首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The increasing commercial production of engineered nanoparticles (ENPs) has led to concerns over the potential adverse impacts of these ENPs on biota in natural environments. Silver nanoparticles (AgNPs) are one of the most widely used ENPs and are expected to enter natural ecosystems. Here we examined the effects of AgNPs on germination and growth of eleven species of common wetland plants. We examined plant responses to AgNP exposure in simple pure culture experiments (direct exposure) and for seeds planted in homogenized field soils in a greenhouse experiment (soil exposure). We compared the effects of two AgNPs–20-nm polyvinylpyrrolidine-coated silver nanoparticles (PVP-AgNPs) and 6-nm gum arabic coated silver nanoparticles (GA-AgNPs)–to the effects of AgNO3 exposure added at equivalent Ag concentrations (1, 10 or 40 mg Ag L−1). In the direct exposure experiments, PVP-AgNP had no effect on germination while 40 mg Ag L−1 GA-AgNP exposure significantly reduced the germination rate of three species and enhanced the germination rate of one species. In contrast, 40 mg Ag L−1 AgNO3 enhanced the germination rate of five species. In general root growth was much more affected by Ag exposure than was leaf growth. The magnitude of inhibition was always greater for GA-AgNPs than for AgNO3 and PVP-AgNPs. In the soil exposure experiment, germination effects were less pronounced. The plant growth response differed by taxa with Lolium multiflorum growing more rapidly under both AgNO3 and GA-AgNP exposures and all other taxa having significantly reduced growth under GA-AgNP exposure. AgNO3 did not reduce the growth of any species while PVP-AgNPs significantly inhibited the growth of only one species. Our findings suggest important new avenues of research for understanding the fate and transport of NPs in natural media, the interactions between NPs and plants, and indirect and direct effects of NPs in mixed plant communities.  相似文献   

2.
Exposure to silver nanoparticles (AgNPs) may alter the structure and function of freshwater ecosystems. However, there remains a paucity of studies investigating the effects of AgNP exposure on freshwater communities in the natural environment where interactions with the ambient environment may modify AgNP toxicity. We used nutrient diffusing substrates to determine the interactive effects of AgNP exposure and phosphorus (P) enrichment on natural assemblages of periphyton in three Canadian Shield lakes. The lakes were all phosphorus poor and spanned a gradient of dissolved organic carbon availability. Ag slowly accumulated in the exposed periphyton, which decreased periphyton carbon and chlorophyll a content and increased periphyton C:P and N:P in the carbon rich lakes. We found significant interactions between AgNP and P treatments on periphyton carbon, autotroph standing crop and periphyton stoichiometry in the carbon poor lake such that P enhanced the negative effects of AgNPs on chlorophyll a and lessened the impact of AgNP exposure on periphyton stoichiometry. Our results contrast with those of other studies demonstrating that P addition decreases metal toxicity for phytoplankton, suggesting that benthic and pelagic primary producers may react differently to AgNP exposure and highlighting the importance of in situ assays when assessing potential effects of AgNPs in fresh waters.  相似文献   

3.
Whether the antibacterial properties of silver nanoparticles (AgNPs) are simply due to the release of silver ions (Ag+) or, additionally, nanoparticle-specific effects, is not clear. We used experimental evolution of the model environmental bacterium Pseudomonas putida to ask whether bacteria respond differently to Ag+ or AgNP treatment. We pre-evolved five cultures of strain KT2440 for 70 days without Ag to reduce confounding adaptations before dividing the fittest pre-evolved culture into five cultures each, evolving in the presence of low concentrations of Ag+, well-defined AgNPs or Ag-free controls for a further 75 days. The mutations in the Ag+ or AgNP evolved populations displayed different patterns that were statistically significant. The non-synonymous mutations in AgNP-treated populations were mostly associated with cell surface proteins, including cytoskeletal membrane protein (FtsZ), membrane sensor and regulator (EnvZ and GacS) and periplasmic protein (PP_2758). In contrast, Ag+ treatment was selected for mutations linked to cytoplasmic proteins, including metal ion transporter (TauB) and those with metal-binding domains (ThiL and PP_2397). These results suggest the existence of AgNP-specific effects, either caused by sustained delivery of Ag+ from AgNP dissolution, more proximate delivery from cell-surface bound AgNPs, or by direct AgNP action on the cell's outer membrane.  相似文献   

4.
Silver nanoparticles (AgNPs) are widely used in commercial products, and there are growing concerns about their impact on the environment. Information about the molecular interaction of AgNPs with plants is lacking. To increase our understanding of the mechanisms involved in plant responses to AgNPs and to differentiate between particle specific and ionic silver effects we determined the morphological and proteomic changes induced in Eruca sativa (commonly called rocket) in response to AgNPs or AgNO3. Seedlings were treated for 5 days with different concentrations of AgNPs or AgNO3. A similar increase in root elongation was observed when seedlings were exposed to 10 mg Ag L1 of either PVP-AgNPs or AgNO3. At this concentration we performed electron microscopy investigations and 2-dimensional electrophoresis (2DE) proteomic profiling. The low level of overlap of differentially expressed proteins indicates that AgNPs and AgNO3 cause different plant responses. Both Ag treatments cause changes in proteins involved in the redox regulation and in the sulfur metabolism. These responses could play an important role to maintain cellular homeostasis. Only the AgNP exposure cause the alteration of some proteins related to the endoplasmic reticulum and vacuole indicating these two organelles as targets of the AgNPs action. These data add further evidences that the effects of AgNPs are not simply due to the release of Ag ions.  相似文献   

5.
Freshwater gastropods are widespread and common members of benthic communities that interact with other species and conspecifics. Anthropogenic activities are increasing the presence of chemical contaminants in aquatic systems, which have the potential to disrupt species interactions through acute toxic effects and low-exposure chronic effects on vital rates and behaviors of organisms. We determined the effects of the commonly used manufactured nanomaterial, silver nanoparticles (AgNPs), on the survival, growth, reproduction, and behaviors of a common pulmonate gastropod, Physa acuta. Gastropod survival decreased in higher concentrations of AgNP (LC50 = 2.18 μg/l), but was enhanced when experimental containers included sediment (LC50 > 10 μg/l). Chronic exposures resulted in growth rates and size at first reproduction of snails declining in only the highest exposure concentration of 1 μg/l AgNP. Physa egg production was reduced by 50% when chronically exposed to 0.01 μg/l or greater AgNP. Physa crawled more rapidly when exposed to 0.01 μg/l AgNP and greater, indicating a stress response to higher AgNP concentrations. Physa exposed to 1 μg/l AgNP used near-surface habitats in a similar manner to those exposed to the threat of crayfish predation, indicating that the stress response to AgNP is similar in magnitude and direction to the threat of a predator. The sublethal effects reported here suggest that low but environmentally relevant concentrations of AgNP are likely to affect gastropod populations in many ways, potentially leading to measurable effects on communities and ecosystems.  相似文献   

6.
In the present study, the biosynthesis of silver nanoparticles (AgNPs) using Neurospora intermedia, as a new non-pathogenic fungus was investigated. For determination of biomass harvesting time, the effect of fungal incubation period on nanoparticle formation was investigated using UV–visible spectroscopy. Then, AgNPs were synthesized using both culture supernatant and cell-free filtrate of the fungus. Two different volume ratios (1:100 and 1:1) of the culture supernatant to the silver nitrate were employed for AgNP synthesis. In addition, cell-free filtrate and silver nitrate were mixed in presence and absence of light. Smallest average size and highest productivity were obtained when using equal volumes of the culture supernatant and silver nitrate solution as confirmed by UV–visible spectra of colloidal AgNPs. Comparing the UV–visible spectra revealed that using cell-free filtrate for AgNP synthesis resulted in the formation of particles with higher stability and monodispersity than using culture supernatant. The absence of light in cell-free filtrate mediated synthesis led to the formation of nanoparticles with the lowest rate and the highest monodispersity. The presence of elemental silver in all prepared samples was confirmed using EDX, while the crystalline nature of synthesized particles was verified by XRD. FTIR results showed the presence of functional groups which reduce Ag+ and stabilize AgNPs. The presence of nitrate reductase was confirmed in the cell-free filtrate of the fungus suggesting the potential role of this enzyme in AgNP synthesis. Synthesized particles showed significant antibacterial activity against E. coli as confirmed by examining the growth curve of bacterial cells exposed to AgNPs.  相似文献   

7.
Little is currently known about the potential impact of silver nanoparticles (AgNPs) on estuarine microbial communities. The Colne estuary, UK, is susceptible to oil pollution through boat traffic, and there is the potential for AgNP exposure via effluent discharged from a sewage treatment works located in close proximity. This study examined the effects of uncapped AgNPs (uAgNPs), capped AgNPs (cAgNPs) and dissolved Ag2SO4, on hydrocarbon-degrading microbial communities in estuarine sediments. The uAgNPs, cAgNPs and Ag2SO4 (up to 50 mg L−1) had no significant impact on hydrocarbon biodegradation (80–92% hydrocarbons were biodegraded by day 7 in all samples). Although total and active cell counts in oil-amended sediments were unaffected by silver exposure; total cell counts in non-oiled sediments decreased from 1.66 to 0.84 × 107 g−1 dry weight sediment (dws) with 50 mg L−1 cAgNPs and from 1.66 to 0.66 × 107 g−1 dws with 0.5 mg L−1 Ag2SO4 by day 14. All silver-exposed sediments also underwent significant shifts in bacterial community structure, and one DGGE band corresponding to a member of Bacteroidetes was more prominent in non-oiled microcosms exposed to 50 mg L−1 Ag2SO4 compared to non-silver controls. In conclusion, AgNPs do not appear to affect microbial hydrocarbon-degradation but do impact on bacterial community diversity, which may have potential implications for other important microbial-mediated processes in estuaries.  相似文献   

8.
Green silver nanoparticle (AgNP) biosynthesis is facilitated by the enzyme mediated reduction of Ag ions by plants, fungi and bacteria. The antimicrobial activity of green AgNPs is useful to overcome the challenge of antimicrobial resistance. Antimicrobial properties of biosynthesized AgNPs depend on multiple factors including culture conditions and the microbial source. The antimicrobial activity of AgNPs biosynthesized by Pseudomonas aeruginosa ATCC 27853, Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 25923 and Acinetobacter baumannii (confirmed clinical isolate) were investigated in this study. Biosynthesis conditions (AgNO3 concentration, pH, incubation temperature and incubation time) were optimized to obtain the maximum AgNP yield. Presence of AgNPs was confirmed by observing a characteristic UV–Visible absorbance peak in 420–435 nm range. AgNP biosynthesis was optimal at 0.4 g/L AgNO3 concentration under alkaline conditions at 60–70 °C. The biosynthesized AgNPs showed higher stability compared to chemogenized AgNPs in the presence of electrolytes. AgNPs synthesized by P. aeruginosa were the most stable while NPs of S. aureus were the least stable. AgNPs synthesized by P. aeruginosa and S. aureus showed good antimicrobial potential against E. coli, P. aeruginosa, S. aureus, MRSA and Candida albicans. AgNPs synthesized by S. aureus had greater antimicrobial activity. The antimicrobial activity of NPs may vary depending on the size and the morphology of NPs.  相似文献   

9.
Chu CY  Peng FC  Chiu YF  Lee HC  Chen CW  Wei JC  Lin JJ 《PloS one》2012,7(6):e38360
Silver nanoparticles supported on nanoscale silicate platelets (AgNP/NSP) possess interesting properties, including a large surface area and high biocide effectiveness. The nanohybrid of AgNP/NSP at a weight ratio 7/93 contains 5-nm Ag particles supported on the surface of platelets with dimensions of approximately 80×80×1 nm(3). The nanohybrid expresses a trend of lower cytotoxicity at the concentration of 8.75 ppm Ag and low genotoxicity. Compared with conventional silver ions and the organically dispersed AgNPs, the nanohybrid promotes wound healing. We investigated overall wound healing by using acute burn and excision wound healing models. Tests on both infected wound models of mice were compared among the AgNP/NSP, polymer-dispersed AgNPs, the commercially available Aquacel, and silver sulfadiazine. The AgNP/NSP nanohybrid was superior for wound appearance, but had similar wound healing rates, vascular endothelial growth factor (VEGF)-A levels and transforming growth factor (TGF)-β1 expressions to Aquacel and silver sulfadiazine.  相似文献   

10.
Nanotechnology has become one of the most promising new approaches for pest control in recent years. In this research, biocompatible silver nanoparticles (Btk-AgNPs) were synthesised by using the entomopathogenic bacterium, Bacillus thuringiensis kurstaki (Btk) as a low-cost and eco-friendly production system. The AgNP samples exhibited a brownish-yellow colour that is characteristic for silver nanoparticles synthesis. Btk-synthesised AgNPs were produced using both the supernatant and pellet of Bt culture at various concentrations and AgNP particles were characterised by UV-Vis spectrophotometer and Dynamic Light Scattering (DLS). The variation of hydrodynamic diameter (Dh) and UV-Vis spectra of silver particles produced by various concentration of culture showed that production of AgNPs was maximised when using 20% for either supernatant or pellet treatments of Bt of culture and the size of particles was around 85?nm for both. The insecticidal efficacy of Btk-synthesised AgNPs against larvae of the cabbage looper, Trichoplusia ni (Hübner) and black cutworm, Agrotis ipsilon (Hufnagel) was tested. Results demonstrated that the treatments of either Btk-synthesised AgNP(s) made with Bt supernatant or Btk-synthesised AgNP(p) using Bt pellet were found to be significantly more virulent toward larvae of T. ni than to A. ipsilon.  相似文献   

11.
The target of our current work was designed to prepare titanium oxide doped silver nanoparticles (Ag/TiO2NPs) and their impact on the functionalization of cotton fabrics. Additionally, the effect of Ag/TiO2NPs was compared with the individually prepared silver nanoparticles (AgNPs) and titanium oxide nanoparticles (TiO2NPs). In this work, AgNPs were prepared in the solid state using arabic gum as efficient stabilizing and reducing agent. Then, two concentrations of the as-synthesized nanoparticles were used to functionalize the cotton fabrics by pad-dry-cure treatment in the presence of fixing agent to increase the durability of treated cotton fabrics against vigorous washing cycles. The findings implied that the as-prepared nanoparticles were successfully synthesized in nano-size with spherical shape and homogeneity. The efficacy of the functionalized cotton fabrics with those nanoparticles were evaluated in terms of multifunctional properties including antimicrobial and ultraviolet protection factor (UPF) and the mechanical features before and after many washing cycles; 10, 15 and 20 times. The resultant also proved that Ag/TiO2NPs-treated cotton fabrics exhibited the greater values of both antimicrobial and UPF properties with enhancement in the tensile strength and elongation features. Thus, the combination between these two nanoparticles through doping reaction is suitable for imparting superior antimicrobial properties against the four tested microbial species (Staphylococcus aureus, Escherichia coli, Candida albicans, and Aspergillus niger) and good UPF properties. Depending on the promising obtained results of the multi-finishing fabrics, these nanoparticles of Ag/TiO2NPs can be applied for the production of an efficient medical clothes for doctors, nurses and bed sheets for patients in order to kill and prevent the spread of bacteria and then, reduce the transmission of infection to others.  相似文献   

12.
Silver nanoparticles (AgNPs), like almost all nanoparticles, are potentially toxic beyond a certain concentration because the survival of the organism is compromised due to scores of pathophysiological abnormalities past that concentration. However, the mechanism of AgNP toxicity remains undetermined. Instead of applying a toxic dose, we attempted to monitor the effects of AgNPs at a nonlethal concentration on wild type Drosophila melanogaster by exposing them throughout their development. All adult flies raised in AgNP doped food showed that up to 50 mg/L concentration AgNP has no negative influence on median survival; however, these flies appeared uniformly lighter in body color due to the loss of melanin pigments in their cuticle. Additionally, fertility and vertical movement ability were compromised due to AgNP feeding. Determination of the amount of free ionic silver (Ag+) led us to claim that the observed biological effects have resulted from the AgNPs and not from Ag+. Biochemical analysis suggests that the activity of copper dependent enzymes, namely tyrosinase and Cu-Zn superoxide dismutase, are decreased significantly following the consumption of AgNPs, despite the constant level of copper present in the tissue. Consequently, we propose a mechanism whereby consumption of excess AgNPs in association with membrane bound copper transporter proteins cause sequestration of copper, thus creating a condition that resembles copper starvation. This model also explains the cuticular demelanization effect resulting from AgNP since tyrosinase activity is essential for melanin biosynthesis. Finally, we claim that Drosophila, an established genetic model system, can be well utilized for further understanding of the biological effects of nanoparticles.  相似文献   

13.
This work reports the substrate temperature-influenced change in the structural, morphological, optical, and glucose sensing properties of silver (Ag) nanoparticles (NPs) deposited on p-type Si (100) wafers. AgNP films grown at temperatures ranging from RT to 600 °C clearly show a dependence of orientation texture and surface morphology on substrate temperature (T s). As T s increases from RT towards 600 °C, the preferred orientation of AgNP film changes from (111) to (200). The AgNPs size, that is T s-dependent, reaches the maximum value at T s = 300 °C. This result is attributed to restructuring of AgNPs texture. Moreover, the AgNP shape also changes from ellipsoid to sphere as T s increases from RT to 600 °C. Surface plasmon enhancement in photoluminescence intensity is observed with increase in T s. It is found also that the AgNP film deposited at 300 °C has considerable reflectance reduction relative to the silicon substrate, in wavelength range of 300–800 nm and a progressive red shift of localized surface plasmon resonances caused by the adding of increasing quantities of glucose has been observed. As a proof of concept, we also demonstrate the capability of grown AgNP substrates for glucose detection based on surface enhanced Raman spectroscopy in physiological concentration range with short integration time 10 s, varying with T s.  相似文献   

14.
Oocysts of the waterborne protozoan parasite Cryptosporidium parvum are highly resistant to chlorine disinfection. We show here that both silver nanoparticles (AgNPs) and silver ions significantly decrease oocyst viability, in a dose-dependent manner, between concentrations of 0.005 and 500 μg/ml, as assessed by an excystation assay and the shell/sporozoite ratio. For percent excystation, the results are statistically significant for 500 μg/ml of AgNPs, with reductions from 83% for the control to 33% with AgNPs. For Ag ions, the results were statistically significant at 500 and 5,000 μg/ml, but the percent excystation values were reduced only to 66 and 62%, respectively, from 86% for the control. The sporozoite/shell ratio was affected to a greater extent following AgNP exposure, presumably because sporozoites are destroyed by interaction with NPs. We also demonstrated via hyperspectral imaging that there is a dual mode of interaction, with Ag ions entering the oocyst and destroying the sporozoites while AgNPs interact with the cell wall and, at high concentrations, are able to fully break the oocyst wall.  相似文献   

15.
Su HL  Lin SH  Wei JC  Pao IC  Chiao SH  Huang CC  Lin SZ  Lin JJ 《PloS one》2011,6(6):e21125
We develop a novel nanohybrid showing a strong antibacterial activity on all of the tested pathogens, including methicillin-resistant Staphylococcus auerus and silver-resistant E. coli. The nanohybrid consists of silver nanoparticles (AgNPs) supported on 1 nm-thick silicate platelets (NSPs). The AgNP/NSP nanohybrid enables to encapsulate bacteria and triggers death signals from the cell membrane. The geographic shape of the NSPs concentrates AgNPs but impedes their penetration into attached cells, mitigating the detrimental effect of silver ion deposition in applied tissues. Moreover, the tightly tethered AgNPs on NSP surface achieve a stronger biocidal effect than silver nitrate, but bypassing Ag(+) mechanism, on silver-resistant bacteria. This nanohybrid presents an effective and safe antimicrobial agent in a new perspective.  相似文献   

16.
Non-tuberculous mycobacteria are a threat to human health, gaining entry to the body through contaminated water systems, where they form persistent biofilms despite extensive attempts at disinfection. Silver is a natural antibacterial agent and in nanoparticle form activity is increased by a high surface area. Silver nanoparticles (AgNPs) have been used as alternative disinfectants in circulating water systems, washing machines and even clothing. However, nanoparticles, like any other antibiotic that has a pervasive durable presence, carry the risk of creating a resistant population. In this study Mycobacterium smegmatis strain mc2155 was cultured in AgNP enriched agar such that only a small population survived. Surviving cultures were isolated and re-exposed to AgNPs and AgNO3 and resistance to silver was compared to a negative control. After only a single exposure, mutant M. smegmatis populations were resistant to AgNPs and AgNO3. Further, the silver resistant mutants were exposed to antibiotics to determine if general resistance had been conferred. The minimum inhibitory concentration of isoniazid was four times higher for silver resistant mutants than for strain mc2155. However, core resistance was not conferred to other toxic metal ions. The mutants had lower resistance to CuSO4 and ZnSO4 than the mc2155 strain.  相似文献   

17.
Central composite design was chosen to determine the combined effects of four process variables (AgNO3 concentration, incubation period, pH level and inoculum size) on the extracellular biosynthesis of silver nanoparticles (AgNPs) by Streptomyces viridochromogenes. Statistical analysis of the results showed that incubation period, initial pH level and inoculum size had significant effects (P<0.05) on the biosynthesis of silver nanoparticles at their individual level. The maximum biosynthesis of silver nanoparticles was achieved at a concentration of 0.5% (v/v) of 1 mM AgNO3, incubation period of 96 h, initial pH of 9 and inoculum size of 2% (v/v). After optimization, the biosynthesis of silver nanoparticles was improved by approximately 5-fold as compared to that of the unoptimized conditions. The synthetic process of silver nanoparticle generation using the reduction of aqueous Ag+ ion by the culture supernatants of S. viridochromogenes was quite fast, and silver nanoparticles were formed immediately by the addition of AgNO3 solution (1 mM) to the cell-free supernatant. Initial characterization of silver nanoparticles was performed by visual observation of color change from yellow to intense brown color. UV-visible spectrophotometry for measuring surface plasmon resonance showed a single absorption peak at 400 nm, which confirmed the presence of silver nanoparticles. Fourier Transform Infrared Spectroscopy analysis provided evidence for proteins as possible reducing and capping agents for stabilizing the nanoparticles. Transmission Electron Microscopy revealed the extracellular formation of spherical silver nanoparticles in the size range of 2.15–7.27 nm. Compared to the cell-free supernatant, the biosynthesized AgNPs revealed superior antimicrobial activity against Gram-negative, Gram-positive bacterial strains and Candida albicans.  相似文献   

18.
Surgical sutures play important role during the wound healing of the surgical sites which are known to be sensitive to microbial infections. Silver nanoparticles (AgNPs) have been recently used as promising agents against multiple-drug resistant microorganisms. This study was designed to coat the sutures with silver nanoparticles obtained via a green synthesis approach. Microbial-mediated biological synthesis of AgNPs were carried out ecofriendly using Streptomyces sp. AU2 cell-free extract and deposited on silk sutures through an in situ process. Sutures coated with biosyntehsized AgNP (bio-AgNP coated sutures) were characterized using Scanning Electron Microscopy (SEM) and elemantal analysis were carried out using Energy Dispersive X-ray Spectroscopy (EDS). The silver amount released by the bio-AgNP coated sutures was calculated by Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS) throughout a degradation process. Antimicrobial potential of the bio-AgNP coated sutures was determined against common pathogenic microorganisms Candida albicans, Escherichia coli and Staphylococcus aureus. To determine the biocompatibility/cytotoxicty of the bio-AgNP coated sutures, the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium) assay was used through an indirect test method; that the elutions obtained by the extraction of the sutures at 1, 4, 8 and 10. days and were placed in contact with 3T3 fibroblast cell culture. To best of our knowledge, this is the first report about coating of the nonabsorbable silk sutures with silver nanoparticles biosynthesized using a microbial extract.  相似文献   

19.
In this study, a simple and sensitive spectrofluorimetric method is presented for the determination of fluoxetine based on the enhancing effect of silver nanoparticles (AgNPs) on the terbium–fluoxetine fluorescence emission. The AgNPs were prepared by a simple reduction method and characterized by UV–Vis spectroscopy and transmission electron microscopy. It was indicated that these AgNPs have a remarkable amplifying effect on the terbium‐sensitized fluorescence of fluoxetine. The effects of various parameters such as AgNP and Tb3+ concentration and the pH of the media were investigated. Under obtained optimal conditions, the fluorescence intensity of the terbium–fluoxetine–AgNP system was enhanced linearly by increasing the concentration of fluoxetine in the range of 0.008 to 19 mg/L. The limit of detection (b + 3s) was 8.3 × 10‐4 mg/L. The interference effects of common species found in real samples were also studied. The method had good linearity, recovery, reproducibility and sensitivity, and was satisfactorily applied for the determination of fluoxetine in tablet formulations, human urine and plasma samples. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
Plant secondary metabolites have been recently used for the synthesis of different nanoparticles. The present investigation aimed at evaluating the effect of gold (AuNPs) and silver (AgNPs) nanoparticles synthesized using Acalypha fruticosa leaf extracts to control the mosquito Culex pipiens. The A. fruticosa AuNPs and AgNPs spectra displayed their maximum absorption at 550 nm and 440 nm, respectively. The infrared spectra revealed different functional groups related to different chemical compounds. The larval mortality of aqueous leaf extract of A. fruticosa was 499.54 ppm (LC50) and 1734.06 ppm (LC90) after 24 h of treatment. This study revealed that AuNP (LC50, 30.2 and LC90, 104.83 ppm) and AgNP (LC50, 52.86 and LC90, 157.227 ppm) preparations were highly effective compared to the A. fruticosa extract alone and also more affordable, as a smaller amount was required. The present findings show the potential larvicidal effect of the synthesized AuNPs and AgNPs for the control of mosquito-mediated disease transmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号