首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nuclear farnesoid X receptor (FXR) has important physiological roles in various metabolic pathways including bile acid, cholesterol and glucose homeostasis. The clinical use of known synthetic non-steroidal FXR ligands is restricted due to toxicity or poor bioavailability. Here we report the development, synthesis, in vitro activity and structure–activity relationship (SAR) of anthranilic acid derivatives as novel FXR ligands. Starting from a virtual screening hit we optimized the scaffold to a series of potent partial FXR agonists with appealing drug-like properties. The most potent derivative exhibited an EC50 value of 1.5 ± 0.2 μM and 37 ± 2% maximum relative FXR activation. We investigated its SAR regarding polar interactions with the receptor by generating derivatives and computational docking.  相似文献   

2.
Cryptochinones A–D are tetrahydroflavanones isolated from the leaves of Cryptocarya chinensis, an evergreen tree whose extracts are believed to have a variety of health benefits. The origin of their possible bioactivity is unclear. The farnesoid X receptor (FXR) is a member of nuclear receptor superfamily that has been widely targeted for developing treatments for chronic liver disease and for hyperglycemia. We studied whether cryptochinones A–D, which are structurally similar to known FXR ligands, may act at this target. Indeed, in mammalian one-hybrid and transient transfection reporter assays, cryptochinones A–D transactivated FXR to modulate promoter action including GAL4, SHP, CYP7A1, and PLTP promoters in dose-dependent manner, while they exhibited similar agonistic activity as chenodeoxycholic acid (CDCA), an endogenous FXR agonist. Through molecular modeling docking studies we evaluated their ability to bind to the FXR ligand binding pocket. Our results indicate that cryptochinones A–D can behave as FXR agonists.  相似文献   

3.
Farnesoid X receptor (FXR) serves as a receptor for chenodeoxycholic acid (CDCA) and other bile acids, and it coordinates cholesterol and lipid metabolism. Because targeting the FXR-CDCA interaction might provide a way to regulate lipid homeostasis, we developed an FXR binding assay based on fluorescence polarization. Employing a fluorescently labeled CDCA (CDCA-F), we showed that CDCA-F selectively bound to the ligand binding domain of FXR (FXR-LBD) among nuclear receptors. The assay was then used for screening inhibitors against the FXR-CDCA interaction, thereby discovering four relatively potent inhibitors. The selected inhibitors were further studied for changes in intrinsic tryptophan fluorescence of FXR-LBD to gain structural insights into the interaction. Furthermore, transactivation effects of the inhibitors on the human bile salt excretory pump (BSEP) promoter were examined to reveal their cellular activities in the FXR-mediated pathway. Therefore, we demonstrated that the developed assay would offer an efficient primary screening tool for identifying FXR modulators.  相似文献   

4.
The farnesoid X receptor (FXR) is a bile acid/alcohol-activated nuclear receptor that regulates lipid homeostasis. Unlike other steroid receptors, FXR binds bile acids in an orientation that allows the steroid nucleus A ring to face helix 12 in the receptor, a crucial domain for coactivator-recruitment. Because most naturally occurring bile acids and alcohols contain a cis-oriented A ring, which is distinct from that of other steroids and cholesterol metabolites, we investigated the role of this 5beta-configuration in FXR activation. The results showed that the 5beta-(A/B cis) bile alcohols 5beta-cyprinol and bufol are potent FXR agonists, whereas their 5alpha-(A/B trans) counterparts antagonize FXR transactivation and target gene expression. Both isomers bound to FXR, but their ability to induce coactivator-recruitment and thereby induce transactivation differed. These findings suggest a critical role for the A-ring orientation of bile salts in agonist/antagonist function.  相似文献   

5.
An asymmetric synthetic strategy was designed for the preparation of the four possible diastereoisomers of 3,6-dimethyl-1-(2-methylphenyl)-4-(4-phenoxyphenyl)-4,8-dihydro-1H-pyrazolo[3,4-e][1,4]thiazepin-7-one, a non-steroidal FXR agonist, we recently discovered following a virtual screening approach. The results obtained from an AlphaScreen assay clearly demonstrated that only the isomer endowed with 4R,6S absolute configuration is responsible for the biological activity. A deep investigation of the different putative binding modes adopted by these enantiomerically pure ligands using computational modeling studies confirmed the enantioselectivity of FXR towards this class of molecules.  相似文献   

6.
Structure-guided lead optimization of recently described benzimidazolyl acetamides addressed the key liabilities of the previous lead compound 1. These efforts culminated in the discovery of 4-{(S)-2-[2-(4-chloro-phenyl)-5,6-difluoro-benzoimidazol-1-yl]-2-cyclohexyl-acetylamino}-3-fluoro-benzoic acid 7g, a highly potent and selective FXR agonist with excellent physicochemical and ADME properties and potent lipid lowering activity after oral administration to LDL receptor deficient mice.  相似文献   

7.
目的探讨降脂益生菌(鼠李糖乳杆菌DM9054和植物乳杆菌86066联合制剂)对非酒精性脂肪性肝病(nonalcoholic fatty liver disease, NAFLD)小鼠胆汁酸代谢及转运的影响和可能机制。方法 18只雄性FXR-/-小鼠随机分为3组(n=6):正常饮食组、高脂饮食组和高脂饮食+降脂益生菌组。其中正常饮食组给予普通饮食和生理盐水灌胃,高脂饮食组给予高脂饮食和生理盐水灌胃,高脂饮食+降脂益生菌组给予高脂饮食和降脂益生菌灌胃。所有小鼠干预12周,处死小鼠1周前行胰岛素耐量试验和腹腔注射葡萄糖耐量试验。小鼠处死后自动生化分析仪检测血脂、胆汁酸及肝功能指标;RT-PCR检测肝脏和回肠组织炎症因子相对表达量;HE染色评估肝脏和回肠组织病理情况;Western blot检测法尼醇受体(Farnesoid X receptor, FXR)通路中的成纤维细胞生长因子15(fibroblast growth factor 15,FGF15)、成纤维细胞生长因子受体4(fibroblast growth factor receptor 4,FGFR4)和小分子异源二聚体(short heterodimer partner, SHP)、胆汁酸合成限速酶胆固醇7α-羟化酶(cholesterol 7α-hydroxylase, CYP7A1)及胆汁酸转运相关的胆盐输出泵(bile salt export pump, BSEP)的蛋白表达。结果和高脂饮食组相比,高脂饮食+降脂益生菌组小鼠血清中胆汁酸含量明显下降(P=0.000 1),FGF15、FGFR4和BSEP蛋白表达水平升高(P=0.009 7、0.024 2、0.000 1),CYP7A1的蛋白表达水平降低(P=0.006 9)。此外,通过降脂益生菌干预还明显改善了高脂饮食FXR-/-小鼠的糖脂代谢紊乱(P=0.002 4)、肝脏脂肪变性、肝脏和回肠组织炎症(P=0.013 8、0.000 1、0.000 1)以及肠黏膜屏障功能(P=0.014 2)。结论降脂益生菌具有类似选择性肠道FXR激动剂的作用,能够通过调控肠道FXR-FGF15通路改善胆汁酸的代谢及转运,进而缓解高脂饮食FXR-/-小鼠的NAFLD。  相似文献   

8.
Obesity is one of the most serious health problems in the world, increasing the risk of other chronic diseases. Alterations in fatty acid synthesis related genes are crucially involved in obesity progression. Diosgenin (DG) was one of the phytosterols compounds with vital activity against lipid disorders. Therefore, this study was intended to evaluate the protective effect of DG on lipogenesis in the high-fat diet (HFD)-induced obesity in mice, via investigating the expression of two of the fatty acid synthesis–involved genes; sterol regulatory element-binding protein (SREBP-1c) and fatty acid synthase (FASN) genes. Thirty adult male mice were divided into 3 groups. Control group, fed with normal diet; HFD group, mice fed with a high-fat diet and HFD + DG group, mice fed with a high-fat diet and supplemented in parallel with DG for 6 consecutive weeks. The effect of DG on Body weights, liver enzymes, lipid profile, were evaluated. Histopathological fatty changes as well as SREBP-1c and FASN gene expression were also investigated. DG significantly alleviated body weight gain, adjusted liver enzymes, and improved lipid profile. Additionally, DG ameliorated the histopathological changes by reducing the lipid vacuoles and hence the hepatosteatosis. Accordingly, DG significantly downregulated the two-fold increase in the SREBP-1c and FASN gene expression observed in the HFD group. In conclusion, DG possesses a beneficial impact against diet-induced obesity in mice, which makes it a good candidate for NAFLD and obesity prevention.  相似文献   

9.
10.
Ligand binding to nuclear receptors leads to a conformational change that increases the affinity of the receptors to coactivator proteins. We have developed a ligand sensor assay for farnesoid X receptor (FXR) in which the receptor–coactivator interaction can be directly monitored using surface plasmon resonance biosensor technology. A 25-mer peptide from coactivator SRC1 containing the LXXLL nuclear receptor interaction motif was immobilized on the surface of a BIAcore sensor chip. Injection of the FXR ligand binding domain (FXRLBD) with or without the most potent natural ligand, chenodeoxycholic acid (CDCA), over the surface of the chip resulted in a ligand- and LXXLL motif-dependent interaction. Kinetic analysis revealed that CDCA and its conjugates decreased the equilibrium dissociation constant (Kd) by 8–11-fold, indicating an increased affinity. Using this technique, we found that a synthetic bile acid sulfonate, 3,7-dihydroxy-5β-cholane-24-sulfonate, which was inactive in a FXR response element-driven luciferase assay using CV-1 cells, caused the most potent interaction, comparable to the reaction produced by CDCA. This method provides a rapid and reliable in vitro ligand assay for FXR. This kinetic analysis-featured technique may be applicable to mechanistic studies.  相似文献   

11.
12.
13.
14.
To improve on the drug properties of GSK8062 1b, a series of heteroaryl bicyclic naphthalene replacements were prepared. The quinoline 1c was an equipotent FXR agonist with improved drug developability parameters relative to 1b. In addition, analog 1c lowered body weight gain and serum glucose in a DIO mouse model of diabetes.  相似文献   

15.
To further explore the optimum placement of the acid moiety in conformationally constrained analogs of GW 4064 1a, a series of stilbene replacements were prepared. The benzothiophene 1f and the indole 1g display the optimal orientation of the carboxylate for enhanced FXR agonist potency.  相似文献   

16.
Cerebrotendinous xanthomatosis (CTX), sterol 27-hydroxylase (CYP27A1) deficiency, is associated with markedly reduced chenodeoxycholic acid (CDCA), the most powerful activating ligand for farnesoid X receptor (FXR). We investigated the effects of reduced CDCA on FXR target genes in humans. Liver specimens from an untreated CTX patient and 10 control subjects were studied. In the patient, hepatic CDCA concentration was markedly reduced but the bile alcohol level exceeded CDCA levels in control subjects (73.5 vs. 37.8 +/- 6.2 nmol/g liver). Cholesterol 7alpha-hydroxylase (CYP7A1) and Na+/taurocholate-cotransporting polypeptide (NTCP) were upregulated 84- and 8-fold, respectively. However, small heterodimer partner (SHP) and bile salt export pump were normally expressed. Marked CYP7A1 induction with normal SHP expression was not explained by the regulation of liver X receptor alpha (LXRalpha) or pregnane X receptor. However, another nuclear receptor, hepatocyte nuclear factor 4alpha (HNF4alpha), was induced 2.9-fold in CTX, which was associated with enhanced mRNA levels of HNF4alpha target genes, CYP7A1, 7alpha-hydroxy-4-cholesten-3-one 12alpha-hydroxylase, CYP27A1, and NTCP. In conclusion, the coordinate regulation of FXR target genes was lost in CTX. The mechanism of the disruption may be explained by a normally stimulated FXR pathway attributable to markedly increased bile alcohols with activation of HNF4alpha caused by reduced bile acids in CTX liver.  相似文献   

17.
Farnesoid X receptor (FXR) is a nuclear receptor related to lipid and glucose homeostasis and is considered an important molecular target to treatment of metabolic diseases as diabetes, dyslipidemia, and liver cancer. Nowadays, there are several FXR agonists reported in the literature and some of it in clinical trials for liver disorders. Herein, a compound series was employed to generate QSAR models to better understand the structural basis for FXR activation by anthranilic acid derivatives (AADs). Furthermore, here we evaluate the inclusion of the standard deviation (SD) of EC50 values in QSAR models quality. Comparison between the use of experimental variance plus average values in model construction with the standard method of model generation that considers only the average values was performed. 2D and 3D QSAR models based on the AAD data set including SD values showed similar molecular interpretation maps and quality (Q2LOO, Q2(F2), and Q2(F3)), when compared to models based only on average values. SD-based models revealed more accurate predictions for the set of test compounds, with lower mean absolute error indices as well as more residuals near zero. Additionally, the visual interpretation of different QSAR approaches agrees with experimental data, highlighting key elements for understanding the biological activity of AADs. The approach using standard deviation values may offer new possibilities for generating more accurate QSAR models based on available experimental data.  相似文献   

18.

Aims

We previously reported anti-dyslipidemic effects of a farnesoid X receptor antagonist in monkeys. In this study, we compared the cholesterol-lowering effects of single and combined administration of a farnesoid X receptor antagonist, compound-T8, and the 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor atorvastatin in a guinea pig model.

Main methods

Plasma levels of 7α-hydroxy-4-cholesten-3-one, a marker of hepatic cholesterol 7α-hydroxylase activity, were measured after a single administration of compound-T8. The effects of compound-T8 or atorvastatin on plasma cholesterol levels and low-density lipoprotein (LDL) clearance were investigated after 14 or 16 days of repeated dosing, respectively. Fractional catabolic rate of plasma LDL was estimated by intravenous injection of DiI-labeled human LDL. The cholesterol-lowering effects of combination therapy were investigated after 7 days of repeated treatment.

Key findings

Compound-T8 (10 and 30 mg/kg) increased plasma 7α-hydroxy-4-cholesten-3-one levels in a dose-dependent manner. Single administration of compound-T8 (30 mg/kg) and atorvastatin (30 mg/kg) reduced plasma non-high-density lipoprotein (non-HDL) cholesterol levels by 48% and 46%, respectively, and increased clearance of plasma DiI-labeled LDL by 29% and 35%, respectively. Compound-T8 (10 mg/kg) or atorvastatin (10 mg/kg) reduced non-HDL cholesterol levels by 19% and 25%, respectively, and combination therapy showed an additive effect and lowered cholesterol levels by 48%.

Significance

Similar to atorvastatin, compound-T8 reduced plasma non-HDL cholesterol levels accompanied with accelerated LDL clearance in guinea pigs. Combination therapy additively decreased plasma non-HDL cholesterol levels. Therefore, monotherapy with a farnesoid X receptor antagonist and combination therapy of a farnesoid X receptor antagonist with atorvastatin would be attractive dyslipidemia treatment options.  相似文献   

19.
本研究旨在建立一种基于双荧光素酶报告基因检测体系的法尼醇X受体(farnesoid X receptor, FXR)激动剂细胞筛选体系,以满足对FXR激动剂先导化合物的高通量筛选。通过在报告基因质粒pGL4-luc2P-Hygro中的萤火虫荧光素酶(firefly luciferase,Luc)基因上游克隆并插入来自FXR靶基因的FXR反应元件(FXR response element,FXRE)片段,构建用于筛选FXR激动剂的报告基因质粒,并结合海肾荧光素酶内参质粒,建立能够有效反映药物对FXR激动效应的双荧光素酶报告基因细胞检测体系。通过一系列优化实验,比较了过表达RXR、鼠源和人源FXR、不同的FXRE片段、FXR过表达质粒与报告基因质粒的混合比对筛选体系诱导效率和灵敏度的影响。根据上述结果,最终确定了优化条件,优化后体系Z因子达到0.83。本研究建立了一种用于FXR激动剂筛选的改良的基于双荧光素酶报告基因检测体系的细胞筛选体系,其主要特征在于,使用多段FXR靶基因上的FXRE片段叠加组成一种新型的增强型FXRE元件,而非传统的反向重复序列-1 (inverted repeats...  相似文献   

20.

Background

Brazilian green propolis (BGP), a resinous substance produced from Baccharis dracunculifolia by Africanized honey bees (Apis mellifera), is used as a folk medicine. Our present study explores the retinoid X receptor (RXR) agonistic activity of BGP and the identification of an RXR agonist in its extract.

Methods

RXRα agonistic activity was evaluated using a luciferase reporter gene assay. Isolation of the RXRα agonist from the ethanolic extract of BGP was performed using successive silica gel and a reversed phase column chromatography. The interaction between the isolated RXRα agonist and RXRα protein was predicted by a receptor–ligand docking simulation. The nuclear receptor (NR) cofactor assay was used to estimate whether the isolated RXRα agonist bound to various NRs, including RXRs and peroxisome proliferator-activated receptors (PPARs). We further examined its effect on adipogenesis in 3T3-L1 fibroblasts.

Results

We identified drupanin as an RXRα agonist with an EC50 value of 4.8 ± 1.0 μM. Drupanin activated three RXR subtypes by a similar amount and activated PPARγ moderately. Additionally, drupanin induced adipogenesis and elevated aP2 mRNA levels in 3T3-L1 fibroblasts.

Conclusions

Drupanin, a component of BGP, is a novel RXR agonist with slight PPARγ agonistic activity.

General significance

This study revealed for the first time that BGP activates RXR and drupanin is an RXR agonist in its extract.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号