首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Consolidated memories return to a labile state after the presentation of cues (reminders) associated with acquisition, followed by a period of stabilization (reconsolidation). However not all cues are equally effective in initiating the process, unpredictable cues triggered it, predictable cues do not. We hypothesize that the different effects observed by the different reminder types on memory labilization-reconsolidation depend on a differential neural involvement during reminder presentation. To test it, we developed a declarative task and compared the efficacy of three reminder types in triggering the process in humans (Experiment 1). Finally, we compared the brain activation patterns between the different conditions using functional magnetic resonance imaging (fMRI) (Experiment 2). We confirmed that the unpredictable reminder is the most effective in initiating the labilization-reconsolidation process. Furthermore, only under this condition there was differential left hippocampal activation during its presentation. We suggest that the left hippocampus is detecting the incongruence between actual and past events and allows the memory to be updated.  相似文献   

2.
Most previous studies of brain responses to acupuncture were designed to investigate the acupuncture instant effect while the cumulative effect that should be more important in clinical practice has seldom been discussed. In this study, the neural basis of the acupuncture cumulative effect was analyzed. For this experiment, forty healthy volunteers were recruited, in which more than 40 minutes of repeated acupuncture stimulation was implemented at acupoint Zhusanli (ST36). Three runs of acupuncture fMRI datasets were acquired, with each run consisting of two blocks of acupuncture stimulation. Besides general linear model (GLM) analysis, the cumulative effects of acupuncture were analyzed with analysis of covariance (ANCOVA) to find the association between the brain response and the cumulative duration of acupuncture stimulation in each stimulation block. The experimental results showed that the brain response in the initial stage was the strongest although the brain response to acupuncture was time-variant. In particular, the brain areas that were activated in the first block and the brain areas that demonstrated cumulative effects in the course of repeated acupuncture stimulation overlapped in the pain-related areas, including the bilateral middle cingulate cortex, the bilateral paracentral lobule, the SII, and the right thalamus. Furthermore, the cumulative effects demonstrated bimodal characteristics, i.e. the brain response was positive at the beginning, and became negative at the end. It was suggested that the cumulative effect of repeated acupuncture stimulation was consistent with the characteristic of habituation effects. This finding may explain the neurophysiologic mechanism underlying acupuncture analgesia.  相似文献   

3.
4.
Neural substrates underlying the human-pet relationship are largely unknown. We examined fMRI brain activation patterns as mothers viewed images of their own child and dog and an unfamiliar child and dog. There was a common network of brain regions involved in emotion, reward, affiliation, visual processing and social cognition when mothers viewed images of both their child and dog. Viewing images of their child resulted in brain activity in the midbrain (ventral tegmental area/substantia nigra involved in reward/affiliation), while a more posterior cortical brain activation pattern involving fusiform gyrus (visual processing of faces and social cognition) characterized a mother''s response to her dog. Mothers also rated images of their child and dog as eliciting similar levels of excitement (arousal) and pleasantness (valence), although the difference in the own vs. unfamiliar child comparison was larger than the own vs. unfamiliar dog comparison for arousal. Valence ratings of their dog were also positively correlated with ratings of the attachment to their dog. Although there are similarities in the perceived emotional experience and brain function associated with the mother-child and mother-dog bond, there are also key differences that may reflect variance in the evolutionary course and function of these relationships.  相似文献   

5.
6.
In order to visualize the global and downstream neuronal responses to deep brain stimulation (DBS) at various targets, we have developed a protocol for using blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) to image rodents with simultaneous DBS. DBS fMRI presents a number of technical challenges, including accuracy of electrode implantation, MR artifacts created by the electrode, choice of anesthesia and paralytic to minimize any neuronal effects while simultaneously eliminating animal motion, and maintenance of physiological parameters, deviation from which can confound the BOLD signal. Our laboratory has developed a set of procedures that are capable of overcoming most of these possible issues. For electrical stimulation, a homemade tungsten bipolar microelectrode is used, inserted stereotactically at the stimulation site in the anesthetized subject. In preparation for imaging, rodents are fixed on a plastic headpiece and transferred to the magnet bore. For sedation and paralysis during scanning, a cocktail of dexmedetomidine and pancuronium is continuously infused, along with a minimal dose of isoflurane; this preparation minimizes the BOLD ceiling effect of volatile anesthetics. In this example experiment, stimulation of the subthalamic nucleus (STN) produces BOLD responses which are observed primarily in ipsilateral cortical regions, centered in motor cortex. Simultaneous DBS and fMRI allows the unambiguous modulation of neural circuits dependent on stimulation location and stimulation parameters, and permits observation of neuronal modulations free of regional bias. This technique may be used to explore the downstream effects of modulating neural circuitry at nearly any brain region, with implications for both experimental and clinical DBS.  相似文献   

7.
While it is known that some individuals can effectively perform two tasks simultaneously, other individuals cannot. How the brain deals with performing simultaneous tasks remains unclear. In the present study, we aimed to assess which brain areas corresponded to various phenomena in task performance. Nineteen subjects were requested to sequentially perform three blocks of tasks, including two unimodal tasks and one bimodal task. The unimodal tasks measured either visual feature binding or auditory pitch comparison, while the bimodal task required performance of the two tasks simultaneously. The functional magnetic resonance imaging (fMRI) results are compatible with previous studies showing that distinct brain areas, such as the visual cortices, frontal eye field (FEF), lateral parietal lobe (BA7), and medial and inferior frontal lobe, are involved in processing of visual unimodal tasks. In addition, the temporal lobes and Brodmann area 43 (BA43) were involved in processing of auditory unimodal tasks. These results lend support to concepts of modality-specific attention. Compared to the unimodal tasks, bimodal tasks required activation of additional brain areas. Furthermore, while deactivated brain areas were related to good performance in the bimodal task, these areas were not deactivated where the subject performed well in only one of the two simultaneous tasks. These results indicate that efficient information processing does not require some brain areas to be overly active; rather, the specific brain areas need to be relatively deactivated to remain alert and perform well on two tasks simultaneously. Meanwhile, it can also offer a neural basis for biofeedback in training courses, such as courses in how to perform multiple tasks simultaneously.  相似文献   

8.
9.
Arthur Vineberg  A. Kadir Syed 《CMAJ》1970,102(8):823-828
Evidence is presented which indicates that blood leaving side branches of an internal mammary artery implanted into the anterior wall of the right ventricle flows from the tunnel in which it lies through myocardial sinusoidal spaces of the anterior right ventricular wall across the midline to fill corresponding spaces in the anterior wall of the left ventricle and thence is carried to the left coronary sinus. The myocardial sinusoidal spaces of right and left ventricles have been well outlined, using injections of polyvinyl acetate and the technique of digestion casts. We have been able to show that there is no barrier between the myocardial sinusoids of the right circulation and those related to the anterior descending branch of the left coronary artery. In structure, these myocardial sinusoidal spaces are quite different from the intramyocardial coronary arteriolar zones which, in 93% of human hearts, are separated from one another without collateral communication.The continuity of the right and left ventricular myocardial sinusoids explains why implantation of a right internal mammary artery into the anterior wall of the right ventricle combined with a corresponding left implant, epicardiectomy and free omental graft, has been so effective in our hands in the treatment of far-advanced human coronary artery insufficiency.  相似文献   

10.
11.
We report a case of a 67-year old male with a recent diagnosis of left ventricular noncompaction (LVNC), initially presenting with symptomatic ventricular ectopy and runs of non-sustained ventricular tachycardia (VT). This ventricular arrhythmia originated in a structurally normal right ventricle (RV) and was successfully localized and ablated with the aid of the three-dimensional mapping and remote magnetic navigation.  相似文献   

12.
Literature containing supra-natural, or magical events has enchanted generations of readers. When reading narratives describing such events, readers mentally simulate a text world different from the real one. The corresponding violation of world-knowledge during this simulation likely increases cognitive processing demands for ongoing discourse integration, catches readers’ attention, and might thus contribute to the pleasure and deep emotional experience associated with ludic immersive reading. In the present study, we presented participants in an MR scanner with passages selected from the Harry Potter book series, half of which described magical events, while the other half served as control condition. Passages in both conditions were closely matched for relevant psycholinguistic variables including, e.g., emotional valence and arousal, passage-wise mean word imageability and frequency, and syntactic complexity. Post-hoc ratings showed that readers considered supra-natural contents more surprising and more strongly associated with reading pleasure than control passages. In the fMRI data, we found stronger neural activation for the supra-natural than the control condition in bilateral inferior frontal gyri, bilateral inferior parietal lobules, left fusiform gyrus, and left amygdala. The increased activation in the amygdala (part of the salience and emotion processing network) appears to be associated with feelings of surprise and the reading pleasure, which supra-natural events, full of novelty and unexpectedness, brought about. The involvement of bilateral inferior frontal gyri likely reflects higher cognitive processing demand due to world knowledge violations, whereas increased attention to supra-natural events is reflected in inferior frontal gyri and inferior parietal lobules that are part of the fronto-parietal attention network.  相似文献   

13.
14.
Palienko  I. A. 《Neurophysiology》2001,33(3):169-174
In 80 healthy humans, we studied changes in the frequency spectrum and values of the relative spectral coefficients for subsequent 1-Hz-wide frequency bands under conditions of simultaneous lateralized stimulation of the retinal zones, which form receptive fields for the right- and for the left-brain hemispheres; light of different colors was used for stimulation. We found that reactions of the right and left hemispheres to such stimulations demonstrated obvious specificity; spatial characteristics of these reactions were obtained. Changes in the values of most corresponding spectral coefficients in the hemispheres usually had similar directions and demonstrated similarity in their intensities, which is indicative of a complementary pattern of the interhemispheric interaction. Reciprocal changes in the corresponding spectral coefficients in the hemispheres were observed more rarely. Modifications of EEG upon red-green stimulations of different polarity were found to be similar, which can be a manifestation of the moderating influence of the right hemisphere on the left one.  相似文献   

15.
16.
17.
Functional magnetic resonance imaging (fMRI) provides a picture of the global spatial activation pattern of the brain. Interest is growing regarding the application of fMRI to rodent models to investigate adult brain plasticity. To date, most rodent studies used an electrical forepaw stimulation model to acquire fMRI data, with α-chloralose as the anesthetic. However, α-chloralose is harmful to animals, and not suitable for longitudinal studies. Moreover, peripheral stimulation models enable only a limited number of brain regions to be studied. Processing between peripheral regions and the brain is multisynaptic, and renders interpretation difficult and uncertain. In the present study, we combined the medetomidine-based fMRI protocol (a noninvasive rodent fMRI protocol) with chronic implantation of an MRI-compatible stimulation electrode in the ventroposterior (VP) thalamus to repetitively sample thalamocortical responses in the rat brain. Using this model, we scanned the forebrain responses evoked by the VP stimulation repeatedly of individual rats over 1 week. Cortical BOLD responses were compared between the 2 profiles obtained at day1 and day8. We discovered reproducible frequency- and amplitude-dependent BOLD responses in the ipsilateral somatosensory cortex (S1). The S1 BOLD responses during the 2 sessions were conserved in maximal response amplitude, area size (size ratio from 0.88 to 0.91), and location (overlap ratio from 0.61 to 0.67). The present study provides a long-term chronic brain stimulation protocol for studying the plasticity of specific neural circuits in the rodent brain by BOLD-fMRI.  相似文献   

18.
The problem is reviewed of sex differences and the brain organization of the visual-spatial and verbal-cognitive functions both in adults and in the 5–15-year old children. Characteristic of men are the integral strategy of the face image recognition, specialization of the right hemisphere for visual-spatial functions, and the tonic inhibitory effect of the right hemisphere on the left one. Typical of women are the fragmented type of the image recognition, the equality of the brain hemispheres functions at the unfamiliar face recognition, and predominance of the left hemisphere by accuracy of the object localization in the visual field. It is possible that the general strategy of the recognition in women is not realized due to the right hemisphere submitted to the interfering effect of the left hemisphere. Analysis of sex differences in distribution of verbal functions shows that the capability for the verbal learning at the age of 5 years and older is higher in girls than in boys. Such capability seems to be accounted for by the superiority of the left hemisphere in girls in this type of its activity and by its earlier development and maturation. The phenomenon of semantic paralexia appearing more often in boys is accounted for by inclusion of lexical-semantic fields of the right hemisphere symmetric areas in the verbal-cognitive activity There are reasons to believe that the higher capability in girls for the verbal learning is mainly due to processes of the auditory-verbal integration within the limits of the left hemisphere, whereas this verbal ability in boys depends on the relative predominance of the interhemispheric connections.  相似文献   

19.
Noxious stimulation of the skin with either chemical, electrical or heat stimuli leads to the development of primary hyperalgesia at the site of injury, and to secondary hyperalgesia in normal skin surrounding the injury. Secondary hyperalgesia is inducible in most individuals and is attributed to central neuronal sensitization. Some individuals develop large areas of secondary hyperalgesia (high-sensitization responders), while others develop small areas (low-sensitization responders). The magnitude of each area is reproducible within individuals, and can be regarded as a phenotypic characteristic. To study differences in the propensity to develop central sensitization we examined differences in brain activity and anatomy according to individual phenotypical expression of secondary hyperalgesia by magnetic resonance imaging. Forty healthy volunteers received a first-degree burn-injury (47°C, 7 min, 9 cm2) on the non-dominant lower-leg. Areas of secondary hyperalgesia were assessed 100 min after the injury. We measured neuronal activation by recording blood-oxygen-level-dependent-signals (BOLD-signals) during mechanical noxious stimulation before burn injury and in both primary and secondary hyperalgesia areas after burn-injury. In addition, T1-weighted images were used to measure differences in gray-matter density in cortical and subcortical regions of the brain. We found significant differences in neuronal activity between high- and low-sensitization responders at baseline (before application of the burn-injury) (p < 0.05). After the burn-injury, we found significant differences between responders during noxious stimulation of both primary (p < 0.01) and secondary hyperalgesia (p ≤ 0.04) skin areas. A decreased volume of the right (p = 0.001) and left caudate nucleus (p = 0.01) was detected in high-sensitization responders in comparison to low-sensitization responders. These findings suggest that brain-structure and neuronal activation to noxious stimulation differs according to secondary hyperalgesia phenotype. This indicates differences in central sensitization according to phenotype, which may have predictive value on the susceptibility to development of high-intensity acute and persistent pain.  相似文献   

20.

Background

Coronary flow reserve (CFR) is used as a measure of coronary endothelial function. We investigated the effect of increased afterload on CFR of pregnant and non-pregnant rats.

Methods

Afterload increase in Wister rats (both pregnant and non-pregnant) was achieved by the infusion of angiotensin II (Ang II) for ∼10 days or by subjecting them to transverse aortic constriction (TAC) for ∼14 days. Control groups were infused with 0.9% NaCl or had sham surgery, respectively. In pregnant rats, the experiments were performed close to term gestation. Doppler velocity waveforms of the left main coronary artery were recorded using a high resolution ultrasound imaging system (Vevo 770, VisualSonics, Canada) at baseline while the animals were anesthetized with 1.5% inhaled isoflurane, and during maximal coronary dilatation obtained by the inhalation of 3.5% of isoflurane. CFR was calculated as the ratio between the peak coronary flow velocities (CFRpeak) and the velocity-time integrals (CFRVTI) recorded at hyperemia and at baseline.

Results

CFR could be calculated in 60 of 75 (80%) animals. There were no differences in CFR between intervention and control groups irrespective of whether afterload was increased by Ang II or TAC. In the TAC-study CFRpeak (1.54±0.07 vs 1.85±0.17; p = 0.03) was decreased in pregnant compared to non-pregnant shams. When sham animals from both studies were pooled together both CFRpeak (1.42±0.07 vs 1.86±0.16; p = 0.005) as well as CFRVTI (1.45±0.07 vs 1.78±0.12; p = 0.03) were significantly lower in pregnant rats compared to non-pregnant.

Conclusions

CFR can be measured non-invasively in rats using Doppler echocardiography and high concentrations of inhaled isoflurane as a coronary vasodilator. In pregnant rats, CFR is reduced close to term. CFR is not affected by increased left ventricular afterload caused by chronic Ang II infusion or TAC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号