首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mycobacterial membrane protein large 3 (MmpL3) transporter is essential and required for shuttling the lipid trehalose monomycolate (TMM), a precursor of mycolic acid (MA)-containing trehalose dimycolate (TDM) and mycolyl arabinogalactan peptidoglycan (mAGP), in Mycobacterium species, including Mycobacterium tuberculosis and Mycobacterium smegmatis. However, the mechanism that MmpL3 uses to facilitate the transport of fatty acids and lipidic elements to the mycobacterial cell wall remains elusive. Here, we report 7 structures of the M. smegmatis MmpL3 transporter in its unbound state and in complex with trehalose 6-decanoate (T6D) or TMM using single-particle cryo-electron microscopy (cryo-EM) and X-ray crystallography. Combined with calculated results from molecular dynamics (MD) and target MD simulations, we reveal a lipid transport mechanism that involves a coupled movement of the periplasmic domain and transmembrane helices of the MmpL3 transporter that facilitates the shuttling of lipids to the mycobacterial cell wall.

Mycobacterial membrane protein Large 3 (MmpL3) is a transporter required for shuttling trehalose monomycolate. Structures of M. smegmatis MmpL3 with and without substrate reveal the mechanism by which MmpL3 transports this essential precursor of lipids for the mycobacterial cell wall.  相似文献   

2.
Mycobacterium tuberculosis employs various strategies to modulate host immune responses to facilitate its persistence in macrophages. The M. tuberculosis cell wall contains numerous glycoproteins with unknown roles in pathogenesis. Here, by using Concanavalin A and LC-MS analysis, we identified a novel mannosylated glycoprotein phosphoribosyltransferase, encoded by Rv3242c from M. tuberculosis cell walls. Homology modeling, bioinformatic analyses, and an assay of phosphoribosyltransferase activity in Mycobacterium smegmatis expressing recombinant Rv3242c (MsmRv3242c) confirmed the mass spectrometry data. Using Mycobacterium marinum-zebrafish and the surrogate MsmRv3242c infection models, we proved that phosphoribosyltransferase is involved in mycobacterial virulence. Histological and infection assays showed that the M. marinum mimG mutant, an Rv3242c orthologue in a pathogenic M. marinum strain, was strongly attenuated in adult zebrafish and also survived less in macrophages. In contrast, infection with wild type and the complemented ΔmimG:Rv3242c M. marinum strains showed prominent pathological features, such as severe emaciation, skin lesions, hemorrhaging, and more zebrafish death. Similarly, recombinant MsmRv3242c bacteria showed increased invasion in non-phagocytic epithelial cells and longer intracellular survival in macrophages as compared with wild type and vector control M. smegmatis strains. Further mechanistic studies revealed that the Rv3242c- and mimG-mediated enhancement of intramacrophagic survival was due to inhibition of autophagy, reactive oxygen species, and reduced activities of superoxide dismutase and catalase enzymes. Infection with MsmRv3242c also activated the MAPK pathway, NF-κB, and inflammatory cytokines. In summary, we show that a novel mycobacterial mannosylated phosphoribosyltransferase acts as a virulence and immunomodulatory factor, suggesting that it may constitute a novel target for antimycobacterial drugs.  相似文献   

3.
Mycobacterium tuberculosis (Mtb) has evolved protective and detoxification mechanisms to maintain cytoplasmic redox balance in response to exogenous oxidative stress encountered inside host phagocytes. In contrast, little is known about the dynamic response of this pathogen to endogenous oxidative stress generated within Mtb. Using a noninvasive and specific biosensor of cytoplasmic redox state of Mtb, we for first time discovered a surprisingly high sensitivity of this pathogen to perturbation in redox homeostasis induced by elevated endogenous reactive oxygen species (ROS). We synthesized a series of hydroquinone-based small molecule ROS generators and found that ATD-3169 permeated mycobacteria to reliably enhance endogenous ROS including superoxide radicals. When Mtb strains including multidrug-resistant (MDR) and extensively drug-resistant (XDR) patient isolates were exposed to this compound, a dose-dependent, long-lasting, and irreversible oxidative shift in intramycobacterial redox potential was detected. Dynamic redox potential measurements revealed that Mtb had diminished capacity to restore cytoplasmic redox balance in comparison with Mycobacterium smegmatis (Msm), a fast growing nonpathogenic mycobacterial species. Accordingly, Mtb strains were extremely susceptible to inhibition by ATD-3169 but not Msm, suggesting a functional linkage between dynamic redox changes and survival. Microarray analysis showed major realignment of pathways involved in redox homeostasis, central metabolism, DNA repair, and cell wall lipid biosynthesis in response to ATD-3169, all consistent with enhanced endogenous ROS contributing to lethality induced by this compound. This work provides empirical evidence that the cytoplasmic redox poise of Mtb is uniquely sensitive to manipulation in steady-state endogenous ROS levels, thus revealing the importance of targeting intramycobacterial redox metabolism for controlling TB infection.  相似文献   

4.
Cell membranes are complex multicomponent systems, which are highly heterogeneous in the lipid distribution and composition. To date, most molecular simulations have focussed on relatively simple lipid compositions, helping to inform our understanding of in vitro experimental studies. Here we describe on simulations of complex asymmetric plasma membrane model, which contains seven different lipids species including the glycolipid GM3 in the outer leaflet and the anionic lipid, phosphatidylinositol 4,5-bisphophate (PIP2), in the inner leaflet. Plasma membrane models consisting of 1500 lipids and resembling the in vivo composition were constructed and simulations were run for 5 µs. In these simulations the most striking feature was the formation of nano-clusters of GM3 within the outer leaflet. In simulations of protein interactions within a plasma membrane model, GM3, PIP2, and cholesterol all formed favorable interactions with the model α-helical protein. A larger scale simulation of a model plasma membrane containing 6000 lipid molecules revealed correlations between curvature of the bilayer surface and clustering of lipid molecules. In particular, the concave (when viewed from the extracellular side) regions of the bilayer surface were locally enriched in GM3. In summary, these simulations explore the nanoscale dynamics of model bilayers which mimic the in vivo lipid composition of mammalian plasma membranes, revealing emergent nanoscale membrane organization which may be coupled both to fluctuations in local membrane geometry and to interactions with proteins.  相似文献   

5.
Tuberculosis (TB) is a difficult to treat disease caused by the bacterium Mycobacterium tuberculosis. The need for improved therapies is required to kill different M. tuberculosis populations present during infection and to kill drug resistant strains. Protein complexes associated with energy generation, required for the survival of all M. tuberculosis populations, have shown promise as targets for novel therapies (e.g., phenothiazines that target type II NADH dehydrogenase (NDH-2) in the electron transport chain). However, the low efficacy of these compounds and their off-target effects has made the development of phenothiazines as a therapeutic agent for TB limited. This study reports that a series of alkyltriphenylphosphonium (alkylTPP) cations, a known intracellular delivery functionality, improves the localization and effective concentration of phenothiazines at the mycobacterial membrane. AlkylTPP cations were shown to accumulate at biological membranes in a range of bacteria and lipophilicity was revealed as an important feature of the structure–function relationship. Incorporation of the alkylTPP cationic function significantly increased the concentration and potency of a series of phenothiazine derivatives at the mycobacterial membrane (the site of NDH-2), where the lead compound 3a showed inhibition of M. tuberculosis growth at 0.5 μg/mL. Compound 3a was shown to act in a similar manner to that previously published for other active phenothiazines by targeting energetic processes (i.e., NADH oxidation and oxygen consumption), occurring in the mycobacterial membrane. This shows the enormous potential of alkylTPP cations to improve the delivery and therefore efficacy of bioactive agents targeting oxidative phosphorylation in the mycobacterial membrane.  相似文献   

6.
《Biophysical journal》2019,116(9):1701-1718
KirBac1.1 is a prokaryotic inward-rectifier K+ channel from Burkholderia pseudomallei. It shares the common inward-rectifier K+ channel fold with eukaryotic channels, including conserved lipid-binding pockets. Here, we show that KirBac1.1 changes the phase properties and dynamics of the surrounding bilayer. KirBac1.1 was reconstituted into vesicles composed of 13C-enriched biological lipids. Two-dimensional liquid-state and solid-state NMR experiments were used to assign lipid 1H and 13C chemical shifts as a function of lipid identity and conformational degrees of freedom. A solid-state NMR temperature series reveals that KirBac1.1 lowers the primary thermotropic phase transition of Escherichia coli lipid membranes while introducing both fluidity and internal lipid order into the fluid phases. In B. thailandensis liposomes, the bacteriohopanetetrol hopanoid, and potentially ornithine lipids, introduce a similar primary lipid-phase transition and liquid-ordered properties. Adding KirBac1.1 to B. thailandensis lipids increases B. thailandensis lipid fluidity while preserving internal lipid order. This synergistic effect of KirBac1.1 in bacteriohopanetetrol-rich membranes has implications for bilayer dynamic structure. If membrane proteins can anneal lipid translational degrees of freedom while preserving internal order, it could offer an explanation to the nature of liquid-ordered protein-lipid organization in vivo.  相似文献   

7.
Membrane proteins and polycyclic lipids like cholesterol and hopanoids coordinate phospholipid bilayer ordering. This phenomenon manifests as partitioning of the liquid crystalline phase into liquid-ordered (Lo) and liquid-disordered (Ld) regions. In Eukaryotes, microdomains are rich in cholesterol and sphingolipids and serve as signal transduction scaffolds. In Prokaryotes, Lo microdomains increase pathogenicity and antimicrobial resistance. Previously, we identified spectroscopically distinct chemical shift signatures for all-trans (AT) and trans-gauche (TG) acyl chain conformations, cyclopropyl ring lipids (CPR), and hopanoids in prokaryotic lipid extracts and used Polarization Transfer (PT) SSNMR to investigate bilayer ordering. To investigate how these findings relate to native bilayer organization, we interrogate whole cell and whole membrane extract samples of Burkholderia thailendensis to investigate bilayer ordering in situ. In 13C-13C 2D SSNMR spectra, we assigned chemical shifts for lipid species in both samples, showing conservation of lipids of interest in our native membrane sample. A one-dimensional temperature series of PT SSNMR and transverse relaxation measurements of AT versus TG acyl conformations in the membrane sample confirm bilayer ordering and a broadened phase transition centered at a lower-than-expected temperature. Bulk protein backbone Cα dynamics and correlations consistent with lipid-protein contacts within are further indicative of microdomain formation and lipid ordering. In aggregate, these findings provide evidence for microdomain formation in vivo and provide insight into phase separation and transition mechanics in biological membranes.  相似文献   

8.
The lateral organization of lipids and proteins in cell membranes is recognized as an important factor in several cellular processes. Cholesterol is thought to function as a modulator of the lateral segregation of lipids into cholesterol-poor and cholesterol-rich domains. We investigated how the affinity of cholesterol for different phospholipids, as seen in cholesterol partitioning between methyl-β-cyclodextrin and large unilamellar vesicles, was reflected in the lateral organization of lipids in complex bilayers. We especially wanted to determine how the low-Tm lipid affected the lateral structure. Partition experiments showed that cholesterol had a higher affinity for N-oleoyl-sphingomyelin (OSM) than for palmitoyl-oleoyl-phosphatidylcholine (POPC) bilayers, but the highest preference was for N-palmitoyl-sphingomyelin (PSM)-containing bilayers. Partial phase diagrams of POPC/PSM/cholesterol and OSM/PSM/cholesterol bilayers at 23°C and 37°C were used to gain insight into the lateral organization of lipids in bilayers. Analysis of phase diagrams revealed that the phospholipid composition of cholesterol-poor and cholesterol-rich domains reflected the affinity that cholesterol exhibited toward bilayers composed of different lipids. Therefore, the determined affinity of cholesterol for different phospholipid bilayers was useful in predicting the cholesterol-induced lateral segregation of lipids in complex bilayers.  相似文献   

9.
Tuberculosis (TB) is characterized by a tight interplay between Mycobacterium tuberculosis and host cells within granulomas. These cellular aggregates restrict bacterial spreading, but do not kill all the bacilli, which can persist for years. In-depth investigation of M. tuberculosis interactions with granuloma-specific cell populations are needed to gain insight into mycobacterial persistence, and to better understand the physiopathology of the disease. We have analyzed the formation of foamy macrophages (FMs), a granuloma-specific cell population characterized by its high lipid content, and studied their interaction with the tubercle bacillus. Within our in vitro human granuloma model, M. tuberculosis long chain fatty acids, namely oxygenated mycolic acids (MA), triggered the differentiation of human monocyte-derived macrophages into FMs. In these cells, mycobacteria no longer replicated and switched to a dormant non-replicative state. Electron microscopy observation of M. tuberculosis–infected FMs showed that the mycobacteria-containing phagosomes migrate towards host cell lipid bodies (LB), a process which culminates with the engulfment of the bacillus into the lipid droplets and with the accumulation of lipids within the microbe. Altogether, our results suggest that oxygenated mycolic acids from M. tuberculosis play a crucial role in the differentiation of macrophages into FMs. These cells might constitute a reservoir used by the tubercle bacillus for long-term persistence within its human host, and could provide a relevant model for the screening of new antimicrobials against non-replicating persistent mycobacteria.  相似文献   

10.
11.
Phosphoinositides like phosphatidylinositol 4,5-bisphosphate (PIP2) are negatively charged lipids that play a pivotal role in membrane trafficking, signal transduction, and protein anchoring. We have designed a force field for the PIP2 headgroup using quantum mechanical methods and characterized its properties inside a lipid bilayer using molecular dynamics simulations. Macroscopic properties such as area/headgroup, density profiles, and lipid order parameters calculated from these simulations agree well with the experimental values. However, microscopically, the PIP2 introduces a local perturbation of the lipid bilayer. The average PIP2 headgroup orientation of 45° relative to the bilayer normal induces a unique, distance-dependent organization of the lipids that surround PIP2. The headgroups of these lipids preferentially orient closer to the bilayer normal. This perturbation creates a PIP2 lipid microdomain with the neighboring lipids. We propose that the PIP2 lipid microdomain enables the PIP2 to function as a membrane-bound anchoring molecule.  相似文献   

12.
The present study was conducted to see the role of NF-κB in virulent (Mycobacterium tuberculosis H37Rv) and avirulent (M. tuberculosis H37Ra) mycobacterial infection in THP-1 cells. To inactivate NF-κB, pCMV-IκBαM dn containing THP-1 cell line was generated which showed marked increase in apoptosis with M. tuberculosis H37Rv and M. tuberculosis H37Ra. Infected THP-1-IκBαM dn cells showed decrease in mitochondrial membrane potential, cytochrome c release, activation of caspase-3 and enhanced TNF-α production. Increase in apoptosis of infected THP-1-IκBαM dn cells resulted in inhibition of intracellular mycobacterial growth. Differential NF-κB activation potential was observed with M. tuberculosis H37Rv and M. tuberculosis H37Ra. Both the strains activated NF-κB after 4 h in THP-1 cells however after 48 h only M. tuberculosis H37Rv activated NF-κB which lead to up-regulation of bcl-2 family anti-apoptotic member, bfl-1/A1. Our results indicated that NF-κB activation may be a determinant factor for the success of virulent mycobacteria within macrophages.  相似文献   

13.
14.
With the high number of patients infected by tuberculosis and the sharp increase of drug-resistant tuberculosis cases, developing new drugs to fight this disease has become increasingly urgent. In this context, analogs of the naturally occurring enolphosphates Cyclipostins and Cyclophostin (CyC analogs) offer new therapeutic opportunities. The CyC analogs display potent activity both in vitro and in infected macrophages against several pathogenic mycobacteria including Mycobacterium tuberculosis and Mycobacterium abscessus. Interestingly, these CyC inhibitors target several enzymes with active-site serine or cysteine residues that play key roles in mycobacterial lipid and cell wall metabolism. Among them, TesA, a putative thioesterase involved in the synthesis of phthiocerol dimycocerosates (PDIMs) and phenolic glycolipids (PGLs), has been identified. These two lipids (PDIM and PGL) are non-covalently bound to the outer cell wall in several human pathogenic mycobacteria and are important virulence factors. Herein, we used biochemical and structural approaches to validate TesA as an effective pharmacological target of the CyC analogs. We confirmed both thioesterase and esterase activities of TesA, and showed that the most active inhibitor CyC17 binds covalently to the catalytic Ser104 residue leading to a total loss of enzyme activity. These data were supported by the X-ray structure, obtained at a 2.6-Å resolution, of a complex in which CyC17 is bound to TesA. Our study provides evidence that CyC17 inhibits the activity of TesA, thus paving the way to a new strategy for impairing the PDIM and PGL biosynthesis, potentially decreasing the virulence of associated mycobacterial species.  相似文献   

15.
Lipopolysaccharide (LPS) is an essential component of the outer membranes (OM) of most Gram-negative bacteria, which plays a crucial role in protection of the bacteria from toxic compounds and harsh conditions. The LPS is biosynthesized at the cytoplasmic side of inner membrane (IM), and then transported across the aqueous periplasmic compartment and assembled correctly at the outer membrane. This process is accomplished by seven LPS transport proteins (LptA-G), but the transport mechanism remains poorly understood. Here, we present findings by pull down assays in which the periplasmic component LptA interacts with both the IM complex LptBFGC and the OM complex LptDE in vitro, but not with complex LptBFG. Using purified Lpt proteins, we have successfully reconstituted the seven transport proteins as a complex in vitro. In addition, the LptC may play an essential role in regulating the conformation of LptBFG to secure the lipopolysaccharide from the inner membrane. Our results contribute to the understanding of lipopolysaccharide transport mechanism and will provide a platform to study the detailed mechanism of the LPS transport in vitro.  相似文献   

16.
Biogenesis of the outer membrane (OM) in Gram‐negative bacteria, which is essential for viability, requires the coordinated transport and assembly of proteins and lipids, including lipopolysaccharides (LPS) and phospholipids (PLs), into the membrane. While pathways for LPS and OM protein assembly are well‐studied, how PLs are transported to and from the OM is not clear. Mechanisms that ensure OM stability and homeostasis are also unknown. The trans‐envelope Tol‐Pal complex, whose physiological role has remained elusive, is important for OM stability. Here, we establish that the Tol‐Pal complex is required for PL transport and OM lipid homeostasis in Escherichia coli. Cells lacking the complex exhibit defects in lipid asymmetry and accumulate excess PLs in the OM. This imbalance in OM lipids is due to defective retrograde PL transport in the absence of a functional Tol‐Pal complex. Thus, cells ensure the assembly of a stable OM by maintaining an excess flux of PLs to the OM only to return the surplus to the inner membrane. Our findings also provide insights into the mechanism by which the Tol‐Pal complex may promote OM invagination during cell division.  相似文献   

17.
The outer membrane (OM) of Gram-negative bacteria is an evolving antibiotic barrier composed of a glycerophospholipid (GP) inner leaflet and a lipopolysaccharide (LPS) outer leaflet. The two-component regulatory system CrrAB has only recently been reported to confer high-level polymyxin resistance and virulence in Klebsiella pneumoniae. Mutations in crrB have been shown to lead to the modification of the lipid A moiety of LPS through CrrAB activation. However, functions of CrrAB activation in the regulation of other lipids are unclear. Work here demonstrates that CrrAB activation not only stimulates LPS modification but also regulates synthesis of acyl-glycerophosphoglycerols (acyl-PGs), a lipid species with undefined functions and biosynthesis. Among all possible modulators of acyl-PG identified from proteomic data, we found expression of lipid A palmitoyltransferase (PagP) was significantly upregulated in the crrB mutant. Furthermore, comparative lipidomics showed that most of the increasing acyl-PG activated by CrrAB was decreased after pagP knockout with CRISPR-Cas9. These results suggest that PagP also transfers a palmitate chain from GPs to PGs, generating acyl-PGs. Further investigation revealed that PagP mainly regulates the GP contents within the OM, leading to an increased ratio of acyl-PG to PG species and improving OM hydrophobicity, which may contribute to resistance against certain cationic antimicrobial peptides resistance upon LPS modification. Taken together, this work suggests that CrrAB regulates the palmitoylation of PGs and lipid A within the OM through upregulated PagP, which functions together to form an outer membrane barrier critical for bacterial survival.  相似文献   

18.
Mycobacteria are shaped by a thick envelope made of an array of uniquely structured lipids and polysaccharides. However, the spatial organization of these molecules remains unclear. Here, we show that exposure to an esterase from Mycobacterium smegmatis (Msmeg_1529), hydrolyzing the ester linkage of trehalose dimycolate in vitro, triggers rapid and efficient lysis of Mycobacterium tuberculosis, Mycobacterium bovis BCG, and Mycobacterium marinum. Exposure to the esterase immediately releases free mycolic acids, while concomitantly depleting trehalose mycolates. Moreover, lysis could be competitively inhibited by an excess of purified trehalose dimycolate and was abolished by a S124A mutation affecting the catalytic activity of the esterase. These findings are consistent with an indispensable structural role of trehalose mycolates in the architectural design of the exposed surface of the mycobacterial envelope. Importantly, we also demonstrate that the esterase-mediated rapid lysis of M. tuberculosis significantly improves its detection in paucibacillary samples.  相似文献   

19.
Electron transfer between the water-soluble cytochrome c and the integral membrane protein cytochrome c oxidase (COX) is the terminal reaction in the respiratory chain. The first step in this reaction is the diffusional association of cytochrome c toward COX, and it is still not completely clear whether cytochrome c diffuses in the bulk solution while encountering COX, or whether it prefers to diffuse laterally on the membrane surface. This is a rather crucial question, since in the latter case the association would be strongly dependent on the lipid composition and the presence of additional membrane proteins. We applied Brownian dynamics simulations to investigate the effect of an atomistically modeled dipalmitoyl phosphatidylcholine membrane on the association behavior of cytochrome c toward COX from Paracoccus denitrificans. We studied the negatively charged, physiological electron-transfer partner of COX, cytochrome c552, and the positively charged horse-heart cytochrome c. As expected, both cytochrome c species prefer diffusion in bulk solution while associating toward COX embedded in a membrane, where the partial charges of the lipids were switched off, and the corresponding optimal association pathways largely overlap with the association toward fully solvated COX. Remarkably, after switching on the lipid partial charges, both cytochrome c species were strongly attracted by the inhomogeneous charge distribution caused by the zwitterionic lipid headgroups. This effect is particularly enhanced for horse-heart cytochrome c and is stronger at lower ionic strength. We therefore conclude that in the presence of a polar or even a charged membrane, cytochrome c diffuses laterally rather than in three dimensions.  相似文献   

20.
Copper resistance mechanisms are crucial for many pathogenic bacteria, including Mycobacterium tuberculosis, during infection because the innate immune system utilizes copper ions to kill bacterial intruders. Despite several studies detailing responses of mycobacteria to copper, the pathways by which copper ions cross the mycobacterial cell envelope are unknown. Deletion of porin genes in Mycobacterium smegmatis leads to a severe growth defect on trace copper medium but simultaneously increases tolerance for copper at elevated concentrations, indicating that porins mediate copper uptake across the outer membrane. Heterologous expression of the mycobacterial porin gene mspA reduced growth of M. tuberculosis in the presence of 2.5 μM copper by 40% and completely suppressed growth at 15 μM copper, while wild-type M. tuberculosis reached its normal cell density at that copper concentration. Moreover, the polyamine spermine, a known inhibitor of porin activity in Gram-negative bacteria, enhanced tolerance of M. tuberculosis for copper, suggesting that copper ions utilize endogenous outer membrane channel proteins of M. tuberculosis to gain access to interior cellular compartments. In summary, these findings highlight the outer membrane as the first barrier against copper ions and the role of porins in mediating copper uptake in M. smegmatis and M. tuberculosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号