首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphatidylinositol 4,5-bisphosphate (PIP2) has many essential functions and its homeostasis is highly regulated. We previously found that hypertonic stress increases PIP2 by selectively activating the β isoform of the type I phosphatidylinositol phosphate 5-kinase (PIP5Kβ) through Ser/Thr dephosphorylation and promoting its translocation to the plasma membrane. Here we report that hydrogen peroxide (H2O2) also induces PIP5Kβ Ser/Thr dephosphorylation, but it has the opposite effect on PIP2 homeostasis, PIP5Kβ function, and the actin cytoskeleton. Brief H2O2 treatments decrease cellular PIP2 in a PIP5Kβ-dependent manner. PIP5Kβ is tyrosine phosphorylated, dissociates from the plasma membrane, and has decreased lipid kinase activity. In contrast, the other two PIP5K isoforms are not inhibited by H2O2. We identified spleen tyrosine kinase (Syk), which is activated by oxidants, as a candidate PIP5Kβ kinase in this pathway, and mapped the oxidant-sensitive tyrosine phosphorylation site to residue 105. The PIP5KβY105E phosphomimetic is catalytically inactive and cytosolic, whereas the Y105F non-phosphorylatable mutant has higher intrinsic lipid kinase activity and is much more membrane associated than wild type PIP5Kβ. These results suggest that during oxidative stress, as modeled by H2O2 treatment, Syk-dependent tyrosine phosphorylation of PIP5Kβ is the dominant post-translational modification that is responsible for the decrease in cellular PIP2.Oxygen-derived free radicals are by-products of metabolic reactions in eukaryotic cells. Reactive oxygen species (ROS)4 act as endogenous signaling molecules (1). However, excessive ROS production leads to deleterious effects on cellular homeostasis by inducing DNA damage, lipid/protein oxidation, and ultimately apoptosis or necrosis. Acute and chronic oxidative stress have been implicated in the pathophysiology of shock and sepsis associated with traumatic injuries such as massive thermal burn (24), Alzheimer disease, diabetes mellitus, and atherosclerosis (57).Phosphatidylinositol 4,5-bisphosphate (PIP2) has emerged as an integral component of the stress response. This is concordant with its essential role in the regulation of the actin cytoskeleton, endocytosis, exocytosis, plasma membrane (PM) scaffolding, and ion channels/transporter (8). PIP2 is also essential for InsP3-mediated Ca2+ generation, protein kinase C activation, and PIP3 generation (9, 10). PIP2 synthesis is depressed in the heart sarcolemma during oxidative stress, suggesting that PIP2 depletion may contribute to cardiac dysfunctions (11). Recently, Divecha and colleagues (12) reported that prolonged (many hours) treatment of HeLa cells with hydrogen peroxide (H2O2) induces apoptosis by depleting PIP2. Apoptosis can be attenuated by overexpression of a type I phosphatidylinositol-4-phosphate 5-kinase (PIP5Kβ). We found using isoform-specific PIP5K knockdown by RNA interference (RNAi) that PIP5Kβ synthesizes a large fraction of the ambient PIP2 pool in HeLa cells (13). Hypertonicity is another type of stress that increases PIP2 and may be protective against cell injury (14, 15) by activating PIP5Kβ through Ser/Thr dephosphorylation (16). This effect is specific for PIP5Kβ, because depletion of the other two PIP5K isoforms (α and γ) individually does not substantially abrogate the hypertonicity induced PIP2 increase.In the present study, we used H2O2 to model oxidative stress in tissue culture cells, and examined the effect on PIP2 homeostasis and PIP5Kβ function. We found that a brief H2O2 treatment decreases cellular PIP2 and inactivates PIP5Kβ through tyrosine phosphorylation. We identified spleen tyrosine kinase (Syk) as a candidate kinase in this pathway. Syk is a member of the Syk/Zap-70 nonreceptor tyrosine kinase family that is abundant in hematopoietic cells (17) but is also found in nonhematopoietic lineages (18), including HeLa and COS cells (19, 20).  相似文献   

2.
3.
4.
Type II phosphatidylinositol 5-phosphate 4-kinase (PIPKIIα) catalyzes the synthesis of phosphatidylinositol-4,5-bisphosphate (PI-4,5-P2), an essential lipid second messenger that may be involved in the regulation of phototransduction, neuroprotection, and morphogenesis in the vertebrate retina. Here we report that in rodent and transgenic frogs, the light-mediated activity and membrane binding of PIPKIIα in rod outer segments (ROS) is dependent on tyrosine phosphorylation of ROS proteins. The greater type II α PIP kinase activity in the light-adapted ROS membrane results from light-driven translocation of PIPKIIα from the rod inner segment to ROS, and subsequent binding to the ROS membrane, thus improving access of the kinase to its lipid substrates. These results indicate a novel mechanism of light regulation of the PIPKIIα activity in photoreceptors, and suggest that the greater PIPKIIα activity in light-adapted animals and the resultant accumulation of PI-4,5-P2 within the ROS membrane may be important for the function of photoreceptor cells.  相似文献   

5.
6.
7.
8.
9.
10.
Translocation of the Helicobacter pylori (Hp) cytotoxin-associated gene A (CagA) effector protein via the cag-Type IV Secretion System (T4SS) into host cells is a major risk factor for severe gastric diseases, including gastric cancer. However, the mechanism of translocation and the requirements from the host cell for that event are not well understood. The T4SS consists of inner- and outer membrane-spanning Cag protein complexes and a surface-located pilus. Previously an arginine-glycine-aspartate (RGD)-dependent typical integrin/ligand type interaction of CagL with α5β1 integrin was reported to be essential for CagA translocation. Here we report a specific binding of the T4SS-pilus-associated components CagY and the effector protein CagA to the host cell β1 Integrin receptor. Surface plasmon resonance measurements revealed that CagA binding to α5β1 integrin is rather strong (dissociation constant, KD of 0.15 nM), in comparison to the reported RGD-dependent integrin/fibronectin interaction (KD of 15 nM). For CagA translocation the extracellular part of the β1 integrin subunit is necessary, but not its cytoplasmic domain, nor downstream signalling via integrin-linked kinase. A set of β1 integrin-specific monoclonal antibodies directed against various defined β1 integrin epitopes, such as the PSI, the I-like, the EGF or the β-tail domain, were unable to interfere with CagA translocation. However, a specific antibody (9EG7), which stabilises the open active conformation of β1 integrin heterodimers, efficiently blocked CagA translocation. Our data support a novel model in which the cag-T4SS exploits the β1 integrin receptor by an RGD-independent interaction that involves a conformational switch from the open (extended) to the closed (bent) conformation, to initiate effector protein translocation.  相似文献   

11.
A fundamental property of tumor cells is to defy anoikis, cell death caused by a lack of cell-matrix interaction, and grow in an anchorage-independent manner. How tumor cells organize signaling molecules at the plasma membrane to sustain oncogenic signals in the absence of cell-matrix interactions remains poorly understood. Here, we describe a role for phosphatidylinositol 4-phosphate 5-kinase (PIPK) Iγi2 in controlling anchorage-independent growth of tumor cells in coordination with the proto-oncogene Src. PIPKIγi2 regulated Src activation downstream of growth factor receptors and integrins. PIPKIγi2 directly interacted with the C-terminal tail of Src and regulated its subcellular localization in concert with talin, a cytoskeletal protein targeted to focal adhesions. Co-expression of PIPKIγi2 and Src synergistically induced the anchorage-independent growth of nonmalignant cells. This study uncovers a novel mechanism where a phosphoinositide-synthesizing enzyme, PIPKIγi2, functions with the proto-oncogene Src, to regulate oncogenic signaling.  相似文献   

12.
Phosphatidylinositol (PI) 4,5-bisphosphate (PIP2), generated by PI 4-phosphate 5-kinase (PIP5K), regulates many critical cellular events. PIP2 is also known to mediate plasma membrane localization of the Toll/IL-1 receptor domain-containing adaptor protein (TIRAP), required for the MyD88-dependent Toll-like receptor (TLR) 4 signaling pathway. Microglia are the primary immune competent cells in brain tissue, and TLR4 is important for microglial activation. However, a functional role for PIP5K and PIP2 in TLR4-dependent microglial activation remains unclear. Here, we knocked down PIP5Kα, a PIP5K isoform, in a BV2 microglial cell line using stable expression of lentiviral shRNA constructs or siRNA transfection. PIP5Kα knockdown significantly suppressed induction of inflammatory mediators, including IL-6, IL-1β, and nitric oxide, by lipopolysaccharide. PIP5Kα knockdown also attenuated signaling events downstream of TLR4 activation, including p38 MAPK and JNK phosphorylation, NF-κB p65 nuclear translocation, and IκB-α degradation. Complementation of the PIP5Kα knockdown cells with wild type but not kinase-dead PIP5Kα effectively restored the LPS-mediated inflammatory response. We found that PIP5Kα and TIRAP colocalized at the cell surface and interacted with each other, whereas kinase-dead PIP5Kα rendered TIRAP soluble. Furthermore, in LPS-stimulated control cells, plasma membrane PIP2 increased and subsequently declined, and TIRAP underwent bi-directional translocation between the membrane and cytosol, which temporally correlated with the changes in PIP2. In contrast, PIP5Kα knockdown that reduced PIP2 levels disrupted TIRAP membrane targeting by LPS. Together, our results suggest that PIP5Kα promotes TLR4-associated microglial inflammation by mediating PIP2-dependent recruitment of TIRAP to the plasma membrane.  相似文献   

13.
14.
15.
Romanenko  A. V.  Gnatenko  V. M.  Grusha  M. M. 《Neurophysiology》2000,32(5):305-311
We studied the influence of the vitamin B6 form most extensively distributed in the organism, pyridoxal 5-phosphate (PyrP), on neuromuscular transmission in the smooth muscle of the circular layer of the guinea pig distal colon and of the ileum and an initial segment of the jejunum of humans. Application of 10-10 to 10-3 M PyrP reversibly and in a dose-dependent manner decreased the amplitude of non-cholinergic non-adrenergic inhibitory synaptic potentials (ISP) and increased their duration. Under the influence of 10-8 to 10-4 M PyrP, both the amplitude and duration of ATP- and noradrenaline-induced hyperpolarizations increased. Application of 10-4 M PyrP completely suppressed the sensitivity of smooth muscle cells to noradrenaline, but a hyperpolarizing effect of exogenous ATP was preserved. The PyrP-induced amplitude decrease and prolongation of ISP were preserved in the presence of 10-4 M hexonium (a ganglioblocker), 5 · 10-7 M apamin (a blocker of Ca2+-dependent K+ channels of small conductance), 10-5 M verapamil (a blocker of L-type Ca2+ channels), and 10-4 M N-nitro-L-arginine (a blocker of NO-synthase). It seems probable that a decrease in the ISP amplitude is related to a presynaptic PyrP effect. Under conditions of PyrP-induced suppression of non-cholinergic non-adrenergic inhibition, non-cholinergic short-latency excitatory synaptic potentials could be recorded in smooth muscle. Thus, PyrP is an effective modulator of synaptic transmission in smooth muscle of the gastrointestinal tract of mammals.  相似文献   

16.
PI3Kγ, a G-protein-coupled type 1B phosphoinositol 3-kinase, exhibits a basal glucose-independent activity in β-cells and can be activated by the glucose-dependent insulinotropic polypeptide (GIP). We therefore investigated the role of the PI3Kγ catalytic subunit (p110γ) in insulin secretion and β-cell exocytosis stimulated by GIP. We inhibited p110γ with AS604850 (1 μmol/liter) or knocked it down using an shRNA adenovirus or siRNA duplex in mouse and human islets and β-cells. Inhibition of PI3Kγ blunted the exocytotic and insulinotropic response to GIP receptor activation, whereas responses to the glucagon-like peptide-1 or the glucagon-like peptide-1 receptor agonist exendin-4 were unchanged. Downstream, we find that GIP, much like glucose stimulation, activates the small GTPase protein Rac1 to induce actin remodeling. Inhibition of PI3Kγ blocked these effects of GIP. Although exendin-4 could also stimulate actin remodeling, this was not prevented by p110γ inhibition. Finally, forced actin depolymerization with latrunculin B restored the exocytotic and secretory responses to GIP during PI3Kγ inhibition, demonstrating that the loss of GIP-induced actin depolymerization was indeed limiting insulin exocytosis.  相似文献   

17.
18.
The Hermansky-Pudlak syndrome is a disorder affecting endosome sorting. Disease is triggered by defects in any of 15 mouse gene products, which are part of five distinct cytosolic molecular complexes: AP-3, homotypic fusion and vacuole protein sorting, and BLOC-1, -2, and -3. To identify molecular associations of these complexes, we used in vivo cross-linking followed by purification of cross-linked AP-3 complexes and mass spectrometric identification of associated proteins. AP-3 was co-isolated with BLOC-1, BLOC-2, and homotypic fusion and vacuole protein sorting complex subunits; clathrin; and phosphatidylinositol-4-kinase type II α (PI4KIIα). We previously reported that this membrane-anchored enzyme is a regulator of AP-3 recruitment to membranes and a cargo of AP-3 (Craige, B., Salazar, G., and Faundez, V. (2008) Mol. Biol. Cell 19,1415 -1426). Using cells deficient in different Hermansky-Pudlak syndrome complexes, we identified that BLOC-1, but not BLOC-2 or BLOC-3, deficiencies affect PI4KIIα inclusion into AP-3 complexes. BLOC-1, PI4KIIα, and AP-3 belong to a tripartite complex, and down-regulation of either PI4KIIα, BLOC-1, or AP-3 complexes led to similar LAMP1 phenotypes. Our analysis indicates that BLOC-1 complex modulates the association of PI4KIIα with AP-3. These results suggest that AP-3 and BLOC-1 act, either in concert or sequentially, to specify sorting of PI4KIIα along the endocytic route.Membranous organelles along the exocytic and endocytic pathways are each defined by unique lipid and protein composition. Vesicle carriers communicate and maintain the composition of these organelles (2). Consequently defining the machineries that specify vesicle formation, composition, and delivery are central to understanding membrane protein traffic. Generally vesicle biogenesis uses multiprotein cytosolic machineries to select membrane components for inclusion in nascent vesicles (2, 3). Heterotetrameric adaptor complexes (AP-1 to AP-4) are critical to generate vesicles of specific composition from the different organelles constituting the exocytic and endocytic routes (2-4).The best understood vesicle formation machinery in mammalian cells is the one organized around the adaptor complex AP-2 (5). This complex generates vesicles from the plasma membrane using clathrin. Our present detailed understanding of AP-2 vesicle biogenesis mechanisms and interactions emerged from a combination of organellar and in vitro binding proteomics analyses together with the study of binary interactions in cell-free systems (5-9). In contrast, the vesicle biogenesis pathways controlled by AP-3 are far less understood. AP-3 functions to produce vesicles that traffic selected membrane proteins from endosomes to lysosomes, lysosome-related organelles, or synaptic vesicles (10-13). AP-3 is one of the protein complexes affected in the Hermansky-Pudlak syndrome (HPS;3 Online Mendelian Inheritance in Man (OMIM) 203300). So far, mutations in any of 15 mouse or eight human genes trigger a common syndrome. This syndrome encompasses defects that include pigment dilution, platelet dysfunction, pulmonary fibrosis, and occasionally neurological phenotypes (14, 15). All forms of HPS show defective vesicular biogenesis or trafficking that affects lysosomes, lysosome-related organelles (for example melanosomes and platelet dense granules), and, in some of them, synaptic vesicles (11-13). Most of the 15 HPS loci encode polypeptides that assemble into five distinct molecular complexes: the adaptor complex AP-3, HOPS, and the BLOC complexes 1, 2, and 3 (14). Recently binary interactions between AP-3 and BLOC-1 or BLOC-1 and BLOC-2 suggested that arrangements of these complexes could regulate membrane protein targeting (16). Despite the abundance of genetic deficiencies leading to HPS and genetic evidence that HPS complexes may act on the same pathway in defined cell types (17), we have only a partial picture of protein interactions organizing these complexes and how they might control membrane protein targeting.In this study, we took advantage of cell-permeant and reversible cross-linking of HPS complexes followed by their immunoaffinity purification to identify novel molecular interactions. Cross-linked AP-3 co-purified with BLOC-1, BLOC-2, HOPS, clathrin, and the membrane protein PI4KIIα. We previously identified PI4KIIα as a cargo and regulator of AP-3 recruitment to endosomes (1, 18). Using mutant cells deficient in either individual HPS complexes or a combination of them, we found that BLOC-1 facilitates the interaction of AP-3 and PI4KIIα. Our studies demonstrate that subunits of four of the five HPS complexes co-isolate with AP-3. Moreover BLOC-1, PI4KIIα, and AP-3 form a tripartite complex as demonstrated by sequential co-immunoprecipitations as well as by similar LAMP1 distribution phenotypes induced by down-regulation of components of this tripartite complex. Our findings indicate that BLOC-1 complex modulates the recognition of PI4KIIα by AP-3. These data suggest that AP-3, either in concert or sequentially with BLOC-1, participates in the sorting of common membrane proteins along the endocytic route.  相似文献   

19.
Biosynthesis of di-myo-inositol-1,1′-phosphate (DIP) is proposed to occur with myo-inositol and myo-inositol 1-phosphate (I-1-P) used as precursors. Activation of the I-1-P with CTP and condensation of the resultant CDP-inositol (CDP-I) with myo-inositol then generates DIP. The sole known biosynthetic pathway of inositol in all organisms is the conversion of d-glucose-6-phosphate to myo-inositol. This conversion requires two key enzymes: l-I-1-P synthase and I-1-P phosphatase. Enzymatic assays using 31P nuclear magnetic resonance spectroscopy as well as a colorimetric assay for inorganic phosphate have confirmed the occurrence of l-I-1-P synthase and a moderately specific I-1-P phosphatase. The enzymatic reaction that couples CDP-I with myo-inositol to generate DIP has also been detected in Methanococcus igneus. 13C labeling studies with [2,3-13C]pyruvate and [3-13C]pyruvate were used to examine this pathway in M. igneus. Label distribution in DIP was consistent with inositol units formed from glucose-6-phosphate, but the label in the glucose moiety was scrambled via transketolase and transaldolase activities of the pentose phosphate pathway.Di-myo-inositol-1,1′-phosphate (DIP) is an unusual inositol derivative that has been identified as a major solute in hyperthermophilic archaea including Pyrococcus woesei (22), Pyrococcus furiosus (16), Methanococcus igneus (5), and several eubacteria of the order Thermotogales (15). Intracellular DIP increases with increasing extracellular concentrations of NaCl in both M. igneus (5) and P. furiosus (16). DIP also increases dramatically at supraoptimal growth temperatures (>80°C for M. igneus and 98 to 101°C for P. furiosus). The unusual intracellular high concentration of K+ ions and the extreme optimal growth temperatures (100 to 104°C) of P. woesei (30) suggested the role of DIP as a main counterion of K+ with a possible thermostabilizing action. Scholz et al. (22) demonstrated that among several salts, the potassium salt of DIP provided optimum enzyme stabilization when the activity of glyceraldehyde-3-phosphate dehydrogenase of P. woesei was tested at 105°C under anaerobic conditions.Since de novo synthesis of DIP occurs in response to external levels of NaCl and temperature, there must be regulatory biosynthetic mechanisms linked to osmotic pressure and temperature. To study the regulation, the enzymes and/or other proteins responsible for synthesis of this compatible solute must be isolated. This requires knowledge of the biosynthetic pathways involved in the synthesis of DIP. The sole known pathway for inositol biosynthesis in all other organisms is the conversion of d-glucose-6-phosphate to l-myo-inositol 1-phosphate (l-I-1-P) via l-myo-inositol 1-monophosphate (I-1-P) synthase and hydrolysis of I-1-P to myo-inositol via a specific phosphatase, I-1-P phosphatase (13, 14). Similar enzymes are likely to exist in methanogens. A logical pathway for the biosynthesis of DIP would then use myo-inositol and I-1-P as precursors. Activation of the I-1-P with CTP and condensation of the resultant CDP-inositol (CDP-I) with myo-inositol would generate DIP. As summarized in Fig. Fig.1,1, DIP biosynthesis requires four key enzymes: I-1-P synthase (step 1), I-1-P phosphatase (step 2), CTP:I-1-P cytidylyltransferase (step 3), and DIP synthase (step 4). The enzymes that catalyze steps 1 and 2 have been well studied in plants, yeasts, and mammalian tissues. However, the enzymes invoked for steps 3 and 4 are novel activities, although based on similar chemical transformations in cells. Open in a separate windowFIG. 1Proposed biosynthetic pathway for DIP showing the four key enzymatic activities. Based on similar transformations in other organisms, cofactors are indicated for several of the steps.This work describes the use of 31P nuclear magnetic resonance (NMR) and colorimetric assays to verify the existence of three of these activities in cell extracts of M. igneus. Specific labeling of DIP with [13C]pyruvate was also used to probe the DIP biosynthetic pathway. The pattern of 13C label incorporation from [3-13C]pyruvate and [2,3-13C]pyruvate coupled with the known stereochemistry of DIP provided evidence that M. igneus also has enzymes of the pentose phosphate pathway (transaldolase and transketolase) that scramble label in glucose-6-phosphate.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号