首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Bryophyte biomass and diversity in tropical moist forests decrease dramatically from higher altitudes towards the lowlands. High respiratory carbon losses at high temperatures may partly explain this pattern, if montane species are unable to acclimatise their metabolic rates to lowland temperatures. We transplanted ten bryophyte species from two altitudes (1200 and 500 m a.s.l.) to lower (warmer) altitudes (500 m and sea level) in Panama. We studied short‐term temperature acclimation of CO2 exchange for 2.5 months, and survival and growth for 21 months following transplantation. Short‐term acclimation did not occur, and on a longer time scale mortality was highest and growth lowest in the transplanted samples. A few transplanted samples of most species, however, survived the whole experiment and finished with growth rates similar to controls. This recovery of growth rate suggests temperature acclimation, in spite of no measurable metabolic changes in smaller random samples. This acclimation even compensated for shorter periods of CO2 uptake due to more rapid drying. Nevertheless, these species are not abundant in lowland forests, perhaps due to dispersal or establishment limitation. The apparent heterogeneity of the acclimation potential within species may allow populations to adapt locally and avoid being forced uphill under climatic warming.  相似文献   

2.
Specific leaf weight (SLW), net photosynthesis (P n ), and dark respiration (R d ) of apple leaves were monitored for an entire growing season. Leaves were sampled from the canopy interior and periphery to provide a range of SLW. Leaf P n was linearly correlated with SLW until mid-August, when P n began to decline. During September the relationship between SLW and P n was a quadratic. Leaf R d and SLW were linearly correlated throughout the season. Leaf P n and R d were significantly correlated through most of the season, but the relationship was not always linear. Specific leaf weight appears to be a reliable index of the previous light environment of a leaf, but use to estimate P n is probably limited to the first half of the season, because of increased variation after mid-August.Former Graduate Research Assistant (presently Assistant Professor, Department of Horticulture and Forestry, Rutgers University, Cook College, New Brunswick, NJ 08903, USA) and Associate Professor, respectively.  相似文献   

3.
几种热带雨林与荒漠植物暗呼吸作用对高CO_2浓度的响应   总被引:14,自引:2,他引:14  
使用 L I6400 便携式光合作用测定系统测定了美国生物圈二号内长期生长在高 C O2 浓度(> 1500μm ol/m ol)下 5种热带雨林植物与 5 种荒漠植物暗呼吸强度的变化。结果表明:在 350~400μm ol/m ol下 5 种雨林植物的平均暗呼吸强度为(056±019)μm ol C O2/m 2·s;荒漠植物平均为(098±072)μm ol C O2/m 2·s。在 C O2 浓度升高时大部分 C3 植物暗呼吸作用升高,并呈一定的线形关系。当 C O2 浓度加倍时,雨林植物暗呼吸强度升高61% ;荒漠 C3 植物升高134% ,而 C4 植物变化不明显或略有下降。因而认为,长期高 C O2 浓度可促进 C3 植物的暗呼吸作用。  相似文献   

4.
Aim To explore species richness patterns in liverworts and mosses along a central Himalayan altitudinal gradient in Nepal (100–5500 m a.s.l.) and to compare these patterns with patterns observed for ferns and flowering plants. We also evaluate the potential importance of Rapoport’s elevational rule in explaining the observed richness patterns for liverworts and mosses. Location Nepal, Central Himalaya. Methods We used published data on the altitudinal ranges of over 840 Nepalese mosses and liverworts to interpolate presence between maximum and minimum recorded elevations, thereby giving estimates of species richness for 100‐m altitudinal bands. These were compared with previously published patterns for ferns and flowering plants, derived in the same way. Rapoport’s elevational rule was assessed by correlation analyses and the statistical significance of the observed correlations was evaluated by Monte Carlo simulations. Results There are strong correlations between richness of the four groups of plants. A humped, unimodal relationship between species richness and altitude was observed for both liverworts and mosses, with maximum richness at 2800 m and 2500 m, respectively. These peaks contrast with the richness peak of ferns at 1900 m and of vascular plants, which have a plateau in species richness between 1500 and 2500 m. Endemic liverworts have their maximum richness at 3300 m, whereas non‐endemic liverworts show their maximum richness at 2700 m. The proportion of endemic species is highest at about 4250 m. There is no support from Nepalese mosses for Rapoport’s elevational rule. Despite a high correlation between altitude and elevational range for Nepalese liverworts, results from null simulation models suggest that no clear conclusions can be made about whether liverworts support Rapoport’s elevational rule. Main conclusions Different demands for climatic variables such as available energy and water may be the main reason for the differences between the observed patterns for the four plant groups. The mid‐domain effect may explain part of the observed pattern in moss and liverwort richness but it probably only works as a modifier of the main underlying relationship between climate and species richness.  相似文献   

5.
1. To investigate the influence of elevated temperatures and nutrients on photosynthesis, respiration and growth of natural phytoplankton assemblages, water was collected from a eutrophic lake in spring, summer, autumn, winter and the following spring and exposed to ambient temperature and ambient +2, +4 and +6 °C for 2 weeks with and without addition of extra inorganic nutrients. 2. Rates of photosynthesis, respiration and growth generally increased with temperature, but this effect was strongly enhanced by high nutrient availability, and therefore was most evident for nutrient amended cultures in seasons of low ambient nutrient availability. 3. Temperature stimulation of growth and metabolism was higher at low than high ambient temperature showing that long‐term temperature acclimation of the phytoplankton community before the experiments was of great importance for the measured rates. 4. Although we found distinct responses to relatively small temperature increases, the interaction between nutrient availability, time of the year and, thus, ambient temperature was responsible for most of the observed variability in phytoplankton growth, photosynthesis and respiration. 5. Although an increase in global temperature will influence production and degradation of organic material in lakes, the documented importance of ambient temperatures and nutrient conditions suggests that effects will be most pronounced during winter and early spring, while the remaining part of the growth season will be practically unaffected by increasing temperatures.  相似文献   

6.
Foliar respiration is a major component of ecosystem respiration, yet extrapolations are often uncertain in tropical forests because of indirect estimates of leaf area index (LAI). A portable tower was used to directly measure LAI and night-time foliar respiration from 52 vertical transects throughout an old-growth tropical rain forest in Costa Rica. In this study, we (1) explored the effects of structural, functional and environmental variables on foliar respiration; (2) extrapolated foliar respiration to the ecosystem; and (3) estimated ecosystem respiration. Foliar respiration temperature response was constant within plant functional group, and foliar morphology drove much of the within-canopy variability in respiration and foliar nutrients. Foliar respiration per unit ground area was 3.5 ± 0.2  µ mol CO2 m−2 s−1, and ecosystem respiration was 9.4 ± 0.5  µ mol CO2 m−2 s−1[soil = 41%; foliage = 37%; woody = 14%; coarse woody debris (CWD) = 7%]. When modelled with El Niño Southern Oscillation (ENSO) year temperatures, foliar respiration was 9% greater than when modelled with temperatures from a normal year, which is in the range of carbon sink versus source behaviour for this forest. Our ecosystem respiration estimate from component fluxes was 33% greater than night-time net ecosystem exchange for the same forest, suggesting that studies reporting a large carbon sink for tropical rain forests based solely on eddy flux measurements may be in error.  相似文献   

7.
8.
该研究首次借助林冠塔吊调查了西双版纳国家级自然保护区龙脑香热带雨林样地内69棵树13个垂直高度上的附生苔藓植物,结果表明:目标样树上共记录到隶属于25科60属的90种附生苔藓,其中细鳞苔科物种数最多,占比达25.6%。13个垂直高度上共划分出三种生态类型:喜阳苔藓(散生巨树上45 m的区域),喜阴苔藓(乔木树干上15 m的区域),广布苔藓(广泛分布于宿主各个垂直高度上,生态位宽),并筛选出对微生境有特殊偏好的17种苔藓指示种(IndVal≥0.7,P0.05)。随宿主垂直高度的升高,扇型和交织型的苔藓占比降低,悬垂型苔藓占比先升高后降低,细平铺型和粗平铺型的苔藓占比升高。大气湿度、水汽压、胸径以及树皮粗糙度对附生苔藓生活型的分布偏好具有显著影响。总之,沿宿主垂直高度上的附生苔藓对微环境变化在生活型和形态结构上有着不同的响应方式,而同一种生态型的苔藓群落有相似的适应机制。因此,在森林林冠生境变化的监测和管理中,对微生境具有明显偏好的附生苔藓物种可作为有效的指示材料。  相似文献   

9.
海南岛尖峰岭热带山地雨林土壤和凋落物呼吸研究   总被引:24,自引:0,他引:24  
采用 CI-30 1 PS红外 CO2 测定系统对海南岛尖峰岭热带山地雨林土壤和凋落物的呼吸进行测定结果表明 ,原始林土壤呼吸速率昼夜变化表现为多峰曲线 ,最高峰在 2 0 :0 0 ,在 1 2 :0 0和 4 :0 0~ 6 :0 0出现 2个次高峰 ,平均呼吸速率为1 0 .6 85 3μmol· m- 2· s- 1;更新林土壤呼吸速率变化大 ,平均为 1 4 .75 36 μmol· m- 2· s- 1,高峰主要在 1 3:0 0和 2 :0 0 ;凋落物分解过程在林地 CO2 排放总量中贡献很少 ,仅占 1 .74 1 %~ 2 .831 % ;原始林凋落物 CO2 排放量明显比更新林大 ,而各层的排放比例不一样 ,原始林是 b层 (半分解凋落物及腐殖质层 ) >a层 (未分解凋落物层 ) ,更新林是 b层相似文献   

10.
Novel nonstationary and nonlinear dynamic time series analysis tools are applied to multiyear eddy covariance CO2 flux and micrometeorological data from the Harvard Forest and University of Michigan Biological Station field study sites. Firstly, the utility of these tools for partitioning the gross photosynthesis and bulk respiration signals within these series is demonstrated when employed within a simple model framework. This same framework offers a promising new method for gap filling missing CO2 flux data. Analysing the dominant seasonal components extracted from the CO2 flux data using these tools, models are inferred for daily gross photosynthesis and bulk respiration. Despite their simplicity, these models fit the data well and yet are characterized by well‐defined parameter estimates when the models are optimized against calibration data. Predictive validation of the models also demonstrates faithful forecasts of annual net cumulative CO2 fluxes for these sites.  相似文献   

11.
Gas exchange, fluorescence, western blot and chemical composition analyses were combined to assess if three functional groups (forbs, grasses and evergreen trees/shrubs) differed in acclimation of leaf respiration (R) and photosynthesis (A) to a range of growth temperatures (7, 14, 21 and 28 degrees C). When measured at a common temperature, acclimation was greater for R than for A and differed between leaves experiencing a 10-d change in growth temperature (PE) and leaves newly developed at each temperature (ND). As a result, the R : A ratio was temperature dependent, increasing in cold-acclimated plants. The balance was largely restored in ND leaves. Acclimation responses were similar among functional groups. Across the functional groups, cold acclimation was associated with increases in nonstructural carbohydrates and nitrogen. Cold acclimation of R was associated with an increase in abundance of alternative and/or cytochrome oxidases in a species-dependent manner. Cold acclimation of A was consistent with an initial decrease and subsequent recovery of thylakoid membrane proteins and increased abundance of proteins involved in the Calvin cycle. Overall, the results point to striking similarities in the extent and the biochemical underpinning of acclimation of R and A among contrasting functional groups differing in overall rates of metabolism, chemical composition and leaf structure.  相似文献   

12.
It remains unclear whether the latitudinal diversity gradients of micro- and macro-organisms are driven by the same macro-environmental variables. We used the newly completed species catalog and distribution information of bryophytes in China to explore their spatial species richness patterns, and to investigate the underlying roles of energy availability, climatic seasonality, and environmental heterogeneity in shaping these patterns. We then compared these patterns to those found for woody plants. We found that, unlike woody plants, mosses and liverworts showed only weakly negative latitudinal trends in species richness. The spatial patterns of liverwort richness and moss richness were overwhelmingly explained by contemporary environmental variables, although explained variation was lower than that for woody plants. Similar to woody plants, energy and climatic seasonality hypotheses dominate as explanatory variables but show high redundancy in shaping the distribution of bryophytes. Water variables, that is, the annual availability, intra-annual variability and spatial heterogeneity in precipitation, played a predominant role in explaining spatial variation of species richness of bryophytes, especially for liverworts, whereas woody plant richness was affected most by temperature variables. We suggest that further research on spatial patterns of bryophytes should incorporate the knowledge on their ecophysiology and evolution.  相似文献   

13.
Autotrophic respiration involves the use of fixed carbon by plants for their own metabolism, resulting in the release of carbon dioxide as a by‐product. Little is known of how autotrophic respiration components vary across environmental gradients, particularly in tropical ecosystems. Here, we present stem CO2 efflux data measured across an elevation transect spanning ca. 2800 m in the Peruvian Amazon and Andes. Forest plots from five elevations were studied: 194, 210, 1000, 1500, and 3025 m asl Stem CO2 efflux (Rs) values from each plot were extrapolated to the 1‐ha plot level. Mean Rs per unit stem surface area declined significantly with elevation, from 1.14±0.12 at 210 m elevation to 0.62±0.09 μmol C m−2 s−1 at 3025 m elevation. When adjusted for changing forest structure with elevation, this is equivalent to 6.45±1.12 Mg C ha−1 yr−1 at 210 m elevation to 2.94±0.19 Mg C ha−1 yr−1 at 3025 m elevation. We attempted to partition stem respiration into growth and maintenance respiration components for each site. Both growth and maintenance respiration rates per unit stem showed similar, moderately significant absolute declines with elevation, but the proportional decline in growth respiration rates was much greater. Stem area index (SAI) showed little trend along the transect, with declining tree stature at higher elevations being offset by an increased number of small trees. This trend in SAI is sensitive to changes in forest stature or size structure. In the context of rapid regional warming over the 21st century, such indirect, ecosystem‐level temperature responses are likely to be as important as the direct effects of temperature on maintenance respiration rates.  相似文献   

14.
We investigated seasonal variation in dark respiration and photosynthesis by measuring gas exchange characteristics on Pinus radiata and Populus deltoides under field conditions each month for 1 year. The field site in the South Island of New Zealand is characterized by large day-to-day and seasonal changes in air temperature. The rate of foliar respiration at a base temperature of 10 °C ( R 10) in both pine and poplar was found to be greater during autumn and winter and displayed a strong downward adjustment in warmer months. The sensitivity of instantaneous leaf respiration to a 10 °C increase in temperature ( Q 10) was also greater during the winter period. The net effect of this strong acclimation was that the long-term temperature response of respiration was essentially flat over a wide range of ambient temperatures. Seasonal changes in photosynthesis were sensitive to temperature but largely independent of leaf nitrogen concentration or stomatal conductance. Over the range of day time growth temperatures (5–32 °C), we did not observe strong evidence of photosynthetic acclimation to temperature, and the long-term responses of photosynthetic parameters to ambient temperature were similar to previously published instantaneous responses. The ratio of foliar respiration to photosynthetic capacity ( R d/ A sat) was significantly greater in winter than in spring/summer. This indicates that there is little likelihood that respiration would be stimulated significantly in either of these species with moderate increases in temperature – in fact net carbon uptake was favoured at moderately higher temperatures. Model calculations demonstrate that failing to account for strong thermal acclimation of leaf respiration influences determinations of leaf carbon exchange significantly, especially for the evergreen conifer.  相似文献   

15.
Photoinhibition of photosynthesis and its reactivation was studied in the cyanobaterium A. nidulans in the presence of the respiratory inhibitor sodium azide, the uncouplers carbonyl cyanide p -(trifluoromethoxy)-phenylhydrazone (FCCP) and carbonyl cyanide m -chlorophenylhydrazone (CCCP) and the photosystem I elicitor phenazine methosulphate (PMS). Inhibition of dark respiration by azide increased the susceptibility of the cyanobacterium to photoinhibition. Both FCCP and CCCP also remarkably affected the process of photoinhibition in A. nidulans. The PMS at lower photoinhibitory light intensity partially protected A. nidulans from photoinhibition. The recovery from photoinhibition in the presence of azide or FCCP was slow and normal photosynthesis could not be resumed even after a longer period of incubation under suitable reactivating condition. Thus dark respiration has a key function in the process of photoinhibition of photosynthesis and its reactivation in the cyanobacterium A. nidulans.  相似文献   

16.
荒漠草原区地上净初级生产力和土壤呼吸对降水变化的不同响应 降水变化既影响地上植被动态,也影响地下碳循环过程,尤其以干旱半干旱生态系统对降水的响应更为敏感。然而极端降水如何影响土壤碳固存潜力仍未得出明确结果。本研究在黄土高原西部荒漠草原样地实施了为期3年的降水控制实验,该实验包含5个降水梯度(即自然降水(对照),以及在自然降水基础上的减水40%、减水20%、增水20%、增水40%)。通过对不同降水处理下植物生长指标、地上净初级生产力(ANPP)、土壤水分和土壤呼吸(Rs)进行监测,采用双侧不对称模型揭示ANPP和Rs对降水变化的响应规律;采用结构方程模型,分析降水变化下影响ANPP和Rs的直接和间接因素。研究结果表明,ANPP对极端干旱的响应比极端湿润更敏感,在干旱和湿润年份均符合负向不对称模型。ANPP的变化主要受到降水的直接影响,同时,干旱年份植物密度的变化也对ANPP产生了影响。在湿润年份,Rs对降水变化的响应也呈负向不对称性。然而,干旱年份,Rs对降水变化表现出正向不对称响应,即对降水增加响应的敏感性高于降水减少,这可能与植物生长和ANPP对增水处理的正响应增加使自氧呼吸增强,及降水事件对异氧呼吸具有较强的‘Birch效应’有关。在干旱年份Rs对极端干旱(减水40%处理)表现出饱和响应。ANPP和Rs对降水格局改变的响应模式差异表明荒漠草原区极端湿润或干旱可能降低研究区土壤碳固存的潜力。  相似文献   

17.
Carbon exchange by the terrestrial biosphere is thought to have changed since pre-industrial times in response to increasing concentrations of atmospheric CO2 and variations (anomalies) in inter-annual air temperatures. However, the magnitude of this response, particularly that of various ecosystem types (biomes), is uncertain. Terrestrial carbon models can be used to estimate the direction and size of the terrestrial responses expected, providing that these models have a reasonable theoretical base. We formulated a general model of ecosystem carbon fluxes by linking a process-based canopy photosynthesis model to the Rothamsted soil carbon model for biomes that are not significantly affected by water limitation. The difference between net primary production (NPP) and heterotrophic soil respiration (Rh) represents net ecosystem production (NEP). The model includes (i) multiple compartments for carbon storage in vegetation and soil organic matter, (ii) the effects of seasonal changes in environmental parameters on annual NEP, and (iii) the effects of inter-annual temperature variations on annual NEP. Past, present and projected changes in atmospheric CO2 concentration and surface air temperature (at different latitudes) were analysed for their effects on annual NEP in tundra, boreal forest and humid tropical forest biomes. In all three biomes, annual NEP was predicted to increase with CO2 concentration but to decrease with warming. As CO2 concentrations and temperatures rise, the positive carbon gains through increased NPP are often outweighed by losses through increased Rh, particularly at high latitudes where global warming has been (and is expected to be) most severe. We calculated that, several times during the past 140 years, both the tundra and boreal forest biomes have switched between being carbon sources (annual NEP negative) and being carbon sinks (annual NEP positive). Most recently, significant warming at high latitudes during 1988 and 1990 caused the tundra and boreal forests to be net carbon sources. Humid tropical forests generally have been a carbon sink since 1960. These modelled responses of the various biomes are in agreement with other estimates from either field measurements or geochemical models. Under projected CO2 and temperature increases, the tundra and boreal forests will emit increasingly more carbon to the atmosphere while the humid tropical forest will continue to store carbon. Our analyses also indicate that the relative increase in the seasonal amplitude of the accumulated NEP within a year is about 0–14% year?1 for boreal forests and 0–23% year?1 in the tundra between 1960 and 1990.  相似文献   

18.
Chlorella pyrenoidosa was grown in three continuous cultures each receiving a different light regime during the light period of a diurnal cycle. Hourly samples taken during the light period were subjected to medium frequency light/dark oscillations of equal duration, ranging from 3 to 240 seconds. The oxygen consumption and production of each sample were measured with an oxygen electrode in a small oxygen chamber. Although the light/dark cycles had little overall influence on photosynthetic activity, the microalgae appeared to adapt to the light regime to which they were subjected. Large differences were found between the maximum chlorophyll-specific production rates (P infmax supB ), the chlorophyll-specific production rates (PB) and the respiration rates between the cultures and treated subsamples. Respiration rates increased during the light period, whilst PB either increased, or had a mid light period minimum or maximum. The culture which received an hourly light oscillation during the light period had the highest P infmax supB and lowest respiration rates, and it is suggested that these algae react as in nature, whereas either a sinusoidal or a block light pattern is unnatural. The latter light regime is commonly used in laboratory studies.  相似文献   

19.
While substantial cold-season respiration has been documented in most arctic and alpine ecosystems in recent years, the significance of cold-season photosynthesis in these biomes is still believed to be small. In a mesic, subartic heath during both the cold and warm season, we measured in situ ecosystem respiration and photosynthesis with a chamber technique at ambient conditions and at artificially increased frequency of freeze–thaw (FT) cycles during fall and spring. We fitted the measured ecosystem exchange rates to respiration and photosynthesis models with R2-values ranging from 0.81 to 0.85. As expected, estimated cold-season (October, November, April and May) respiration was significant and accounted for at least 22% of the annual respiratory CO2 flux. More surprisingly, estimated photosynthesis during this period accounted for up to 19% of the annual gross CO2 uptake, suggesting that cold-season photosynthesis partly balanced the cold-season respiratory carbon losses and can be significant for the annual cycle of carbon. Still, during the full year the ecosystem was a significant net source of 120 ± 12 g C m−2 to the atmosphere. Neither respiration nor photosynthetic rates were much affected by the extra FT cycles, although the mean rate of net ecosystem loss decreased slightly, but significantly, in May. The results suggest only a small response of net carbon fluxes to increased frequency of FT cycles in this ecosystem.  相似文献   

20.
西双版纳热带季节雨林与橡胶林土壤呼吸的季节变化   总被引:6,自引:0,他引:6  
采用挖壕沟法与红外气体分析法,研究了西双版纳热带季节雨林和人工橡胶林内土壤呼吸包括根系呼吸、异养呼吸的干湿季动态变化.结果表明:季节雨林内土壤呼吸和异养呼吸速率均显著大于橡胶林(P<0.01),但根系呼吸差异不显著;土壤温湿度是呼吸速率变化的主要影响因子,季节雨林和橡胶林内土壤呼吸和异养呼吸速率均为雨季>干热季>雾凉季,但季节雨林内根系呼吸为雨季>雾凉季>干热季,而橡胶林内为雾凉季>雨季>干热季;季节雨林内根系呼吸对土壤呼吸的贡献率(29%)小于橡胶林(42%,P<0.01),而季节雨林内异养呼吸对土壤呼吸的贡献率为71%、橡胶林为58%;当5 cm土壤温度在12 ℃~32 ℃范围内变化时,季节雨林内土壤呼吸及根系呼吸、异养呼吸的Q10值均大于橡胶林,且异养呼吸的Q10值最大而根系呼吸的Q10值最小.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号