首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most flagellates with hispid flagella, that is, flagella with rigid filamentous hairs (mastigonemes), swim in the direction of the flagellar wave propagation with an anterior position of the flagellum. Previous analysis was based on planar wave propagation showing that the mastigonemes pull fluid along the flagellar axis. In the present study, we investigate the flagellar motions and swimming patterns for two flagellates with hispid flagella: Paraphysomonas vestita and Pteridomonas danica. Studies were carried out using normal and high-speed video recording, and particles were added to visualize flow around cells generating feeding currents. When swimming or generating flow, P. vestita was able to pull fluid normal to, and not just along, the flagellum, implying the use of the mastigonemes in an as yet un-described way. When the flagellum made contact with food particles, it changed the flagellar waveform so that the particle was fanned towards the ingestion area, suggesting mechano-sensitivity of the mastigonemes. Pteridomonas danica was capable of more complex swimming than previously described for flagellated protists. This was associated with control of the flagellar beat as well as an ability to bend the plane of the flagellar waveform.  相似文献   

2.
Chlamydomonas reinhardtii has long been used as a model organism in studies of cell motility and flagellar dynamics. The motility of the well-conserved ‘9+2’ axoneme in its flagella remains a subject of immense curiosity. Using high-speed videography and morphological analyses, we have characterized long-flagella mutants (lf1, lf2-1, lf2-5, lf3-2, and lf4) of C. reinhardtii for biophysical parameters such as swimming velocities, waveforms, beat frequencies, and swimming trajectories. These mutants are aberrant in proteins involved in the regulation of flagellar length and bring about a phenotypic increase in this length. Our results reveal that the flagellar beat frequency and swimming velocity are negatively correlated with the length of the flagella. When compared to the wild-type, any increase in the flagellar length reduces both the swimming velocities (by 26–57%) and beat frequencies (by 8–16%). We demonstrate that with no apparent aberrations/ultrastructural deformities in the mutant axonemes, it is this increased length that has a critical role to play in the motion dynamics of C. reinhardtii cells, and, provided there are no significant changes in their flagellar proteome, any increase in this length compromises the swimming velocity either by reduction of the beat frequency or by an alteration in the waveform of the flagella.  相似文献   

3.
Summary The role of tubular mastigonemes in the reversal of thrust of the anterior flagellum ofPhytophthora cinnamomi was analysed using mastigoneme-specific monoclonal antibodies and immunoflu-orescence and video microscopy. Exposure of live zoospores ofP. cinnamomi to the mastigoneme-specific Zg antibodies caused alterations in the arrangement of mastigonemes on the flagellar surface and at Zg concentrations above 0.3 /ml, mastigonemes became detached from the flagellum. As a consequence of antibody binding to the mastigonemes there were concentration-dependent perturbations in zoospore swimming behaviour and anterior flagellum beat pattern. With increasing antibody concentration zoospores swam more slowly and other parameters of their swimming pattern, such as the wavelength of the swimming helix and the frequency of rotation, were also reduced. The effects of Zg antibodies were specific at two levels: control immunoglobulins or antibodies that bound to other flagellar surface components did not have an effect on motility, and Zg antibodies did not interfere with the motility of zoospores of oomycete species to which they did not bind. The effects of antibody-induced disruption of mastigoneme arrangement strongly support previous hypotheses that tubular mastigonemes are responsible for thrust reversal by the anterior flagellum, enabling it to pull the cell through the surrounding medium.  相似文献   

4.
Many studies have used velocity measurements, waveform analyses, and theoretical flagella models to investigate the establishment, maintenance, and function of flagella of the biflagellate green algae Chlamydomonas reinhardtii. We report the first direct measurement of Chlamydomonas flagellar swimming force. Using an optical trap ("optical tweezers") we detect a 75% decrease in swimming force between wild type (CC124) cells and mutants lacking outer flagellar dynein arms (oda1). This difference is consistent with previous estimates and validates the force measurement approach. To examine mechanisms underlying flagella organization and function, we deflagellated cells and examined force generation during flagellar regeneration. As expected, fully regenerated flagella are functionally equivalent to flagella of untreated wild type cells. However, analysis of swimming force vs. flagella length and the increase in force over regeneration time reveals intriguing patterns where increases in force do not always correspond with increases in length. These investigations of flagellar force, therefore, contribute to the understanding of Chlamydomonas motility, describe phenomena surrounding flagella regeneration, and demonstrate the advantages of the optical trapping technique in studies of cell motility.  相似文献   

5.
The arrangement of flagellar appendages in 19 cryptomonad species was examined and four new flagellar types are described. The first new type has a single row of mastigonemes on both flagella and hairs on the side opposite the mastigonemes. The second type, which is common, has unilateral rows of mastigonemes on both flagella, but no hairs. A third type has an acronematic short flagellum and a single row of mastigonemes on the long flagellum. A fourth type lacks mastigonemes but has a unilateral row of curved “spikes” on the short flagellum and hairs on both flagella. These additional flagellar variations may contribute to a more natural system of classification for cryptomonads.  相似文献   

6.
Mastigonemes (Flimmer) from the sperm of Ascophyllum and Fucus were found to consist of a tripartite structure—a ca. 2000-A tapered basal region, a closed microtubular shaft, and a group of terminal filaments. Each of these regions appears to be constructed of globular subunits with a center-to-center distance of about 45 A. The mastigoneme microtubule is of smaller diameter (170–190 A) than cytoplasmic microtubules in these or other plant cells. During the initial stages of flagellar ontogeny, structures similar to mastigonemes (presumptive mastigonemes) are found within membrane-limited sacs in the cytoplasm or within the perinuclear space. Mastigonemes at this time are generally not found on the flagellar surface. Later, when the anterior flagellum acquires mastigonemes, the presumptive mastigonemes are absent from the cytoplasm. The regularity of attachment of mastigonemes to the flagellar surface suggests that specific attachment sites are constructed on the plasma membrane during flagellar ontogeny. No evidence for penetration of the mastigoneme through the plasma membrane was obtained. The origin and structure of mastigonemes are discussed in relation to reports of the origin and structure of other microtubular systems.  相似文献   

7.
The ultrastructure of the amoeboid flagellate Thaumatomonas zhukovi sp. is presented. The cell is covered by cell body scales that formed on the surface of mitochondria. Capturing bacteria, the pseudopodia emerge from the ventral groove, which is supported by two longitudinal microtubular bands. The heterodynamic flagella emerge from the small flagellar pocket. Both flagella are covered by cone-shaped scales and thin twisted mastigonemes. The transitional zone of the flagella contains a thin-walled cylinder. The transversal plate of the flagella rises above the cell surface. The kinetosomes lie parallel to each other. The flagellar root system consists of three microtubular bands and a fibrillar rhizoplast. The vesicular nucleus and the Golgi apparatus have typical structures. The cytoplasm contains microbodies and food vacuoles. Mitochondria contain tubular cristae. Extrusive organelles (kinetocysts), which contain amorphous material and a capsule, were found in the cytoplasm. The capsule consists of a theca and a cylinder. The resemblance of Thaumatomonas zhukovi to other thaumatomonads is discussed.  相似文献   

8.
The ultrastructure of the reservoir region of Phacus pleuronectes is described. Thin sections, ruthenium red staining, and shadow-cast preparations elucidate relationships and structural details of the flagella and flagellar hairs or mastigonemes. A heretofore undescribed structure in Phacus, the multitubular structure (MTS), with associated fibrillar projections, is reported. The MTS is located in the cytoplasm at the distal region of the reservoir near the contractile vacuole. A coordinated function of the MTS and adjacent fibrillar projections is suggested. The occurrence of mastigonemes along the entire length of the emergent flagellum is suggested, in contrast to earlier reports of their presence only on that portion of the flagellum distal to the cytostome. The present investigation postulates also that the mastigonemes are bipartite, the thicker fibrous bases becoming modified distally into the classically described, mastigonemes.  相似文献   

9.
There are mutants of Salmonella enterica (with mutations in fliF and fliL) that shed flagella when they are swimming in a viscous medium or on the surface of soft agar. Filaments with hooks and the distal rod segment FlgG are recovered. We tried to extract flagellar filaments from such cells by pulling on them with an optical trap but failed, even when we used forces large enough to straighten the filaments. Thus, flagella are firmly anchored.  相似文献   

10.
The structure, assembly, and composition of the extracellular hairs (mastigonemes) of Ochromonas are detailed in this report. These mastigonemes form two lateral unbalanced rows, each row on opposite sides of the long anterior flagellum. Each mastigoneme consists of lateral filaments of two distinct sizes attached to a tubular shaft. The shaft is further differentiated into a basal region at one end and a group of from one to three terminal filaments at the free end. Mastigoneme ontogeny as revealed especially in deflagellated and regenerating cells appears to begin by assembly of the basal region and shaft within the perinuclear continuum. However, addition of lateral filaments to the shaft and extrusion of the mastigonemes to the cell surface is mediated by the Golgi complex. The ultimate distribution of mastigonemes on the flagellar surface seems to be the result of extrusion of mastigonemes near the base of the flagellum, and it is suggested that mastigonemes are then pulled up the flagellum as the axoneme elongates. Efforts to characterize mastigonemes biochemically after isolation and purification on cesium chloride (CsCl) followed by electrophoresis on acrylamide gels have demonstrated what appear to be a single major polypeptide and several differentially migrating carbohydrates. The polypeptide is not homologous with microtuble protein. The functionally anomalous role of mastigonemes in reversing flagellar thrust is discussed in relation to their distribution relative to flagellar anatomy and to the plane of flagellar undulations.  相似文献   

11.
The motility of microalgae has been studied extensively, particularly in model microorganisms such as Chlamydomonas reinhardtii. For this and other microalgal species, diurnal cycles are well known to control the metabolism, growth, and cell division. Diurnal variations, however, have been largely neglected in quantitative studies of motility. Here, we demonstrate using tracking microscopy how the motility statistics of C. reinhardtii are modulated by diurnal cycles. With nine independently inoculated cultures synchronized to the light-dark cycle at the exponential growth phase, we repeatedly observed that the mean swimming speed is greater during the dark period of a diurnal cycle. From this measurement, using a hydrodynamic power balance, we infer the mean flagellar beat frequency and conjecture that its diurnal variation reflects modulation of intracellular ATP. Our measurements also quantify the diurnal variations of the orientational and gravitactic transport of C. reinhardtii. We use this to explore the population-level consequences of diurnal variations of motility statistics by evaluating a prediction for how the gravitactic steady state changes with time during a diurnal cycle. Finally, we discuss the consequences of diurnal variations of microalgal motility in soil and pelagic environments.  相似文献   

12.
The organization of two types of nontubular mastigonemes associated with the anterior flagellar surface of the phagotrophic biflagellate Peranema trichophorum (Ehrenberg) Stein is described from studies of thin sections, negative-stained and shadow-cast preparations of both intact and isolated, detergent-treated flagella. Long mastigonemes form a unilateral, spiral array of tufts which curve toward the distal end of the flagellum, while two short mastigoneme ribbons form unequal halves of a bilateral array parallel to the flagellar long axis. Each ribbon is composed of individual overlapping fan-shaped tiers of short mastigonemes interlinked by fine fibrils. A model proposed for Peranema mastigonemes is similar to recent models of mastigoneme organization in Euglena.  相似文献   

13.
The assembly and maintenance of eukaryotic flagella are regulated by intraflagellar transport (IFT), the bidirectional traffic of IFT particles (recently renamed IFT trains) within the flagellum. We previously proposed the balance-point length control model, which predicted that the frequency of train transport should decrease as a function of flagellar length, thus modulating the length-dependent flagellar assembly rate. However, this model was challenged by the differential interference contrast microscopy observation that IFT frequency is length independent. Using total internal reflection fluorescence microscopy to quantify protein traffic during the regeneration of Chlamydomonas reinhardtii flagella, we determined that anterograde IFT trains in short flagella are composed of more kinesin-associated protein and IFT27 proteins than trains in long flagella. This length-dependent remodeling of train size is consistent with the kinetics of flagellar regeneration and supports a revised balance-point model of flagellar length control in which the size of anterograde IFT trains tunes the rate of flagellar assembly.  相似文献   

14.
Certain bacteria, such as Escherichia coli (E. coli) and Salmonella typhimurium (S. typhimurium), use multiple flagella often concentrated at one end of their bodies to induce locomotion. Each flagellum is formed in a left-handed helix and has a motor at the base that rotates the flagellum in a corkscrew motion.We present a computational model of the flagellar motion and their hydrodynamic interaction. The model is based on the equations of Stokes flow to describe the fluid motion. The elasticity of the flagella is modeled with a network of elastic springs while the motor is represented by a torque at the base of each flagellum. The fluid velocity due to the forces is described by regularized Stokeslets and the velocity due to the torques by the associated regularized rotlets. Their expressions are derived. The model is used to analyze the swimming motion of a single flagellum and of a group of three flagella in close proximity to one another. When all flagellar motors rotate counterclockwise, the hydrodynamic interaction can lead to bundling. We present an analysis of the flow surrounding the flagella. When at least one of the motors changes its direction of rotation, the same initial conditions lead to a tumbling behavior characterized by the separation of the flagella, changes in their orientation, and no net swimming motion. The analysis of the flow provides some intuition for these processes.  相似文献   

15.
Surface organization and composition of Euglena. II. Flagellar mastigonemes   总被引:6,自引:5,他引:1  
The surface of the Euglena flagellum is coated with about 30,000 fine filaments of two distinct types. The longer of these nontubular mastigonemes (about 3 micron) appear to be attached to the paraflagellar rod whereas the shorter nontubular mastigonemes (about 1.5 micron) are the centrifugally arranged portions of a larger complex, which consists of an attached unit parallel to and outside of the flagellar membrane. Units are arranged laternally in near registration and longitudinally overlap by one-half of a unit length. Rows of mastigoneme units are firmly attached to the axoneme microtubules or to the paraflagellar rod as evidenced by their persistence after removal of the flagellar membrane with neutral detergents. SDS-acrylamide gels of whole flagella revealed about 30 polypeptides, of which two gave strong positive staining with the periodic acid-Schiff (PAS) procedure. At least one of these two bands (glycoproteins) has been equated with the surface mastigonemes by parallel analysis of isolated and purified mastigonemes, particularly after phenol extraction. The faster moving glycoprotein has been selectively removed from whole flagella and from the mastigoneme fraction with low concentrations of neutral detergents at neutral or high pH. The larger glycoprotein was found to be polydisperse when electrophoresed through 1% agarose/SDS gels. Thin-layer chromatography of hydrolysates of whole flagella or of isolated mastigonemes has indicated that the major carbohydrate moiety is the pentose sugar, xylose, with possibly a small amount of glucose and an unknown minor component.  相似文献   

16.
Eggs of laminaria angustata Kjellman were shown to have two flagella. Compared with flagella of other phaeophycean swarmers, those of Laminaria eggs have several unique characters such as lack of mastigonemes, widely spaced basal bodies and no flagellar rootlets. The flagella abscise during egg liberation.  相似文献   

17.
Cilia/flagella are conserved organelles that generate fluid flow in eukaryotes. The bending motion of flagella requires concerted activity of dynein motors. Although it has been reported that the central pair apparatus (CP) and radial spokes (RSs) are important for flagellar motility, the molecular mechanism underlying CP- and RS-mediated dynein regulation has not been identified. In this paper, we identified nonspecific intermolecular collision between CP and RS as one of the regulatory mechanisms for flagellar motility. By combining cryoelectron tomography and motility analyses of Chlamydomonas reinhardtii flagella, we show that binding of streptavidin to RS heads paralyzed flagella. Moreover, the motility defect in a CP projection mutant could be rescued by the addition of exogenous protein tags on RS heads. Genetic experiments demonstrated that outer dynein arms are the major downstream effectors of CP- and RS-mediated regulation of flagellar motility. These results suggest that mechanosignaling between CP and RS regulates dynein activity in eukaryotic flagella.  相似文献   

18.
The 5 to 10 peritrichously inserted complex flagella of Rhizobium meliloti MVII-1 were found to form right-handed flagellar bundles. Bacteria swam at speeds up to 60 microns/s, their random three-dimensional walk consisting of straight runs and quick directional changes (turns) without the vigorous angular motion (tumbling) seen in swimming Escherichia coli cells. Observations of R. meliloti cells tethered by a single flagellar filament revealed that flagellar rotation was exclusively clockwise, interrupted by very brief stops (shorter than 0.1 s), typically every 1 to 2 s. Swimming bacteria responded to chemotactic stimuli by extending their runs, and tethered bacteria responded by prolonged intervals of clockwise rotation. Moreover, the motility tracks of a generally nonchemotactic ("smooth") mutant consisted of long runs without sharp turns, and tethered mutant cells showed continuous clockwise rotation without detectable stops. These observations suggested that the runs of swimming cells correspond to clockwise flagellar rotation, and the turns correspond to the brief rotation stops. We propose that single rotating flagella (depending on their insertion point on the rod-shaped bacterial surface) can reorient a swimming cell whenever the majority of flagellar motors stop.  相似文献   

19.
Chlamydomonas reinhardtii, a bi-flagellated green alga, is a model organism for studies of flagella or cilia related activities including cilia-based signaling, flagellar motility and flagellar biogenesis. Calcium has been shown to be a key regulator of these cellular processes whereas the signaling pathways linking calcium to these cellular functions are less understood. Calcium-dependent protein kinases (CDPKs), which are present in plants but not in animals, are also present in ciliated microorganisms which led us to examine their possible functions and mechanisms in flagellar related activities. By in silico analysis of Chlamydomonas genome we have identified 14 CDPKs and studied one of the flagellar localized CDPKs – CrCDPK3. CrCDPK3 was a protein of 485 amino acids and predicted to have a protein kinase domain at the N-terminus and four EF-hand motifs at the C-terminus. In flagella, CrCDPK3 was exclusively localized in the membrane matrix fraction and formed an unknown 20 S protein complex. Knockdown of CrCDPK3 expression by using artificial microRNA did not affect flagellar motility as well as flagellar adhesion and mating. Though flagellar shortening induced by treatment with sucrose or sodium pyrophosphate was not affected in RNAi strains, CrCDPK3 increased in the flagella, and pre-formed protein complex was disrupted. During flagellar regeneration, CrCDPK3 also increased in the flagella. When extracellular calcium was lowered to certain range by the addition of EGTA after deflagellation, flagellar regeneration was severely affected in RNAi cells compared with wild type cells. In addition, during flagellar elongation induced by LiCl, RNAi cells exhibited early onset of bulbed flagella. This work expands new functions of CDPKs in flagellar activities by showing involvement of CrCDPK3 in flagellar biogenesis in Chlamydomonas .  相似文献   

20.
Flagellar activity in the biflagellate chlorophyte Chlamydomonas reinhardtii is selectively inhibited by Ni2+ or by treatment with Ca2+-chelating agents. Inhibitions of swimming speed, geotaxis, phototaxis, and pattern swimming result from qualitative and quantitative losses in the activity of individual flagella and in the coordination of activity beween the 2 flagella of each cell. Addition of Ca2+ (a) prevents inhibition and (b) restores normal flagellar activity in inhibited cells. Mg2+ is partially effective in reversal of inhibition. Other ions do not cause similar inhibition or reversal of nickel inhibition. The characteristics of inhibition and reversal suggest that the prmary target for nickel is a component of the flagellar apparatus, and that this component uses Ca2+ to perform its normal function in the regulation of flagellar activity. A 2nd target for nickel is a Carequiring process specific to phototaxis (and not involved in the photophobic response).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号