UCP3 plays a role in regulating glucose metabolism, we expressed human UCP3 in L6 myotubes by adenovirus-mediated gene transfer and in H(9)C(2) cardiomyoblasts by stable transfection with a tetracycline-repressible UCP3 construct. Expression of UCP3 in L6 myotubes increased 2-deoxyglucose uptake 2-fold and cell surface GLUT4 2.3-fold, thereby reaching maximally insulin-stimulated levels in control myotubes. Wortmannin, LY 294002, or the tyrosine kinase inhibitor genistein abolished the effect of UCP3 on glucose uptake, and wortmannin inhibited UCP3-induced GLUT4 cell surface recruitment. UCP3 overexpression increased phosphotyrosine-associated phosphoinositide 3-kinase (PI3K) activity 2.2-fold compared with control cells (p < 0.05). UCP3 overexpression increased lactate release 1.5- to 2-fold above control cells, indicating increased glucose metabolism. In H(9)C(2) cardiomyoblasts stably transfected with UCP3 under control of a tetracycline-repressible promotor, removal of doxycycline resulted in detectable levels of UCP3 at 12 h and 2.2-fold induction at 7 days compared with 12 h. In parallel, glucose transport increased 1.3- and 2-fold at 12 h and 7 days, respectively, and the stimulation was inhibited by wortmannin or genistein. p85 association with membranes was increased 5.5-fold and phosphotyrosine-associated PI3K activity 3.8-fold. In contrast, overexpression of UCP3 in 3T3-L1 adipocytes did not alter glucose uptake, suggesting tissue-specific effects of human UCP3. Thus, UCP3 stimulates glucose transport and GLUT4 translocation to the cell surface in cardiac and skeletal muscle cells by activating a PI3K dependent pathway.  相似文献   

17.
Diabetes mellitus is a complex disease that is characterized by the defection of insulin sensitivity in such peripheral tissues as skeletal muscle, adipose tissue and liver. We have previously demonstrated that certain inositol derivatives stimulated glucose uptake accompanied by the translocation of glucose transporter 4 (GLUT4) to the plasma membrane in L6 myotubes. We investigated in this present study whether an oral intake of D-pinitol (PI) and myo-inositol (MI) would affect GLUT4 translocation in the skeletal muscle of mice. PI or MI at 1 g/kg BW administered orally to mice 30 min before a post-oral injection of glucose at 2 g/kg BW resulted in both PI and MI increasing GLUT4 translocation in the skeletal muscle and lowering the plasma glucose and insulin levels. PI and MI, therefore, have the potential to prevent diabetes mellitus by reducing the postprandial blood glucose level and stimulating GLUT4 translocation in the skeletal muscle.  相似文献   

18.
Skeletal muscle insulin resistance (IR) is closely linked to hyperglycemia and metabolic disorders. Regular exercise enhances insulin sensitivity in skeletal muscle, but its underlying mechanisms remain unknown. Sestrin3 (SESN3) is a stress-inducible protein that protects against obesity-induced hepatic steatosis and insulin resistance. Regular exercise training is known to increase SESN3 expression in skeletal muscle. The purpose of this study was to explore whether SESN3 mediates the metabolic effects of exercise in the mouse model of high-fat diet (HFD)-induced IR. SESN3?/? mice exhibited severer body weight gain, ectopic lipid accumulation, and dysregulation of glucose metabolism after long-term HFD feeding compared with the wild-type (WT) mice. Moreover, we found that SESN3 deficiency weakened the effects of exercise on reducing serum insulin levels and improving glucose tolerance in mice. Exercise training increased pAKT-S473 and GLUT4 expression, accompanied by enhanced pmTOR-S2481 (an indicator of mTORC2 activity) in WT quadriceps that were less pronounced in SESN3?/? mice. SESN3 overexpression in C2C12 myotubes further confirmed that SESN3 played an important role in skeletal muscle glucose metabolism. SESN3 overexpression increased the binding of Rictor to mTOR and pmTOR-S2481 in C2C12 myotubes. Moreover, SESN3 overexpression resulted in an elevation of glucose uptake and a concomitant increase of pAKT-S473 in C2C12 myotubes, whereas these effects were diminished by downregulation of mTORC2 activity. Taken together, SESN3 is a crucial protein in amplifying the beneficial effects of exercise on insulin sensitivity in skeletal muscle and systemic glucose levels. SESN3/mTORC2/AKT pathway mediated the effects of exercise on skeletal muscle insulin sensitivity.  相似文献   

19.
Insulin stimulates glucose uptake by recruiting glucose transporter 4 (GLUT4) from an intracellular pool to the cell surface through a mechanism that is dependent on phosphatidylinositol (PI) 3-kinase (PI3-K) and cortical actin remodeling. Here we test the hypothesis that insulin-dependent actin filament remodeling determines the location of insulin signaling molecules. It has been shown previously that insulin treatment of L6 myotubes leads to a rapid rearrangement of actin filaments into submembrane structures where the p85 regulatory subunit of PI3-K and organelles containing GLUT4, VAMP2, and the insulin-regulated aminopeptidase (IRAP) colocalize. We now report that insulin receptor substrate-1 and the p110alpha catalytic subunit of PI3-K (but not p110beta) also colocalize with the actin structures. Akt-1 was also found in the remodeled actin structures, unlike another PI3-K effector, atypical protein kinase C lambda. Transiently transfected green fluorescent protein (GFP)-tagged pleckstrin homology (PH) domains of general receptor for phosphoinositides-1 (GRP1) or Akt (ligands of phosphatidylinositol-3,4,5-trisphosphate [PI-3,4,5-P(3)]) migrated to the periphery of the live cells; in fixed cells, they were detected in the insulin-induced actin structures. These results suggest that PI-3,4,5-P(3) is generated on membranes located within the actin mesh. Actin remodeling and GLUT4 externalization were blocked in cells highly expressing GFP-PH-GRP1, suggesting that PI-3,4,5-P(3) is required for both phenomena. We propose that PI-3,4,5-P(3) leads to actin remodeling, which in turn segregates p85alpha and p110alpha, thus localizing PI-3,4,5-P(3) production on membranes trapped by the actin mesh. Insulin-stimulated actin remodeling may spatially coordinate the localized generation of PI-3,4,5-P(3) and recruitment of Akt, ultimately leading to GLUT4 insertion at the plasma membrane.  相似文献   

20.
Nitric oxide (NO) and 5'-AMP-activated protein kinase (AMPK) are involved in glucose transport and mitochondrial biogenesis in skeletal muscle. Here, we examined whether NO regulates the expression of the major glucose transporter in muscle (GLUT4) and whether it influences AMPK-induced upregulation of GLUT4. At low levels, the NO donor S-nitroso-N-penicillamine (SNAP, 1 and 10 microM) significantly increased GLUT4 mRNA ( approximately 3-fold; P < 0.05) in L6 myotubes, and cotreatment with the AMPK inhibitor compound C ablated this effect. The cGMP analog 8-bromo-cGMP (8-Br-cGMP, 2 mM) increased GLUT4 mRNA by approximately 50% (P < 0.05). GLUT4 protein expression was elevated 40% by 2 days treatment with 8-Br-cGMP, whereas 6 days treatment with 10 microM SNAP increased GLUT4 expression by 65%. Cotreatment of cultures with the guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one prevented the SNAP-induced increase in GLUT4 protein. SNAP (10 microM) also induced significant phosphorylation of alpha-AMPK and acetyl-CoA carboxylase and translocation of phosphorylated alpha-AMPK to the nucleus. Furthermore, L6 myotubes exposed to 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR) for 16 h presented an approximately ninefold increase in GLUT4 mRNA, whereas cotreatment with the non-isoform-specific NOS inhibitor N(G)-nitro-l-arginine methyl ester, prevented approximately 70% of this effect. In vivo, GLUT4 mRNA was increased 1.8-fold in the rat plantaris muscle 12 h after AICAR injection, and this induction was reduced by approximately 50% in animals cotreated with the neuronal and inducible nitric oxide synthases selective inhibitor 1-(2-trifluoromethyl-phenyl)-imidazole. We conclude that, in skeletal muscle, NO increases GLUT4 expression via a cGMP- and AMPK-dependent mechanism. The data are consistent with a role for NO in the regulation of AMPK, possibly via control of cellular activity of AMPK kinases and/or AMPK phosphatases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号