首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Shiga toxins (Stxs) produced by enterohaemorrhagic Escherichia coli may induce colonic ulceration, bloody diarrhoea and acute renal failure. The A subunit (StxA) is known to inhibit protein synthesis, whereas the B subunits (StxB) bind to Gb3 on the cell surface. However, the mechanisms by which Stxs kill target cells remain unclear. Stx1A or Stx1B genes were introduced into pcDNA3.1 vectors and transfected into NIH3T3 and HeLa cells. The Stx1B gene-transfected cells became apoptotic with accompanying DNA fragmentation, whereas the Stx1A gene-transfected cells were found to be necrotic and no DNA fragmentation occurred. The HeLa/C4 cells integrated with the Stx1B gene with a tetracycline-inducible promoter eventually produced cytoplasmic Stx1B, leading to DNA fragmentation on the addition of doxycycline. These apoptotic changes were abrogated by pretreatment with Z-VAD-fmk. These results suggest that the transfected Stx1B gene induces apoptosis by activating the caspase cascade after Stx1B expression in the cytoplasm.  相似文献   

2.
3.
Enterohemorrhagic Escherichia coli (EHEC) is an important food-borne pathogen, which causes a wide spectrum of diseases ranging from hemorrhagic colitis to life-threatening hemolytic uremic syndrome (HUS). Currently, insufficient measures to prevent and treat EHEC infection make a vaccine against EHEC in great demand. EspA (E. coli secreted protein A), intimin, and Stx2 (Shiga toxin 2) are three predominant virulence factors of EHEC, and each of them has proved to be capable of inducing partial protective immunity. In this study, we constructed a trivalent recombinant protein designated EIS that is composed of EspA (E), C-terminal 300 amino acids of intimin (I) and B subunit of Stx2 (S), and tested it as vaccine using a mouse model. Our results showed that immunization of EIS induced strong humoral response to EspA, intimin and Stx2 and protected mice against the challenges with live EHEC or EHEC sonicated lysate. Moreover, it enhanced clearance of intestinally colonized bacteria. This work suggests that for EHEC vaccines using a combination of EspA, intimin and Stx2 antigens appears to be more effective than using any of these immunogens alone.  相似文献   

4.
Shiga toxin-producing Escherichia coli produces watery diarrhea, hemorrhagic colitis and hemolytic-uremic syndrome (HUS). In Argentina, HUS is the most common cause of acute renal failure in children. The purpose of the present study was to examine the cytotoxicity of Stx type 2 (Stx2 holotoxin) and its B subunit (Stx2 B subunit) on human renal tubular epithelial cells (HRTEC), in the presence and absence of inflammatory factors. Cell morphology, cell viability, protein synthesis and apoptosis were measured. HRTEC are sensitive to both Stx2 holotoxin and Stx2 B subunit in a dose- and time-dependent manner. IL-1, LPS and butyrate but not TNF, IL-6 and IL-8, increased the Stx mediated cytotoxicity. The effects of Stx2 B subunit appear at doses higher than those used for Stx2 holotoxin. Although the physiological importance of these effects is not clear, it is important to be aware of any potentially toxic activity in the B subunit, given that it has been proposed for use in a vaccine.  相似文献   

5.
Shiga toxin-producing E. coli O157 and non-O157 are important emergance pathogens that can cause diarrhea and hemorrhagic colitis with life-threatening complications, such as hemolytic uremic syndrome (HUS). A few cases of EHEC infections are documented per year in Poland. Among them only one patient with EHEC O157 infection developed HUS. We characterized the first VTEC non-O157 strain isolated from child with HUS in Poland. The VTEC O111 strain produced Stx2 which was cytotoxic for Vero cell. Using DNA microarray analysis we have found set of virulence genes in VTEC O111 strain as: stx2A, stx2B, ehly, eae, tir tccP espA, espJ, cif nleA, nleB, lpfA, iha, efa1, cba. The strain was fenotypic resistant to streptomycin, tetracyclin and sulphonamides (strA, tetA, sul2 genes were detected).  相似文献   

6.
Shiga toxin 2 (Stx2) is a major virulence factor for enterohemorrhagic Escherichia coli (EHEC), which is encoded by λ lysogenic phage integrated into EHEC chromosome. Stx2Al, Al subunit of Stx2 toxin has gathered extensive concerns due to its potential of being developed into a vaccine candidate. However, the substantial progress is hampered in part for the lack of a suitable in vitro expression system. Here we report use of the prokaryotic system pET-28a::espA-Stx2Al/BL21 to carry out the fusion expression of Stx2Al which is linked to E. coli secreted protein A (EspA) at its N-terminus. Under the IPTG induction, EspA-Stx2Al fusion protein in the form of inclusion body was obtained successfully, whose expression level can reach about 40% of total bacterial protein at 25°C, much higher than that at 37°C. Western blot test suggested the refolded fusion protein is of excellent immuno-reactivity with both monoclonal antibodies, which are specific to EspA and Stx2Al, respectively. Anti-sera from Balb/c mice immunized with the EspA-Stx2Al fusion protein were found to exhibit strong neutralization activity and protection capability in vitro and in vivo. These data have provided a novel feasible method to produce Stx2Al in large scale in vitro, which is implicated for the development of multivalent subunit vaccines candidate against EHEC 0157:H7 infections.  相似文献   

7.
Enterohemorrhagic Escherichia coli (EHEC) are food-borne pathogens that can cause serious infections ranging from diarrhea to hemorrhagic colitis (HC) and hemolytic-uremic syndrome (HUS). Translocation of Shiga-toxins (Stx) from the gut lumen to underlying tissues is a decisive step in the development of the infection, but the mechanisms involved remain unclear. Many bacterial pathogens target the follicle-associated epithelium, which overlies Peyer''s patches (PPs), cross the intestinal barrier through M cells and are captured by mucosal macrophages. Here, translocation across M cells, as well as survival and proliferation of EHEC strains within THP-1 macrophages were investigated using EHEC O157:H7 reference strains, isogenic mutants, and 15 EHEC strains isolated from HC/HUS patients. We showed for the first time that E. coli O157:H7 strains are able to interact in vivo with murine PPs, to translocate ex vivo through murine ileal mucosa with PPs and across an in vitro human M cell model. EHEC strains are also able to survive and to produce Stx in macrophages, which induce cell apoptosis and Stx release. In conclusion, our results suggest that the uptake of EHEC by M cells and underlying macrophages in the PP may be a critical step in Stx translocation and release in vivo. A new model for EHEC infection in humans is proposed that could help in a fuller understanding of EHEC-associated diseases.  相似文献   

8.
Shiga toxin (Stx)-producing Escherichia coli (STEC) infection is associated with a broad spectrum of clinical manifestations that include diarrhea, hemorrhagic colitis, and hemolytic uremic syndrome (HUS). Systemic Stx toxemia is considered to be central to the genesis of HUS. Distinct methods have been used to evaluate anti-Stx response for immunodiagnostic or epidemiological analysis of HUS cases. The development of enzyme-linked immunosorbent assay (ELISA) and western blot (WB) assay to detect the presence of specific antibodies to Stx has introduced important advantages for serodiagnosis of HUS. However, application of these methods for seroepidemiological studies in Argentina has been limited. The aim of this work was to develop an ELISA to detect antibodies against the B subunit of Stx2, and a WB to evaluate antibodies against both subunits of Stx2 and Stx1, in order to analyze the pertinence and effectiveness of these techniques in the Argentinean population. We studied 72 normal healthy children (NHC) and 105 HUS patients of the urban pediatric population from the surrounding area of Buenos Aires city. Using the WB method we detected 67% of plasma from NHC reactive for Stx2, but only 8% for Stx1. These results are in agreement with the broad circulation of Stx2-expressing STEC in Argentina and the endemic behavior of HUS in this country. Moreover, the simultaneous evaluation by the two methods allowed us to differentiate acute HUS patients from NHC with a great specificity and accuracy, in order to confirm the HUS etiology when pathogenic bacteria were not isolated from stools.  相似文献   

9.
Shiga toxins (Stxs) are involved in the development of severe systemic complications associated with enterohemorrhagic Escherichia coli (EHEC) infection. Various neutralizing agents against Stxs are under investigation for management of EHEC infection. In this study, we immunized chickens with formalin-inactivated Stx-1 or Stx-2, and obtained immunoglobulin Y (IgY) from the egg yolk. Anti-Stx-1 IgY and anti-Stx-2 IgY recognized the corresponding Stx A subunit and polymeric but not monomeric B subunit. Anti-Stx-1 IgY and anti-Stx-2 IgY suppressed the cytotoxicity of Stx-1 and Stx-2 to HeLa 229 cells, without cross-suppressive activity. The suppressive activity of these IgY was abrogated by pre-incubation with the corresponding recombinant B subunit, which suggests that the antibodies directed to the polymeric B subunits were predominantly involved in the suppression. In vivo, the intraperitoneal or intravenous administration of these IgY rescued mice from death caused by intraperitoneal injection of the corresponding toxin at a lethal dose. Moreover, oral administration of anti-Stx-2 IgY reduced the mortality of mice infected intestinally with EHEC O157:H7. Our results therefore suggest that anti-Stx IgY antibodies may be considered as preventive agents for Stx-mediated diseases in EHEC infection.  相似文献   

10.
Shiga toxin Stx2e is the major known agent that causes edema disease in newly weaned pigs. This severe disease is characterized by neurological disorders, hemorrhagic lesions, and frequent fatal outcomes. Stx2e consists of an enzymatically active A subunit and five B subunits that bind to a specific glycolipid receptor on host cells. It is evident that antibodies binding to the A subunit or the B subunits of Shiga toxin variants may have the capability to inhibit their cytotoxicity. Here, we report the discovery and characterization of a VHH single domain antibody (nanobody) isolated from a llama phage display library that confers potent neutralizing capacity against Stx2e toxin. We further present the crystal structure of the complex formed between the nanobody (NbStx2e1) and the Stx2e toxoid, determined at 2.8 Å resolution. Structural analysis revealed that for each B subunit of Stx2e, one NbStx2e1 is interacting in a head-to-head orientation and directly competing with the glycolipid receptor binding site on the surface of the B subunit. The neutralizing NbStx2e1 can in the future be used to prevent or treat edema disease.  相似文献   

11.
Shiga toxin (Stx)-producing Escherichia coli (STEC) cause post-diarrhea Hemolytic Uremic Syndrome (HUS), which is the most common cause of acute renal failure in children in many parts of the world. Several non-O157 STEC strains also produce Subtilase cytotoxin (SubAB) that may contribute to HUS pathogenesis. The aim of the present work was to examine the cytotoxic effects of SubAB on primary cultures of human cortical renal tubular epithelial cells (HRTEC) and compare its effects with those produced by Shiga toxin type 2 (Stx2), in order to evaluate their contribution to renal injury in HUS. For this purpose, cell viability, proliferation rate, and apoptosis were assayed on HRTEC incubated with SubAB and/or Stx2 toxins. SubAB significantly reduced cell viability and cell proliferation rate, as well as stimulating cell apoptosis in HRTEC cultures in a time dependent manner. However, HRTEC cultures were significantly more sensitive to the cytotoxic effects of Stx2 than those produced by SubAB. No synergism was observed when HRTEC were co-incubated with both SubAB and Stx2. When HRTEC were incubated with the inactive SubAA272B toxin, results were similar to those in untreated control cells. Similar stimulation of apoptosis was observed in Vero cells incubated with SubAB or/and Stx2, compared to HRTEC. In conclusion, primary cultures of HRTEC are significantly sensitive to the cytotoxic effects of SubAB, although, in a lesser extent compared to Stx2.  相似文献   

12.
Lytic or lysogenic infections by bacteriophages drive the evolution of enteric bacteria. Enterohemorrhagic Escherichia coli (EHEC) have recently emerged as a significant zoonotic infection of humans with the main serotypes carried by ruminants. Typical EHEC strains are defined by the expression of a type III secretion (T3S) system, the production of Shiga toxins (Stx) and association with specific clinical symptoms. The genes for Stx are present on lambdoid bacteriophages integrated into the E. coli genome. Phage type (PT) 21/28 is the most prevalent strain type linked with human EHEC infections in the United Kingdom and is more likely to be associated with cattle shedding high levels of the organism than PT32 strains. In this study we have demonstrated that the majority (90%) of PT 21/28 strains contain both Stx2 and Stx2c phages, irrespective of source. This is in contrast to PT 32 strains for which only a minority of strains contain both Stx2 and 2c phages (28%). PT21/28 strains had a lower median level of T3S compared to PT32 strains and so the relationship between Stx phage lysogeny and T3S was investigated. Deletion of Stx2 phages from EHEC strains increased the level of T3S whereas lysogeny decreased T3S. This regulation was confirmed in an E. coli K12 background transduced with a marked Stx2 phage followed by measurement of a T3S reporter controlled by induced levels of the LEE-encoded regulator (Ler). The presence of an integrated Stx2 phage was shown to repress Ler induction of LEE1 and this regulation involved the CII phage regulator. This repression could be relieved by ectopic expression of a cognate CI regulator. A model is proposed in which Stx2-encoding bacteriophages regulate T3S to co-ordinate epithelial cell colonisation that is promoted by Stx and secreted effector proteins.  相似文献   

13.
14.
Aims: The Shiga‐like toxins (Stx) are critical virulence factors of enterohaemorrhagic Escherichia coli (EHEC). Stx1B subunit plays important roles in EHEC infection. This work aims to generate and characterize monoclonal antibodies (mAbs) against the Stx1B and to investigate their utility in discrimination ELISA. Methods and Results: Two newly identified mAbs (designated 2H8 and 1B10, respectively) against the Stx1B protein were prepared via hybridoma techniques. The immunoreactivity of both mAbs to the Stx1B protein was confirmed in ELISA and Western blot. Moreover, they differentiate EHEC from Salmonella enteritis, non‐Stx1‐producing E. coli, Mycobacterium tuberculosis, Listeria monocytogenes, Streptococcus agalactiae and Staphylococcus aureus. Conclusions: The anti‐STx1B mAbs are valuable diagnostic reagents for distinguishing EHEC from other bacteria. Significance and Impact of the Study: This is the first report regarding the usage of anti‐STx1B mAbs in discrimination ELISA. The established ELISA may have potential in clinical surveillance of EHEC infection.  相似文献   

15.

Background

Aggregates formed between leukocytes and platelets in the circulation lead to release of tissue factor (TF)–bearing microparticles contributing to a prothrombotic state. As enterohemorrhagic Escherichia coli (EHEC) may cause hemolytic uremic syndrome (HUS), in which microthrombi cause tissue damage, this study investigated whether the interaction between blood cells and EHEC virulence factors Shiga toxin (Stx) and lipopolysaccharide (LPS) led to release of TF.

Methodology/Principal Findings

The interaction between Stx or LPS and blood cells induced platelet-leukocyte aggregate formation and tissue factor (TF) release, as detected by flow cytometry in whole blood. O157LPS was more potent than other LPS serotypes. Aggregates formed mainly between monocytes and platelets and less so between neutrophils and platelets. Stimulated blood cells in complex expressed activation markers, and microparticles were released. Microparticles originated mainly from platelets and monocytes and expressed TF. TF–expressing microparticles, and functional TF in plasma, increased when blood cells were simultaneously exposed to the EHEC virulence factors and high shear stress. Stx and LPS in combination had a more pronounced effect on platelet-monocyte aggregate formation, and TF expression on these aggregates, than each virulence factor alone. Whole blood and plasma from HUS patients (n = 4) were analyzed. All patients had an increase in leukocyte-platelet aggregates, mainly between monocytes and platelets, on which TF was expressed during the acute phase of disease. Patients also exhibited an increase in microparticles, mainly originating from platelets and monocytes, bearing surface-bound TF, and functional TF was detected in their plasma. Blood cell aggregates, microparticles, and TF decreased upon recovery.

Conclusions/Significance

By triggering TF release in the circulation, Stx and LPS can induce a prothrombotic state contributing to the pathogenesis of HUS.  相似文献   

16.
Enterohemorrhagic Escherichia coli (EHEC) is a significant zoonotic pathogen causing severe disease associated with watery and bloody diarrhea, hemorrhagic colitis, and the hemolytic-uremic syndrome (HUS) in humans. Infections are frequently associated with contact with EHEC-contaminated ruminant feces. Both natural and experimental infection of cattle induces serum antibodies against the LEE-encoded proteins intimin, EspA, EspB, and Tir and the Shiga toxins Stx1 and Stx2, although the latter are poorly immunogenic in cattle. We determined whether antibodies and/or the kinetics of antibody responses against intimin, Tir, EspA, and/or EspB can be used for monitoring EHEC infections in beef cattle herds in order to reduce carcass contamination at slaughter. We examined the presence of serum antibodies against recombinant O157:H7 E. coli intimin EspA, EspB, and Tir during a cross-sectional study on 12 cattle farms and during a longitudinal time course study on two EHEC-positive cattle farms. We searched for a possible correlation between intimin, Tir, EspA, and/or EspB antibodies and fecal excretion of EHEC O157, O145, O111, O103, or O26 seropathotypes. The results indicated that serum antibody responses to EspB and EspA might be useful for first-line screening at the herd level for EHEC O157, O26, and most likely also for EHEC O103 infections. However, antibody responses against EspB are of less use for monitoring individual animals, since some EHEC-shedding animals did not show antibody responses and since serum antibody responses against EspB could persist for several months even when shedding had ceased.  相似文献   

17.
Pig edema disease is a bacterial disease caused by Shiga toxin 2e-producing Escherichia coli belonging mainly to serotypes O138, O139, and O141. The B subunit of Shiga toxin 2e (Stx2eB) is a candidate protein for use in a vaccine against edema disease. We produced this protein in transgenic lettuce (Lactuca sativa), an edible plant that can be cultivated in a factory setting. In a transient expression system, we found that NtADH 5′-untranslated region (5′-UTR) functions as a translational enhancer in lettuce cells, and that Stx2eB accumulates most efficiently in the endoplasmic reticulum (ER) of lettuce cells. Stx2eB was produced in stable transgenic lettuce plants expressing a modified Stx2eB gene fused with the NtADH 5′-UTR and sequence encoding ER localization signals.  相似文献   

18.
Shiga toxins Stx1 and Stx2 play a prominent role in the pathogenesis of Shiga toxin-producing Escherichia coli (STEC) infections. Several variants of the stx2 gene, encoding Stx2, have been described. In this study, we developed a PCR-restriction fragment length polymorphism system for typing stx2 genes of STEC strains. The typing system discriminates eight described variants and allows the identification of new stx2 variants and STEC isolates carrying multiple stx2 genes. A phylogenetic tree, based on the nucleotide sequences of the toxin-encoding genes, demonstrates that stx2 sequences with the same PvuII HaeIII HincII AccI type generally cluster together.  相似文献   

19.
We investigated whether eyedrop vaccination using modified outer membrane vesicles (mOMVs) is effective for protecting against hemolytic uremic syndrome (HUS) caused by enterohemorrhagic E. coli (EHEC) O157:H7 infection. Modified OMVs and waaJ-mOMVs were prepared from cultures of MsbB- and Shiga toxin A subunit (STxA)-deficient EHEC O157:H7 bacteria with or without an additional waaJ mutation. BALB/c mice were immunized by eyedrop mOMVs, waaJ-mOMVs, and mOMVs plus polymyxin B (PMB). Mice were boosted at 2 weeks, and challenged peritoneally with wild-type OMVs (wtOMVs) at 4 weeks. As parameters for evaluation of the OMV-mediated immune protection, serum and mucosal immunoglobulins, body weight change and blood urea nitrogen (BUN)/Creatinin (Cr) were tested, as well as histopathology of renal tissue. In order to confirm the safety of mOMVs for eyedrop use, body weight and ocular histopathological changes were monitored in mice. Modified OMVs having penta-acylated lipid A moiety did not contain STxA subunit proteins but retained non-toxic Shiga toxin B (STxB) subunit. Removal of the polymeric O-antigen of O157 LPS was confirmed in waaJ-mOMVs. The mice group vaccinated with mOMVs elicited greater humoral and mucosal immune responses than did the waaJ-mOMVs and PBS-treated groups. Eyedrop vaccination of mOMVs plus PMB reduced the level of humoral and mucosal immune responses, suggesting that intact O157 LPS antigen can be a critical component for enhancing the immunogenicity of the mOMVs. After challenge, mice vaccinated with mOMVs were protected from a lethal dose of wtOMVs administered intraperitoneally, conversely mice in the PBS control group were not. Collectively, for the first time, EHEC O157-derived mOMV eyedrop vaccine was experimentally evaluated as an efficient and safe means of vaccine development against EHEC O157:H7 infection-associated HUS.  相似文献   

20.
Verotoxin (VT) or shiga toxin (Stx) produced by enterohemorrhagic Escherichia coli (EHEC) and Shigella dysenteriae is AB5 holotoxin with potent protein synthesis inhibitor. VT can induce both apoptosis and necrosis depending on the cell type, it has been shown that VT-induced apoptosis and cytotoxicity are distinct processes, and the A subunit can be necessary for apoptosis. In other words, the precise role of each subunit in apoptosis signaling has yet to be established. In this study, induction of apoptosis has been examined by using both recombinant A and B subunits, and recombinant Stx (rStx) with different doses in HeLa and Vero cells. For this purpose, the polymyxin B extract of constructs expressing A, B and AB5 recombinant proteins was used. Therefore, amounts greater than normally reported were used to induce desire effects on cell lines. The apoptotic effect of A and B subunits appear at higher doses than that of rStx. The highest apoptotic effect was observed for rStx at low concentration, compared to A and B subunits. A or B subunits separately cannot induce the signaling pathway stimulated by holotoxin though A subunit, does induce laddering pattern similar to holotoxin. We concluded that both subunits are important in complete death signaling pathway. Since different concentration of A and B subunits and rStx was required in different assay, therefore, it could be emphasized that cell death or even apoptosis caused by either of the subunits or holotoxin depends on sensitivity or specificity of the assay and cell types used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号